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Abstract. This paper presents an efficient technique for real time es-
timation of on-board stereo vision system pose. The whole process is
performed in the Euclidean space and consists of two stages. Initially, a
compact representation of the original 3D data points is computed. Then,
a RANSAC based least squares approach is used for fitting a plane to
the 3D road points. Fast RANSAC fitting is obtained by selecting points
according to a probability distribution function that takes into account
the density of points at a given depth. Finally, stereo camera position
and orientation—pose—is computed relative to the road plane. The pro-
posed technique is intended to be used on driver assistance systems for
applications such as obstacle or pedestrian detection. A real time per-
formance is reached. Experimental results on several environments and
comparisons with a previous work are presented.

1 Introduction

Several vision based advanced driver assistance systems (ADAS) have been pro-
posed in the literature during recent years (e.g., [1], [2], [3]). They can be broadly
classified into two different categories: monocular or stereo. Each one of them
has its own advantages and disadvantages making it difficult to decide which is
the best approach for a general purpose driver assistance system.

In general, monocular vision systems avoid problems related to 3D Euclidean
geometry by using the prior knowledge of the environment as an extra source of
information. However, it may lead to wrong results. For instance, considering a
constant camera’s position and orientation is not a valid assumption to be used
in urban scenarios, since both of them are easily affected by road imperfections or
artifacts (e.g., rough road, speed bumpers), car’s accelerations, uphill/downhill
driving, among others. Facing up to this problem [4] introduces a technique for
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estimating vehicle’s yaw, pitch and roll. Since a single camera is used, it is based
on the assumption that some parts of the road have a constant width (e.g., lane
markings). Similarly, [5] proposes to estimate camera’s orientation by assuming
that the vehicle is driven along two parallel lane markings. Unfortunately, none
of these two approaches can be generalized to be used in urban scenarios, since
in general lanes are not as well defined as those of highways.

The main advantage of monocular systems is their high capture rate, which is
at the same time the weakest point of current stereo systems. On the other hand,
the main advantage of stereo vision systems lies in the richness of 3D informa-
tion, which allows to face up problems that cannot be tackled with monocular
systems without having a prior knowledge of the scene. In other words, draw-
backs of stereo vision systems, like the low capture rate, are related to the current
technology while drawbacks of monocular vision systems are due to their monoc-
ular nature. Therefore, taking into account the fast evolution of technology it
is assumed that most of the stereo systems drawbacks, which are related to the
current technology, will be surpassed soon.

In this context, [6] presents an algorithm for on-board camera extrinsic para-
meter estimation. Although robust, the major drawback of that technique is the
high CPU time required to process the whole set of data points. In the current
paper a two stage technique is presented; it introduces improvements over that
original approach ([6]) by using a compact set of points. An efficient RANSAC
based least squares fitting approach estimates the parameters of a plane fitting
to that set of points. Finally, camera’s position and orientation are directly com-
puted, referred to that plane. The proposed technique could be indistinctly used
for urban or highway environments, since it is not based on a specific visual
traffic feature extraction but on raw 3D data points.

The remainder of this paper is organized as follows. Section 2 presents the
proposed technique. Experimental results on urban scenes are presented in Sec-
tion 3 together with comparisons with previous approaches. Finally, conclusions
are given in Section 4.

2 Proposed Technique

Let D(r, c) be a depth map with R rows and C columns (the image size), where
each array element (r, c)(r ∈ [0, (R − 1)] and c ∈ [0, (C − 1)]) is a 3-vector that
represents a scene point of coordinates (x, y, z) in the sensor coordinate system.
Figure 1 depicts the sensor coordinate system of the stereo camera that is at-
tached to the vehicle’s windshield. Due to the orientation alignment between the
sensor coordinate system and the vehicle, one can assume that vertical varia-
tions between consecutive frames—due to road imperfections, car accelerations,
changes in the road slope, etc.—will mainly produce changes in camera’s height
and pitch angle. In other words, yaw and roll angles are not so affected by those
variations. In practice, all three angles can change, however in this study we are
only interested in pitch angle variations. The proposed approach consists of two
stages, which are presented below.
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Fig. 1. On-board stereo vision sensor with its corresponding coordinate system (right
camera coordinate system is used as reference).

2.1 3D Data Point Projection and Cell Selection

The aim at this first stage is to find a compact subset of points, ζ, containing
most of the road’s points; similar to our previous proposal [6]. Additionally,
noisy data points should be reduced as much as possible in order to avoid both a
very time consuming processing and erroneous plane fits. To speed up the whole
algorithm, most of the processing at this stage is performed over a 2D space.

