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Abstract: This paper proposes an enhanced application-driven image fusion framework to improve final application

results. This framework is based on a deep learning architecture that generates fused images to better align

with the requirements of applications such as semantic segmentation and object detection. The color-based

and edge-weighted correlation loss functions are introduced to ensure consistency in the YCbCr space and

emphasize structural integrity in high-gradient regions, respectively. Together, these loss components allow

the fused image to retain more features from the source images by producing an application-ready fused image.

Experiments conducted on two public datasets demonstrate a significant improvement in mIoU achieved by

the proposed approach compared to state-of-the-art methods.

1 INTRODUCTION

In recent years, the proliferation of imaging devices
capable of capturing data across a range of spectral
bands has unlocked new possibilities for computer vi-
sion applications beyond the visible spectrum. These
multimodal devices are increasingly used in fields
such as surveillance, driver assistance, mobile tech-
nology, and industrial monitoring, just to mention a
few (Sun et al., 2021; Karim et al., 2023). Effec-
tively processing the diverse information from these
sensors requires advanced multimodal image fusion
techniques, which combine data from different spec-
tral bands to provide a comprehensive, enhanced view
of the scene. It is important to note that for opti-
mal fusion results, the images captured by different
modalities must be properly registered to ensure ac-
curate alignment and integration of information (Ve-
lesaca et al., 2024).

Multimodal image fusion techniques aim to ex-
tract and integrate complementary information from
images captured in different modalities. As an exam-
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ple of these multimodal image fusion techniques, we
can mention approaches based on the usage of vis-
ible (VIS) and thermal infrared (IR). In these cases
VIS and IR are commonly fused because each pro-
vides complementary information. For instance, visi-
ble images offer texture details of the image, but low-
light conditions and occlusions can hinder it. In con-
trast, infrared images capture thermal radiation, al-
lowing them to provide temperature information in-
dependently of lighting conditions (Liu et al., 2024b).
Therefore, the resulting fused image contains valu-
able enriched information for high-level vision tasks
such as semantic segmentation, object detection, and
classification.

Several multimodal image fusion approaches ex-
ist; however, most do not consider application. In
other words, the fused image is not optimized for a
high-level task (Tang et al., 2022c; Le et al., 2022;
Karim et al., 2023; Liang et al., 2024; Yang et al.,
2024). For instance, PIAFusion is a fusion frame-
work that integrates a cross-modality differential fu-
sion module and an illumination-aware loss func-
tion to adaptively combine salient features from both
modalities according to the lighting context. How-
ever, this framework does not consider specific high-
level vision application contexts that could be useful
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to decide which salient feature is more important.
In order to enhance high-level vision tasks with

multimodal images, several studies propose end-to-
end frameworks where the fusion result is not repre-
sented as an image (Zhang et al., 2021; Sun et al.,
2021; Chu and Lee, 2023; Xiao et al., 2024; Liu
et al., 2024c). However, these frameworks often
need more flexibility and adaptability to different
applications. Therefore, recent deep learning ap-
proaches integrate the fusion and application process
in a unified pipeline, using the fused image as an in-
termediate output (Tang et al., 2022b; Tang et al.,
2022a; Sun et al., 2022; Liu et al., 2024b). These
application-driven multimodal image fusion methods
connect the fusion and application networks through
a feedback mechanism during learning, enabling mu-
tual enhancement. That is, the high-level vision ap-
plication benefits from improved fusion, while the
fusion process is simultaneously optimized to more
effectively support the application (Bastidas-Guacho
et al., 2023). Figure 1 illustrates the pipeline of
the end-to-end application framework and the multi-
modal application-driven image fusion framework.

Among the different applications that take advan-
tage of multimodal source of information, we can
find the multimodal semantic segmentation (MSS).
MSS is a high-level vision task that has gained sig-
nificant attention due to its ability to capture com-
prehensive information from various modalities, such
as infrared and visible images, to enhance segmenta-
tion accuracy. This approach has proven invaluable in
fields such as autonomous driving (Feng et al., 2020)
and surveillance (Wang et al., 2021), where single-
modal data often need more detail to ensure reliable
decision-making (Dong et al., 2024). Application-
driven frameworks have been developed for multi-
modal semantic segmentation. For example, Tang
et al. introduce a semantic-aware framework for in-
frared and visible image fusion (Tang et al., 2022b).
This framework employs the loss function as a feed-
back mechanism between fusion and application to
optimize both the quality of the fused image and the
effectiveness of high-level vision tasks. Another ap-
proach is proposed in (Liu et al., 2023), which em-
ploys a hierarchical interactive attention block to en-
hance feature exchange between fusion and segmen-
tation tasks.

