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Abstract  

This paper presents a framework for extracting dense disparity maps from a multispectral stereo head. It is 
based on the assumption of a piecewise planar scene modeling. This assumption implies that the surfaces of the given 
scene can be fitted through a set of predominant planes. The multispectral stereo head is constructed with a thermal 
infrared and a color camera. It is intended to explore novel stereo matching approaches that will allow the fusion of 
information from different sensors. The proposed framework consists of three stages. Firstly, an initial sparse disparity 
map is extracted by using an adapted multimodal cost function. Then, a set of plane hypotheses that describe the 
surfaces of the scene is obtained. Finally, the information collected in pervious stages is combined through a Markov 
Random Field, which is solved by the graph-cuts algorithm. Experimental results in outdoor scenarios are provided 
showing the validity of the proposed framework. 

1. Introduction 

Color and thermal infrared cameras are already coexisting in different applications; just as examples we can 
mention the video surveillance (e.g. [1], [2]) and driver assistance (e.g. [3], [4]) applications. However, in these 
applications color (hereinafter referred to as visible spectrum cameras: VS) and thermal infrared cameras provide 
information that is processed independently, and their result fused at the end. These kinds of systems are redundant, 
since each information stream has its own data and processing flow. In the current work, we propose an algorithm for 
recovering 3D data without dual processing of color and infrared images (see Fig. 1), which can improve the overall 
performance of above applications. Our main motivation and challenge is to explore the possibility of obtaining 3D 
information from such a multispectral system, more precisely we propose to use a stereo rig constructed with a visible 
(VS) and an infrared (LWIR) cameras. This challenge represents a step forward in the state-of-the-art of 3D multispectral 
community. 

Regarding the extraction of 3D data from a stereo pair, a large amount of approaches can be found in the 
literature (e.g., [5], [6], [7], and [8]). Matching algorithms can be broadly classified into two categories, according to the 
minimization method used for finding correspondences between the images: local, where only pixel information is used 
(e.g., WTA: Winner Take All); or global when prior information is exploited (e.g., Markov Random Fields (MRF)). In 
general, the former algorithms result in sparse representations while the later in dense depth maps. In the current work, 
we present a hybrid approach that combines both schemes in order to overcome the poor correlation between LWIR and 
VS images. Furthermore, a pairwise potential function is included into MRF formulation which encourage planar surfaces 
in the disparity maps. Experimental results in real outdoor scenarios are provided showing the viability of the proposed 
approach. 

2. Method 

The proposed approach mainly consists of two stages (see Fig. 1); the first stage obtains an initial disparity 
map, which will be refined by a planar-wise MRF. This early representation of the scene is achieved by following a local 
window-based matching approach. So, a sparse but accurate disparity map between LWIR and VS images is computed. 
In the current work, a multimodal cost function that combines gradient and mutual information through a multiresolution 
context is used [9] and [10]. Then, a disparity value is assigned to each pixel by maximizing of this cost function. At this 
point, a maximization by a WTA (Winner Take All) criteria results in a noisy disparity map. Therefore, only those 
disparities with high cost value are taken into account, other are discarded. 

The second stage begins by generating a set of plane hypotheses, which are obtained from the sparse disparity 
map and then used for obtaining a dense representation. Since, the decomposition of a sparse disparity map into a set of 
planar regions is an untreatable problem, a self-similarity constrain is imposed. Therefore, those neighbour pixels with 
similar aspect should belong to the same 3D surface. Note that this constrain is widely used in other areas of computer 
vision, particularly in applications that work with man-made environments (i.e., [11], [12], and [13]). In order to identify 
candidates planar regions the VS image is over-segmented into superpixels [14]. Next, these pieces are perceptually 
grouped by using a graph-based segmentation algorithm, as the one presented in [15]. This overlapping of 

 
11th International Conference on 

Quantitative InfraRed Thermography 



segmentations takes advantage of self-similarity present in the images for obtaining large regions, which can be 
modelled as planar regions. 