Original 3D data points, D(r, c), are mapped onto a 2D discrete representation
P (u, v); where u = �Dy(r, c)·σ� and v = �Dz(r, c)·σ�. σ represents a scale factor
defined as: σ = ((R+C)/2)/((ΔX+ΔY +ΔZ)/3); R, C are the image’s rows and
columns respectively, and (ΔX, ΔY, ΔZ) is the working range in 3D space—on
average (34×12×50) meters. Every cell of P (u, v) keeps a pointer to the original
3D data point projected onto that position, as well as a counter with the number
of mapped 3D points. Figure 2(bottom-left) shows a 2D representation obtained
after mapping the 3D cloud presented in Figure 2(top-right).

Points defining the ζ subset are selected by picking up one cell per column.
This selection process is based on the assumption that the road surface is the
predominant geometry in the given scene—urban or highway scenarios. Hence, it
picks one cell per column in the 2D projection (the cell with the largest number of
points in that column). It avoids the use of a fixed threshold value for the whole
2D space. This is one of the differences with respect to [6], where a constant
threshold value was used in the cell selection process.

Finally, in order to reduce the processing time, every selected cell is repre-
sented by the barycenter of its mapped points. The set of these barycenters define
the sought subset of points, ζ. This data compression step is another difference
with [6], where all mapped points into the selected cells were used for the fitting
process. Using one single point per selected cell a considerable reduction in the
CPU time is reached.

2.2 RANSAC Fitting with a Compact Set of 3D Points

The outcome of the previous stage is a compact subset of points, ζ, where most of
them belong to the road (Figure 2(bottom-right)). However, since some outliers
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Fig. 2. (top) A single frame (right camera) together with the 3D data points computed
with the stereo rig—notice that the image contains a large amount of holes due to
occlusions and noisy regions. (bottom-left) YZ projection. (bottom-right) Cells finally
selected to be used during the plane fitting stage.

are also included in that subset of points a RANSAC based [7] approach is used
for computing plane parameters. Every selected cell is associated with a value
that takes into account the amount of points mapped onto that position. This
value will be considered as a probability density function. A cell containing a
large number of mapped points, will have a high chance of being selected during
the random sampling stage; at the same time RANSAC algorithm will find easier
the Consensus among the whole set of point. The normalized probability density
function is defined as follow:

f(i) =
n(i)

N
(1)

where n(i) represents the number of points mapped onto the cell i (Figure
3(left)) and N represents the total amount of points contained in the selected
cells. Recall that we have one cell per column i. Next, a cumulative distribution
function, F(j), is obtained as:

F(j) =
j∑

i=0

f(i) (2)

If the values of F are randomly sampled at n points (with a uniform distri-
bution), the application of the inverse function F−1 to those points leads to a
set of n points that are adaptively distributed according to f(i). This principle
is illustrated in Figure 3(right) where three points are randomly selected.

The fitting process computes plane parameters by means of an efficient
RANSAC based least squares approach. Although an automatic threshold could
be computed for inliers/outliers detection, following robust estimation of stan-
dard deviation of residual errors [8], we finally decided to define a fixed value in
order to reduce CPU time. Notice that robust estimation of standard deviation
involves computationally expensive algorithms such as sorting function. Hence, a
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Fig. 3. (left) Bar diagram showing the amount of points mapped into the selected
cells—recall that only one cell per column is picked up. (right) Cumulative distribution
function computed from the amount of points mapped into every single cell.

predefined threshold value for inliers/outliers detection has been defined (a band
of ±10 cm was enough for taking into account both 3D data point accuracy and
road planarity). The proposed approach works as follows:
Random sampling. Repeat the following three steps K times, in our experi-
ments K was set to 100:

1. Draw a random subsample of three different 3D points (P1, P2, P3)— bary-
centers —where every point is drawn according to the probability density
function f(i) using the above process (Figure 3(right)).

2. For this subsample, indexed by k(k = 1, ...., K), compute the plane pa-
rameters1 (a, b, c). Since Pi are barycenter points, they could define a
set of collinear points; therefore, to prevent this occurs, their coordi-
nates are set up as follow:P1(xmin,y(1),z(1)), P2(xmin+(xmax−xmin)/2, y(2), z(2)),
P3(xmax, y(3), z(3)), where xmin and xmax correspond to the minimum and
maximum x coordinate of the original whole set of points, respectively.