In application-driven approaches, the loss func-
tion is the feedback mechanism, integrating fusion
and application during learning. The current work
proposes an adaptation of an existing application-
driven fusion approach to improve MSS results. A
new loss function is proposed to simultaneously opti-
mize both fusion and final application, incorporating

additional semantic information into the learning pro-
cess. The network architecture is based on the frame-
work presented in (Tang et al., 2022b). We propose
the use of color and correlation between the source
multimodal images and fused images in order to max-
imizes the preservation of the salient features from
visible and infrared modalities. The correlation is
computed in a weighted manner to measure the sim-
ilarity of intensity variations between the fused and
source images. This approach aims to preserve more
detail in the fused image to improve high-level vision
tasks results. The approach proposed in this paper is
compared with the state-of-the-art application-driven
image fusion frameworks.

This paper is organized as follows. Section 2
briefly introduces existing application-driven multi-
modal image fusion approaches for semantic segmen-
tation. In Section 3, the adaptation proposed in the
current work is presented. Section 4 presents the ex-
perimental validations of the proposed method. Fi-
nally, Section 5 provides conclusions and discusses
future directions for deep learning-based multimodal
image fusion in semantic segmentation.

2 RELATED WORK

This section details deep learning-based multi-
modal image fusion methods for semantic segmenta-
tion. Firstly, standalone approaches are summarized,
then end-to-end frameworks, and finally application-
driven approaches are reviewed.

2.1 Standalone Fusion Frameworks

Traditional multimodal image fusion methods are
limited by fixed fusion rules and high computational
demands (Li et al., 2023). Recent deep learning-based
frameworks automate feature extraction, integration,
and image reconstruction, addressing limitations in
traditional methods. These frameworks dynamically
balance the contributions of each modality. (Zhang
and Demiris, 2023) categorize these approaches as
CNN-based (Mustafa et al., 2020; Li et al., 2020;
Tang et al., 2022c; Xu et al., 2022), autoencoder-
based (Li and Wu, 2018; Wang et al., 2022; Yang
et al., 2024; Liu et al., 2024a), GAN-based (Ma et al.,
2020; Fu et al., 2021; Zhang et al., 2024a), and
transformer-based.

CNN-based frameworks first automate feature ex-
traction and fusion with enhancements such as resid-
ual and dense connections to retain good detail and
attention mechanisms for feature emphasis. For in-
stance, in (Li et al., 2020) the author propose to use
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Figure 1: (a) End-to-end approaches of multimodal image-based application pipeline. (b) Application-driven image fusion
approaches pipeline.

a dense connection structure combined with an atten-
tion mechanism to enhance fusion performance. They
introduce cross-dimensional weighting and aggrega-
tion to calculate an attention map tailored for infrared
and visible image fusion. Another standalone fusion
framework has been proposed in (Tang et al., 2022c),
referred to as PIAFusion; this architecture is a CNN-
based framework incorporating an illumination esti-
mation module that detects the lighting conditions of
the scene (day or night). This module adapts the fu-
sion process by focusing on visible details in well-
lit conditions and prioritizing infrared information in
low-light scenarios.

Autoencoder-based frameworks use the encoder
for feature extraction and the decoder for image re-
construction. Recently, in (Liu et al., 2024a), the DS-
Fusion model has been proposed. It consists of an
encoder, a local attention module, an attention mech-
anism for feature extraction and fusion, and a decoder
to generate the fused image. Similarly, the CEFu-
sion framework has been proposed in (Yang et al.,
2024). It includes a multigranularity feature separa-
tion encoder, a triple-branch scene fidelity module,
a progressive cross-granularity interaction feature en-
hancement module, and an image reconstruction de-
coder.

GAN-based frameworks have been also proposed
for image fusion. For instance, FusionGAN (Ma
et al., 2019) use adversarial networks to integrate visi-
ble and infrared features while retaining target clarity.
Recently, (Zhang et al., 2024a) introduces a Guided
Restoration Module, which uses a Conditional GAN
to recover relevant information hidden in the darkness
in the visible modality. GAN-based models incor-

porate multiple discriminators to effectively maintain
thermal and visible information. Due to transform-
ers’ ability to handle long-range dependencies, they
have recently been applied to feature extraction in im-
age fusion. Frameworks like DNDT (Zhao and Nie,
2021) and SwinFusion (Ma et al., 2022), utilize self-
attention to enhance multi-scale feature extraction.
Other architectures combine transformers with GANs
and CNNs, integrating spatial and channel-based at-
tention such as CGTF (Li et al., 2022).