Once all planar regions have been identified from the 2D image segmentation, an iterative RANSAC algorithm 
[16] is applied using information from the sparse disparity map to find the best plane to every region. This algorithm 
includes: (i) a robust planar model estimator based on orthogonal regression and principal components analysis; (ii) a 
voting scheme that considers the number of inliers; and (iii) a model selection using a best score criterion. Once all 
planes are fitted a space of plane hypotheses is generated. Finally, spurious and incoherent planes are removed, 
considering their normal vectors as proposed in [12]. 

 

 

Fig.1. Pipeline of the proposed multispectral stereo algorithm. 

2.1. Multimodal matching cost volume 

The multimodal matching cost volume is computed from the multimodal images (IVS stands for a VS image and 
ILWIR for a LWIR image) following a local window based approach. We begin by fixing a window of size wz on a p=(x, y) 
image coordinate in IVS, while another window, with the same size, slides through ILWIR(x+d, y), where d={dmin, ..., dmax}. 
Since these images are rectified, the searching space is bounded to a disparity range dmin<d<dmax. Thus, the cost volume 
referred in Eq. (1) as C(p, d) is computationally represented by a multidimensional array, where every entry is indexed by 
a triplet of form (x, y, d), where (x, y) is a point p on the reference image (in this paper IVS), and d represents the 
displacement of the matching window, which is centered on ILWIR(x+d, y). 

The multimodal cost function shown in Eq. (1) is an adapted version of the one presented in [9] and [10]. We 
have redefined it as a weighted sum of mutual information and the similarity of gradient vectors within a pair of matching 
windows. So, the multimodal cost volume is defined as: 

,    (1) 

where CMI is mutual information of pixel values, and CGI is the similarity degree of gradient vectors, the  parameter 

represents the confidence of mutual information over gradient information. In order to increase the discriminative 
capability of the matching cost function a scale space representation is used. Hence, two stacks of images are generated 
for each multimodal image; one of them corresponds to a collection of blurred images while the other group contains 
gradient images (in scale space notation L0 and L1 respectively [17]). These representations are obtained by convolving 
an image (IVS or ILWIR) with a Gaussian kernel of order zero and one, while its standard deviation increases. Figure 2 
presents a set of images involved in a scale space representation. Finally, both MI and GI should be computed at each 
level t of this hierarchy, and then aggregated into a unique value as depict the next equations: 

          ),(,,),(,,, 0

0

00 dpIMIdpIMIdpC t

tMI    ,  (2) 

          ),(,,),(,,, 0

0

00 dpIGIdpIGIdpC t

tGI    ,   (3) 

CMI(p, d) is the resulting cost of propagating mutual information through of the hierarchy, from coarse to fine levels. It is 

expressed as a linear combination of all values of mutual information for a given position (p, d) in the stack t
0(I) of 

blurred images, together with a vector of weights that assigns a reliability value to every level. As was mentioned above, 
the MI operator provides a single value that measures the similarity degree of a pair of matching windows, considering 
only the pixel values. Gradient information (CGI) is treated in an analogous manner. 

     dpCdpCdpC GIMI ,)1(,,  
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Fig.2. Illustration of a set of images defining a scale space representation. 

Mutual information is defined in terms of entropies as: 

,     (4) 

where h(p) and h(d) are entropies of two matching windows centered on image coordinate IVS(x,y) and ILWIR(x+d,y) 
respectively; h(p,d) is their joint entropy. Thus, mutual information is formulated as a problem of Probability Distribution 
Functions (PDF) estimation. Note that it is only necessary to compute h(p,d), since h(p) and h(d) are obtained from h(p,d) 
[8]. We use a nonparametric estimator (NP) [18] for getting the joint PDF: Pp,d (i1,i2). The later is a two dimensional matrix 
whose cells store the probability that an intensity i1 corresponds to thermal infrared measuring i2. Let us define the joint 
PDF as: 

.      (5) 

As shown in [7], the entropies in Eq. (4) can be estimated by a Parzen window method [19], and expressed as a 

sum of Gaussian distributions g with standard deviation , as shown below: 
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where 

 

and  are the sum along each dimension of Pp,d. Finally, the 

gradient information is defined as: 
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where θ is the phase difference between two gradient vectors; w(θ) is a continue function that penalizes those angle 
differences out of the range (0, π); and |s| is the magnitude of the gradient vector. GI cost function operates on gradient 
images, see Eq. (3), thus q and q’ represent gradients within the matching windows IVS(x,y) and ILWIR(x+d,y) at a certain 
scale t. 