3. For this solution (a, b, c)k, compute the number of inliers among the entire
set of 3D points contained in ζ, using ±10cm as a fixed threshold value.

Solution

1. Choose the solution that has the highest number of inliers. Let (a, b, c)i be
this solution.

2. Refine (a, b, c)i by using its corresponding inliers. To this end, the least
squares fitting approach [9], which minimizes the square residual error
(1 − ax − by − cz)2 is used.

3. In case the number of inliers is smaller than 10% of the total amount of
points contained in ζ, those plane parameters are discarded and the ones
corresponding to the previous frame are used as the correct ones. In general,
this happens when 3D road data are not correctly recovered since severe
occlusion or other external factor appears.

1 Notice that the general expression ax + by + cz + d = 0 has been simplified dividing
by (−d), since we already known that (d �= 0).
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Fig. 4. Vanishing lines computed according to the current camera pose—camera height
and pitch angle

Finally, camera’s height (h) and orientation (Θ), referred to the fitted plane
(a, b, c), are easily computed. Camera’s height is given by: h = 1/

√
a2 + b2 + c2.

Camera’s orientation—pitch angle—is directly computed from the current plane
orientation: Θ = arctan(c/b). Both values can be represented as a single one by
means of the vanishing line (e.g., [10], [11]). The vanishing line position (vi) for a
given frame (i) is computed by back-projecting into the image plane a point lying
over the plane, far away from the camera reference frame, P(i)(x, y, z). Let (y(i) =
(1−cz(i))/b) be the y coordinate of P(i) by assuming x(i) = 0. The corresponding
y(i) back-projection into the image plane, which define the row position of the
sought vanishing line, is obtained as v(i) = v(0)+fy(i)/z(i) = v(0)+f/z(i)b−fc/b;
where, f denotes the focal length in pixels; v(0) represents the vertical coordinate
of the principal point; and z(i) is the depth value of P(i) (in the experiments
z(i) = 10000).

3 Experimental Results and Comparisons

The proposed technique has been tested on different urban environments and
compared with [6]. A 3.2 GHz Pentium IV PC with a non-optimized C++ code
was used. The proposed algorithm took, on average, 90 ms per frame including
both 3D points computation and on-board pose estimation. Notice that this is
about four times faster than our previous approach [6], while the same results
are obtained.

Figure 4 shows two different frames with their corresponding vanishing lines
computed with the proposed technique. The computed camera height and pitch
angle, as a function of time, for this sequence are presented in Figure 5. Both
values are referred to the current fitted plane. This sequence contains a gentle
downhill, vehicle’s accelerations and two speed bumps. As can be seen, neglecting
these variations will affect further processing (e.g., car or pedestrian detection,
collision avoidance, etc.).

Finally, Figure 6 presents results obtained after processing a 12 second video
sequence corresponding to a short flat road followed by an uphill (10 fps are
depicted). Notice how the pitch angle changes during the sequence according
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Fig. 5. (left) Camera pitch angle for the video sequence of Figure 4 (only 2 fps are
plotted). (right) The corresponding camera distance to the fitted plane at every frame.
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Fig. 6. Comparisons between the proposed technique and [6] with a 12 second-long
video sequence: (left) Camera pitch angle. (right) The corresponding camera height to
the fitted plane at the every frame.

to the current geometry. In this scene there are no speed bumps and the car
keeps almost a constant speed after the initial acceleration, used for starting the
car’s motion. In both plots, the obtained results are presented together with the
results obtained with [6]. As can be appreciated, although the obtained results
have similar trend, the new proposed approach behaves better than the previous
proposal in those critical situations where two different geometries converge, first
40 frames—in this case a flat road with a quite sharp uphill. Since our previous
proposal uses a constant threshold value for cell selection (Section 2.1), only cells
near to the sensor were considered; on the contrary, with the new approach all
candidate cells are considered

4 Conclusions

An efficient technique for a real time pose estimation of on-board camera has
been presented. The input data are a set of 3D points provided by the on-board
stereo camera. After an initial mapping a compact set of 3D points is chosen as
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candidate for fitting a plane to the road. The RANSAC technique selects points
according to a probability distribution function that takes into account density of
points at a given position. Although it has been tested on urban environments, it
could be also useful on highway scenarios. A considerable reduction in the CPU
processing time was reached by working with a reduced set of points selected
according to a continuously updated probability distribution function. The latter
drives to a faster convergence during the RANSAC fitting stage.
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