Although standalone approaches are designed to
obtain the best representation based on the input data,
these approaches do not consider the specific needs
or constraints of the application where the fused im-
age will be used. For this reason, when attempting to
preserve the input information in a balanced way, the
best result may not be optimized for a given applica-
tion. Thus, if the method does not adapt the fusion
to the needs of applications, the intended multimodal
preservation balance can degrade the performance of
the application. It highlights the need for application-
driven image fusion strategies.

2.2 End-to-End Fusion and Application
Frameworks

End-to-end frameworks for multimodal fusion and
applications consist of a unified pipeline to stream-
line workflow, from data preprocessing to feature ex-
traction, fusion and prediction. Most of these ap-
proaches use a two-branched encoder-decoder back-
bone network. In (Sun et al., 2021) a backbone net-
work based on residual FCN architecture is used. It
introduces two types of attention fusion modules (in-
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tramodal and intermodal) to integrate features within
and across modalities effectively. The network also
employs a multiscale supervision training strategy to
optimize performance across different resolutions of
the feature.

On the other hand, (Wang et al., 2023) proposes
SGFNet. This network uses an asymmetric encoder
and a decoder. The encoder processes RGB and IR
branches. It uses semantic guidance head for semantic
information extraction from IR images. Besides, the
multimodal coordination and distillation unit and the
cross-level and semantic-guided enhancement unit
are designed to enhance feature fusion while minimiz-
ing interference from lighting noise in RGB inputs.
Moreover, the edge-aware Lawin ASPP decoder (Yan
et al., 2022) refines segmentation boundaries by in-
corporating edge information from low-level features.
Recently, in (Xiao et al., 2024) the authors use the
encoder and transformer decoder as the backbone of
the framework and propose GM-DETR, which em-
ploys a two-stage training strategy that involves iso-
lated training on individual RGB and IR data sets fol-
lowed by a fusion stage with aligned multimodal data.

End-to-end frameworks for multimodal fusion and
application often do not allow visualizing intermedi-
ate fusion results, which may limit the ability to as-
sess how well information from each modality is in-
tegrated. This limitation highlights the need for ap-
proaches that offer modular fusion and application
stages to allow more control and interpretation of the
fusion process, as well as the use of different applica-
tion frameworks.

2.3 Application-Driven Fusion
Frameworks

Application-driven multimodal image fusion frame-
works optimize the fusion process to improve perfor-
mance in a given high-level vision task—in the cur-
rent work semantic segmentation will be considered.
These approaches leverage the complementary infor-
mation of each modality by aligning the fused out-
put with the specific needs of high-level vision tasks.
In (Tang et al., 2022b) the SeAFusion is proposed;
it performs cascade optimization between the fusion
and application networks using semantic loss to guide
high-level vision task information back into the image
fusion module. The infrared and visible image fusion
network consists of a feature extractor and an image
reconstructor. The feature extractor is based on gradi-
ent residual dense blocks, while the image reconstruc-
tor utilizes a convolutional layer. The training strategy
iteratively alternates between the fusion network and
the segmentation network. As segmentation network

the authors propose to use the architecture presented
in (Peng et al., 2021), but other networks could be
also considered.

Another application-driven fusion framework is
the SegMiF (Liu et al., 2023); it is a multi-interactive
feature learning framework for joint multimodal im-
age fusion and segmentation. This framework uti-
lizes a cascade structure combining a fusion sub-
network and a segmentation sub-network, where se-
mantic information is exchanged through a hierar-
chical interactive attention block to enhance feature
integration. In order to balance the importance of
each task, a dynamic weighting factor is proposed,
which automatically optimizes parameters. Recently,
the mutually reinforcing image fusion and segmenta-
tion framework has been proposed in (Zhang et al.,
2024b). It leverages a coupled learning approach
that uses the interactive gated mix attention module,
which refines visual features and addresses issues like
mismatched feature scores, and the progressive cy-
cle attention module, which enhances semantic under-
standing by enabling both self-reinforcement within
a single modality and cross-modal complementarity.
HitFusion (Chen et al., 2024) is another example of
a application-driven framework. It is based on trans-
formers using a three-stage training strategy. A cross-
feature transformer module is introduced to enhance
feature extraction by capturing correlations between
visible texture and infrared contrast features. The
architecture also uses a dual-branch network design
with contrast residual and texture enhancement mod-
ules to allow deep feature extraction from source im-
ages.