Once C(p,d) has been computed, a Winner-Takes-All (WTA) method is used to select the best disparity for 
every point in the VS image; then, an initial sparse disparity map (Dmap0) is obtained by filtering unreliable matches 
using the corresponding matching cost value (C(p,d)>τ). 

2.2. Plane based hypotheses generation 

This stage consists of three steps, which results in a compact set of planar representations that will be used as 
labels in the final stage. The first step split up the given VS image into a set of perceptual regions. Since we are working 
with piecewise planar scenes, ideally, each region will correspond to a plane. Then, in the second step, a plane is fitted 
for each one of the regions obtained in the first step, by using the sparse disparity map computed in Section 2.1. Finally, 
in the third step, the large set of planes is compressed by extracting the dominant planes in the scene. 

2.2.1. Split and merge segmentation 

In order to overcome the limited information supplied by the initial disparity map, which prevents a correct 
detection of planar regions, a strategy for partitioning the images into approximately planar regions is adopted. The 
algorithm works as follows. Initially, the visible image IVS is split up into si superpixels [14], which preserve edges and is 
adjusted to the local structure of the scene. Additionally, the original IVS is also segmented into larger regions P that 

somehow capture perceptual aspects of the scene [15]. Finally, the si superpixels are clustered using as a criteria the 
perceptual regions pi, resulting in a set of regions (R). The selection of [15] as a merging criterion is due to the fact that 
the images depict man-made structures, which can be efficiently segmented using an algorithm inspired on perceptual 
grouping. Furthermore, this algorithm puts special emphasis on edge variability, which in the current work is important 
since it reveals the orientation of surfaces. 

 

   
(a) (b) (c) 

 
Fig.3. Split and merge segmentation example: (a) superpixels S; (b) perceptual regions P; and (c) resulting candidate 

planar regions R. 

2.2.2. Planar hypotheses generation 

Once the sparse disparity map (Dmap0) has been computed and the color image segmented into ri regions, a 
set of hypotheses of planar regions to describe the surfaces in the scene are imposed. So, for every region ri ϵ R a 
RANSAC like algorithm [16] is employed to estimate the plane parameters. Note that the planar region estimator 
operates in the disparity space (x, y, d), which is a difference with respect to previous approaches that work on depth 
maps represented in the Euclidean space (e.g., [11] and [13]).  

Let us remember that since a Manhattan world assumption is used, regions obtained from the segmentation in 
the color image are directly related with planar regions to be obtained in the disparity space. Since the accuracy of the 
final stage (i.e., piecewise planar labelling) depends on the confidence of the planar hypotheses, a robust random 
sample consensus paradigm has been used for estimating the free parameters of the model (plane).  This method is 
capable to find local models from noisy cloud of data; previous works have demonstrated that this kind of algorithm 
overcomes least squared based techniques, since they are sensitive to outliers [20]. As mentioned above, the plane 
parameters for a given region ri are obtained, with a RANSAC like algorithm, only if the region contains three or more 
valid disparities (Dmap0(ri)). 

Once all planes have been fitted, a postprocessing stage is performed to merge planar patches defined by 
similar parameters. This postprocessing is performed to simplify the number of planar hypotheses. Note that the planes 
have been obtained in a local way, and then the number of planar hypotheses could be as large as the number of 
regions in R. Hence, the goal of this postprocessing stage is to reduce the number of planar hypotheses up to a minimum 
value so that the structure of the scene is still preserved. The plane linking stage is based on a distance (distπ) computed 
from two planar patches, which was initially proposed in [21]. It is defined as follow: 
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The Eq. (11) corresponds to the length of the segment defined by xj  and the intersection of nj, passing through xj with 

πi. In order to make it clear, a 2D representation of the segment lengths used for computing Eq. (10) is given in Fig. 4(a).  
The previous planes distance (Eq. (10)) is used as a similarity function for merging a pair of planar patches. 