The aforementioned application-driven frame-
works have progressively refined loss functions to
enhance the extraction and integration of critical in-
formation across modalities. The enhancement in
the loss function design helps preserve salient fea-
tures from infrared images and detailed textures from
visible images. As a result, the fused images are
more valuable and practical for high-level vision ap-
plications. Therefore, it demonstrates that a well-
structured loss function is necessary for effective fea-
ture integration and task performance in multimodal
image fusion for a given application.

3 METHODOLOGY

This section presents in detail the proposed frame-
work introducing the designed loss function.
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3.1 Problem Definition

The infrared and visible fusion problem in this paper
aims to combine complementary information from an
infrared image Iir and a visible image Ivi into a single
fused image If. Formally, given two registered input
images Iir and Ivi, the objective is to construct a fused
image If, which is defined as:

If = F(Iir, Ivi), (1)

where F(·) represents the fusion network. The net-
work F(·) must learn to capture and retain the contrast
information from Iir (such as thermal radiation and
object saliency) and the fine-grained texture details
from Ivi, optimizing If in order to improve the high-
level vision application performance. Since ground
truth fused images are unavailable, the fusion prob-
lem is approached as an unsupervised learning task.
Thus, a loss function that guides the training is de-
fined.

3.2 Framework

In the current paper the SeAFusion framework (Tang
et al., 2022b) is used as the basis for the application-
driven multimodal image fusion approach. Through
SeAFusion’s application-driven structure, we can op-
timize the fusion output for visual fidelity and support
high-level vision tasks such as semantic segmenta-
tion; other tasks, or segmentation architectures, could
be also considered. In that way, we ensure that the
fused images are informative and applicable to real-
world scenarios. In this framework we introduce a
new loss function to address certain limitations in
SeAFusion and preserve more structural and texture
details in the fused image. Thus, the new loss function
generates a more balanced fusion output, which helps
to enhance the performance of application-driven im-
age fusion approaches and makes them more robust
for real-world applications.

3.3 Loss Function

The fused image quality relies on the loss function
because it is the primary guide for the fusion pro-
cess. The loss function ensures that the fused image
retains features and details from the source images.
A well-designed loss function can balance preserv-
ing structural information, enhancing feature contrast,
and reducing artifacts. In order to reinforce seman-
tic information in the fused image, we propose a loss
function that maximizes the preservation of the con-
tent and structural integrity of If with respect to both,
Iir and Ivi to facilitate high-level vision tasks such as

semantic segmentation, which is the case of the cur-
rent study. The loss function includes both fusion loss
(Lfusion) and segmentation loss (Lseg), formulated as:

Ltotal = Lfusion(If, Iir, Ivi)+λLseg(If), (2)

where λ is a hyperparameter to trade off the content
and segmentation losses.

3.3.1 Fusion Loss

In order to achieve a more accurate fusion output that
preserves structural and texture details to align with
the requirements of the given high-level vision tasks,
we propose Lfusion, which consists of four terms de-
fined as follows:

Lfusion = Lint +αLtext +βLcolor + γLwcorr, (3)

where Lint, Ltext, Lcolor, and Lwcorr denote the inten-
sity loss, the texture loss, the color loss, and the edge-
weighted correlation loss, respectively. α, β, and γ
are hyperparameters that control the influence of each
component on the total fusion loss.

The intensity loss aims to preserve the intensity
patterns in the fused image by measuring pixel-by-
pixel intensity difference between fused images and
source image. This loss is represented as:

Lint =
1

HW

∥∥I f −max(Iir, Ivi)
∥∥

1
, (4)

where H and W represent the height and width of the
images, respectively. ‖·‖1 denotes �1-norm. max(·)
stands for the element-wise maximum selection.

The texture loss is used to preserve the texture de-
tails of the source images, which is defined as:

Ltexture =
1

HW

∥∥|∇I f |−max(|∇Iir|, |∇Ivi|)
∥∥

1
, (5)

where ∇ refers to Sobel gradient operator. | · | indi-
cates the absolute operation.

The color loss aims to maintain color consistency
in YCbCr space as proposed in (Zhang et al., 2024b),
which is defined as:

Lcolor =
∥∥∥Cb f −Cbṽi

∥∥∥
1
+
∥∥∥Cr f −Crṽi

∥∥∥
1
, (6)

where Cb f and Cr f represent the Cb and Cr channels
of I f , respectively. Ĩvi denotes the visible image that

is transformed using gamma correction, and Cbṽi and

Crṽi denote the Cb and Cr channels of Ĩvi.
Finally, the edge-weighted correlation loss

(Lwcorr) measures the Pearson correlation coefficient
in a weighted manner. Traditional correlation mea-
sures treat all regions of an image equally, which can
lead to suppression of structural features, especially
in areas such as edges. These features convey critical
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Figure 2: Results on MSRS dataset.

information about the underlying content, which
can be helpful for computer vision applications.
Therefore, Lwcorr uses the Sobel gradient value as
the mask for prioritizing regions with high structural
importance to make the correlation measure more
sensitive to edge preservation in the fusion process.
High-weighted correlations in edge regions indicate
effective retention of essential features from the
source images. On the other hand, lower correlations
in homogeneous regions imply less emphasis on
these areas. It is expressed as:

Lwcorr =
1

WCorrir(I f ,Iir,Sir)+WCorrvi(I f ,Ivi,Svi)
, (7)

where WCorr (·) denotes the weighted correlation
function, Sir and Svi refer to Sobel gradient mask for
infrared and visible modalities, respectively. WCorrx
is computed as follows:

WCorrx =
∑n

i=1 Sxi ·(I fi−Ī f )(Ixi−Īx)√
∑n

i=1 Sxi ·(I fi−Ī f )2·
√

∑n
i=1 Sxi ·(Ixi−Īx)2

, (8)

where x denotes the infrared or visible modalities.
The weighted correlation function ensures that the
correlation calculation focuses on high-gradient re-
gions (edges) while reducing the influence of homo-
geneous areas (non-edge regions).

In conclusion, the proposed fusion loss compo-
nents together balance preservation and adaptation
among multimodality information. In that way, they
allow the production of a fusion result that is both vi-
sually consistent and application-ready.

3.3.2 Segmentation Loss

In this work, a semantic segmentation task is used
as a case study for application-driven fusion; specif-
ically, the real-time semantic segmentation model
(Peng et al., 2021) is employed to segment the fused
images. Therefore, the semantic loss (Lseg) includes
a main semantic loss and an auxiliary semantic loss,
defined as:

Lseg = Lmain +λ1Laux, (9)

where λ1 = 0.1 balances the main and auxiliary
losses. The main semantic loss and the auxiliary se-
mantic loss are expressed as:

Lmain =
−1

H×W

H

∑
h=1

W

∑
w=1

C

∑
c=1

L(h, w, c)
so log(I(h, w, c)

s ), (10)

Laux =
−1

H×W

H

∑
h=1

W

∑
w=1

C

∑
c=1

L(h, w, c)
so log(Isa(h, w, c)), (11)

where Lso ∈R
H×W×C is a one-hot vector transformed

from the segmentation label Ls ∈ (1,C)H×W . For
more comprehensive details on the segmentation loss
function definitions and network architecture, refer to
(Peng et al., 2021).

4 EXPERIMENTAL RESULTS

This section details the experimental settings and
datasets used to evaluate the proposed framework.
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Table 1: Comparison of Segmentation Results on MFNet Dataset.

Framework Car Person Bike Curve Carstop Color Tone Bump mIoU
SegMiF 87.80 71.40 63.20 47.60 31.10 48.90 50.30 57.19

PSFusion 88.62 75.00 65.53 47.34 42.59 52.96 58.68 61.53

MRFS 89.40 75.40 65.00 49.00 37.20 53.10 58.80 61.13

Seafusion 92.95 82.69 81.25 88.52 43.87 54.90 72.32 73.79

Ours 93.36 84.16 81.54 90.29 46.49 55.69 73.13 74.95

Table 2: Performance comparison of the proposed approach on MFNet and MSRS datasets.

Car Person Bike Curve Carstop Color Tone Bump mIoU
MFNet 93.36 84.16 81.54 90.29 46.49 55.69 73.13 74.95
MSRS 97.90 89.08 90.30 97.72 92.05 83.24 99.05 92.76

Then, comparison with recent application-driven im-
age fusion approaches are presented to demonstrate
the advantages of the approach proposed for semantic
segmentation.