Hence, two planar patches are fused into a single one if (distπ(πi,πj) ≤ τlink). Once all possible combinations have been 
evaluated (only connected neighbor regions are considered) a new relabelled set R is obtained and the RANSAC 
algorithm is called again until convergence is reached. 

Figure 4(b) and 4(c) show the planar hypotheses obtained before/after merging planar patches with similar 
parameters and filtering the noisy ones. The original set contains 38 hypotheses (see Fig. 4(b)), while the one presented 
in Fig. 4(c) is defined by only 9 hypotheses. They were obtained after six iterations of the plane linking stage. 

 

 

  
(a) (b) (c) 

 
Fig.4. Planar hypotheses generation: (a) illustration of distances between two planes; (b) initial set of planar hypotheses 
from the segmentation presented in Fig. 3(c); and (c) planar hypotheses resulting after six iterations of postprocessing 

algorithm (9 planes). 

2.3. Piecewise superpixel labeling 

The set of planar hypotheses obtained above are now converted into labels for reformulating the disparity 
computation as a global minimization problem. It allows to take into account contextual constraints in order to achieve a 
dense disparity representation from multispectral information. The global minimization problem is based on the local 
correlation indicators computed in previous sections (i.e., mutual and gradient information boosted by the scale space 
representation). In this section, former indicators that were extracted at a level of pixels, are now interpreted as 
projections of planar surfaces. This helps to constrain the searching space to a few candidates, while spatial coherence 

of disparity values is hold. Notice that an extra planar hypothesis denoted as π is added to Π. It represents all those 
regions out of the stereo range (e.g., sky or distant surfaces). 

The final step is to perform a piecewise superpixel labeling of reference image (VS), which assigns to each of 
the superpixels in S one of the plane hypotheses. Once every superpixel in the image has been labelled, a dense 
representation of disparities of VS and LWIR is obtained. Note that in the current section the set of plane hypotheses 
computed above are used as labels. 

The matching of planar regions that belongs to different modalities (LWIR/VS) is now formulated as an energy 
minimization problem in the superpixel domain. Thus, an MRF is defined and solved by a graph cuts framework [22]. The 
goal of this section is to obtain a label f that assigns a given superpixel s to a plane of plane hypotheses. This label 
minimizes a global energy function E, which consists of a data term Ds that compares the current label with the observed 
data, and a pairwise smoothness term Vst. This energy function is defined as: 

    (12) 

where S is the set of all superpixels; Ds is the data term that measures how well a plane hypothesis explains the disparity 
value for a given s region; Vs(fs,ft) is a smoothness prior computed in surrounding regions to superpixel s; N represents 

that neighborhood; fs, ft are the current labels for superpixels s and t respectively; and smooth is a constant value used for 
normalization. Similarly to the work proposed in the VS/VS field [13], in the current work the Ds function is defined as 
follows: 
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where  is the cost of assigning a plane hypothesis (label fs) to superpixel s. This cost is defined as follows: 

,     (14) 

where d is the disparity value obtained by evaluating p in the current plane hypothesis Π (d=c1x+c2y+c3). This cost is 
equal to the aggregation of costs spanned by the plane fs in the C(p,d) volume (Section 2.1). Equation (13) includes a 
constant value that is denoted as Cmax, which is used for: i) truncating the Cπ cost; ii) penalizing inconsistent plane 
hypothesis for a certain region s (e.g., plane hypothesis that generates disparity values outside of the cost volume); iii) 

allowing that a given region changes its label by the one of its neighbor. 
The smoothness term is defined as: 
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where: distΠ is defined in Eq. (10); dmax is a constant value that penalizes discontinuities; g is a weighting function with 

domain in the gradient magnitude of VS image (|1(IVS)|); this g function is evaluated at the midpoint of the segment that 

links two superpixel' centroid. Finally, the energy function defined in Eq. (12) is minimized with the graph cut framework 
presented in [22]. Figure 5(c) shows the disparity map of the case study used as an illustration through the manuscript; 
its corresponding textured 3D map is presented in Fig. 5(e). 

In general, urban environments contain non-planar surfaces that should be detected before graph-cuts labeling. 
These surfaces mainly correspond to bushes, trees and grass, which appear in images overlapping building’s structure; 
they are hard to fit by a planar model. Therefore, as pointed out by Gallup et al. [13] a non-planar region classifier can be 
used for identifying these surfaces. Since, the classification problem essentially consists in determining if a given patch 
corresponds to a planar or to a non-planar surface; a simple two-class algorithm can be used.  

In the current work we introduce two modifications to the approach proposed by Gallup et al. [13]. Firstly, the 
feature vector that describes every patch is similar to the one presented in [23]. Thus, features such as color, texture, 
and location are computed from each patch. On the other hand, instead of obtaining the class membership probability of 
a patch by a k-nearest-neighbor method, we use an Adaboost implementation based on decision trees [24], which 
directly returns a confidence value that is assumed as a class membership probability.   

All the images in the dataset are split up into patches of 15x15 pixels, and then a feature vector is obtained from 
each patch. We collect a total of 1200 patches for each class, which were extracted from 20 images and manually 
classified into planar or non-planar surfaces. Then, they were divided into two groups, one for training and the other one 
is used for validation. After analyzing the classification error with respect to the number of weak classifiers, we concluded 
that a scheme with 100 weak classifiers is enough for the trade-off between accuracy and computational cost. From the 
classification results we can conclude that the weight vector provided by the decision tree of the Adaboost classifier, 
confirms that the texture is a discriminative feature for classifying non-planar region. Hence, this information is used to 
detect unstructured objects, which in general in urban scenes correspond to non man-made elements. 

Finally, the data term in Eq. (13) is complemented by the class membership probability coming from the 
Adaboost classifier as follows: 
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   (16) 

where a is the class membership probability; and class is a constant that weights the contribution of non-planar classifier. 
Figure 5(a) shows an illustration of a probability map of non-planar regions for the image used as a case study through 
the manuscript; in Fig. 5(d) patches with a probability value higher than 0.5 are depicted. The labelled regions and 
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disparity map resulting from MRF are presented in Fig. 5(b) and Fig. 5(c). Finally, corresponding 3D representations are 
given in Fig. 5(e). 
 
 

   
(a) (b) (c) 

 

 

(d) (e) 
 

Fig.5. MRF labelling: (a) Adaboost classifier probability map; (b) labels resulting from MRF; (c) corresponding disparity 
map; (d) non-planar regions; and (e) final 3D representations.  

3. Experimental results 

Before presenting the results obtained with the proposed approach a brief description of the multimodal stereo 
system used to acquire the IVS and ILWIR images is presented. Additionally, details about the evaluation dataset are also 
provided. The multimodal stereo head consists of a pair of cameras (VS/LWIR) separated by a baseline of 12 cm and a 
non-verged geometry. This configuration is obtained by adjusting the pose of the cameras till their z coordinate axes are 
parallel, and perpendicular to the baseline. Hence, the images provided by the multimodal stereo rig are pre-aligned, 
somehow ensuring their right rectification. Thermal infrared images are obtained with a Long-Wavelength InfraRed 
camera (PathFindIR from Flir) while color ones with a standard color camera based on the Sony ICX084 sensor, which 

has a focal length of 6 mm. The former detects radiation in the range 8-14 m (LWIR band), whereas the color camera 
responds to wavelengths from about 390 to 750 nm (Visible Spectrum). 

As mentioned above, the cameras have been aligned before starting the calibration process. This action 
ensures that the needed projective transformations for image rectification are smooth, since the image planes position is 
approximately coplanar. Once each camera has been calibrated [25], and its intrinsic parameters are known, the next 
step is to estimate the geometry of multispectral stereo rig. Since the current work is focused in the generation of 3D 
models up to scale, it is only necessary to estimate the epipolar geometry through of the fundamental matrix F.  

Image rectification is a critical issue since the proposed algorithm assumes that all epipolar lines in the 
multispectral images are horizontally aligned. Despite the accuracy with which F is estimated, it is still necessary to use a 
rectification method that takes into account the dissimilarity of intrinsic parameters of cameras. Therefore, the 
rectification method presented in [26] is adopted, which compute a pair of projective transformations, one for each 
camera. It rectifies the images while preserving the aspect of image content. This method reduces the loss and the 
creation of pixels due to resampling effect. 