In order to evaluate the proposed method, the
MFNet (Ha et al., 2017) and MSRS (Tang et al.,
2022c) datasets are selected. The MFNet consists
of 1569 pairs of infrared and visible images, while
MSRS consists of 1083. Additionally, the proposed
approach is compared with recent application-driven
image fusion frameworks for semantic segmenta-
tion, including Seafusion (Tang et al., 2022b), Seg-
MiF (Liu et al., 2023), PSFusion(Tang et al., 2023),
MRFS (Zhang et al., 2024b). The fusion network
is iteratively trained with the segmentation network
based on the joint adaptive learning strategy proposed
in (Tang et al., 2022b). The hyperparameters for the
fusion loss are set as α = 10, β = 10, and γ = 0.01.
The visible images are converted to the YCbCr color
space, where the Y channel of visible images and in-
frared images are fused. The fused images are then
converted to the RGB color space using the Cb and
Cr channels from the given visible images. Gamma
correction in the color loss is set to 0.1.

For fair comparisons with the baseline framework
of our approach, we retrain SeAFusion using both the
original loss function and our proposed loss function.
The results presented for the other application-driven
image fusion methods are the reported results in the
original papers. The semantic segmentation perfor-
mance is measured by pixel intersection-over-union
(IoU). The results on the MFNet dataset are shown
in Table 1. The MFNet dataset includes nine classes:
car, person, bike, curve, carstop, guardrail, color tone,
bump, and background. The results reported here are
based on the classes available across all application-
driven approaches, meaning that the guardrail and
background classes are excluded from the results on
the MFNet dataset.

The proposed method achieves the highest mean
Intersection over Union (mIoU) score, outperform-
ing others in all categories. These scores reflect our
approach’s ability to retain fine details and seman-
tic information in complex image regions. Addition-
ally, our approach performs well in less frequent cat-
egories, such as Car stop and Color Tone. These re-
sults demonstrate that our proposed method consis-
tently orients the fused image toward the segmenta-
tion task, improving the segmentation quality across
various classes.

In addition, the proposed framework is also eval-
uated on the MSRS dataset. This dataset is generated
from MFNet dataset by removing 125 misaligned im-
age pairs. Furthermore, an image enhancement algo-
rithm based on the dark channel prior is applied to op-
timize the contrast and signal-to-noise ratio of the in-
frared images. On this dataset, the proposed approach
achieves a mIoU of 92,76. Figure 2 shows some
results for a qualitative comparison between SeA-
Fusion and the proposed approach across different
scenes on the MSRS dataset. The results show a more
precise scene segmentation by enhancing the delin-
eation of object boundaries, especially obstacles such
as bumps, and cones. This advantage highlights our
approach’s robustness in both day and night scenes by
contributing better segmentation accuracy.

Table 2 compares the performance of the proposed
method on the MFNet and MSRS datasets. The re-
sults show that the proposed approach achieves high
mIoU scores in the MSRS dataset, with a score of
92.76. Additionally, there are performance differ-
ences between datasets for specific classes, such as
carstop, colortone, and bump, where the method per-
forms significantly better in MSRS than in MFNet.

An ablation study is performed to demonstrate the
effectiveness of the proposed framework. Specifi-
cally, the impact of each loss component on the per-
formance of the proposed framework is evaluated.
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Table 3: Ablation Study on Different Loss Configurations
using MFNet dataset.

Lint Ltext Lcolor Lwcorr mIoU
� 66.65

� 68,99
� 55.19

� 69.13
� � 73.79
� � 68.09
� � 66.32

� � 67.27
� � � 66.55
� � 66.41

� � 68.92
� � � 74.13
� � � � 74.95

The experiments are conducted on the MFNet dataset
The results in Table 3 indicate that the configura-

tion that includes all loss components yields the high-
est mIoU score. These results show that the proposed
loss function improves overall segmentation perfor-
mance by balancing intensity preservation, texture de-
tails, color fidelity, and structural coherence.

5 CONCLUSIONS

This paper presents an application-driven image fu-
sion framework that introduces a new loss function
that addresses the challenges of maintaining seman-
tic and structural integrity in fused images to im-
prove high-level vision tasks. The experimental re-
sults on the MFNet and MSRS datasets highlight
that the framework outperforms recent application-
driven fusion approaches. In particular, the pro-
posed framework achieves a mIoU of 92.76% on
the MSRS dataset. This performance is evident in
accurately segmenting challenging objects, such as
bumps, guardrails, and cones. The ablation study fur-
ther validates the contribution of the color-based and
edge-weighted correlation loss to enhancing the fu-
sion quality for high-level vision tasks. Therefore,
this framework generates fused images that benefit
the performance of high-level vision applications. Fu-
ture work will focus on integrating this framework
with additional high-level vision, such as object de-
tection.
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