In order to evaluate the proposed method a set multispectral images has been collected. The captured data 
depicts a variety of urban scenes, which includes: buildings, sidewalk, trees, and vehicles, among others. Although this 
dataset shows a large collection of planar surfaces with different orientations, other types of non-planar surfaces are also 
captured. 

The proposed approach has been validated using a large data set of outdoor scenarios. Dense disparity maps 
were obtained by setting the different parameters as indicated next; the different values were empirically obtained and 
the same setting is used in all the scenarios. The initial Dmap0 is obtained by defining dmin=0 and dmax=120. The scale 
space representation contains three levels and the values used for propagating mutual and gradient information through 

the different levels: [0, 1, 2]
T
 = [0.2, 0.3, 0.5]

T
 and [0, 1, 2,] = [0.2, 0.3, 0.5]

T
; threshold  is set as 10% of the 

maximum cost value; finally, mutual and gradient information in Eq. (1) are fused defining  = 0.5. The two values related 

with the planar hypothesis generation were set as follow: RANSAC=0.2 and link=2.5. The values given by default in the 

graph cut implementation provided by [13] were used for the global minimization. 
Figures 6, 7 and 8 ((a) and (b)) show three multispectral pairs used to evaluate the performance of the 

proposed approach. Results from each stage are presented: (c) shows the planar hypotheses used as input of the global 
minimization stage; (d) corresponds to the probability map obtained from Adaboost classifier; (e) labels resulting after 
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combining (c) and (d) by the graph-cuts algorithm; (f) disparity map extracted from (e); (g) different 3D views obtained 
from the resulting dense disparity map. In summary, these three scenes show that under certain restrictions multispectral 
images can be used to extract dense disparity information. This information can be directly converted into a 3D 
representation describing the geometry of the scene. 

 
 
 

    
(a) (b) (c) (d) 

  

 

(e) (f) (g) 
 

Fig.6. Scene 1: (a) and (b) pair of multispectral images; (c) set of planar hypotheses; (d) planar and non-planar regions 
probability map; (e) and (f) labels and disparity map resulting from MRF; (g) 3D views. 

 
 
 
 
 

    
(a) (b) (c) (d) 

  
 

(e) (f) (g) 
 

Fig.7. Scene 2: (a) and (b) pair of multispectral images; (c) set of planar hypotheses; (d) planar and non-planar regions 
probability map; (d) and (f) labels and disparity map resulting from MRF; (g) 3D views. 
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Fig.8. Scene 3: (a) and (b) pair of multispectral images; (c) set of planar hypotheses; (d) planar and non-planar regions 

probability map; (d) and (f) labels and disparity map resulting from MRF; (g) 3D views. 

 

4. Conclusions and Further Work 

The current work presents a framework for extracting dense disparity maps from multispectral stereo images. 
The different stages are described together with the LWIR and VS stereo head. The proposed approach represents a 
step forward in the extraction of 3D information from multispectral stereo images; results obtained from this research can 
benefit those fields where visible and infrared images coexist. 

This work has shown that under certain restrictions the scene structure can be inferred from a small set of good 
correspondences, despite the low correlation between LWIR and VS images. The similarity function based on mutual 
and gradient information significantly increases the number of good matches up to overcome the minimum number of 
correspondences needed to obtain an accurate representation of the scene. Although its performance highly depends on 
parameter setting, both sparse and dense disparity maps can be obtained.  

The proposed energy function allows obtaining dense representations by modelling the scene as a piece-wise 
planar surface. Furthermore, the non-planar regions, labelled by the Adaboost classifier, are also considered during the 
minimization resulting in a robust solution even though their presence in the given scene. The energy function is 
minimized through the graph-cuts algorithm. This formulation drives to two different representations. On the one hand, it 
allows obtaining the dominant planar regions of the given image; on the other hand, it computes the sough dense 
disparity map. Dominant planar regions are obtained through graph-cuts using as a prior a piece-wise planar 
representation that evolves during the minimization process. 

Future work will be mainly focussed on the extraction of ground truth data to quantitatively validate the obtained 
results. Furthermore, the use of other cost functions will be explored. 
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