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Abstract: This paper presents a novel approach for generating synthetic thermal images using depth and edge maps from

the given grayscale image. In this way, the network receives the fused image as input to generate a synthetic

thermal representation. By training a generative model with the depth map fused with the corresponding edge

representation, the model learns to generate realistic synthetic thermal images. A study on the correlation

between different types of inputs shows that depth and edge maps are better correlated than grayscale images,

or other options generally used in the state-of-the-art approaches. Experimental results demonstrate that the

method outperforms state-of-the-art and produces better-quality synthetic thermal images with improved shape

and sharpness. Improvements in results are attributed to the combined use of depth and edge maps together

with the novel loss function terms proposed in the current work.

1 INTRODUCTION

The use of thermal images has evolved from its ori-
gins in military applications to widespread use in in-
dustrial inspection, medical diagnostics, and more re-
cently in areas such as precision agriculture and ur-
ban infrastructure management. In industrial inspec-
tion, thermal imaging can be used to detect hotspots in
electrical and mechanical equipment, helping prevent
failures and improve operational efficiency (Rippa
et al., 2021). In medical diagnostics, thermal imag-
ing allows early detection of diseases by identifying
abnormal temperature patterns in the body (Casas-
Alvarado et al., 2020), (Qu et al., 2022). In addition,
there are approaches that provide a more comprehen-
sive and accurate view of the environment, enhanc-
ing real-time decision making (Teutsch et al., 2022).
In agriculture, for instance, it is important to men-
tion the efforts to improve the efficiency of the Crop
Water Stress Index (CWSI) to monitor plant water
stress using thermal imaging (Pradawet et al., 2023).
Key challenges in this domain include precise mate-
rial properties estimation, incorporating atmospheric
effects, and validating synthetic images against real-
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world data. Continuing, advances in sensor technol-
ogy and computing have enabled the creation of high-
resolution thermal images and the use of these im-
ages to perform the task of automatic person detection
in thermal images using convolutional neural network
models originally intended for detection in RGB im-
ages (Krišto et al., 2020).

The ability to detect and visualize temperature
differences accurately and noninvasively has opened
new possibilities and led to significant advances in
each of the fields mentioned above. The main limita-
tion to overcome is the lack of large-scale thermal im-
age datasets and public benchmarks needed for deep
learning-based solutions. This limitation can be ad-
dressed through the use of synthetic thermal images.
As technology continues to advance, synthetic ther-
mal image generation is expected to expand its appli-
cations and improve its precision and utility.

In recent years, research has focused on employ-
ing advanced computational techniques to generate
thermal-like images from RGB inputs. Leveraging
numerical heat transfer modeling and advanced tech-
nologies such as GANs, researchers are pioneering in-
novative methods to create synthetic thermal images
for diverse applications. By learning from datasets
of paired RGB and thermal images, these models can
capture the underlying patterns and characteristics of

Suárez, P. L. and Sappa, A. D.
Synthetic Thermal Image Generation from Multi-Cue Input Data.
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 3: VISAPP, pages
275-282
ISBN: 978-989-758-728-3; ISSN: 2184-4321
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

275



thermal imagery, enabling them to produce realistic
thermal-like representations from RGB inputs (e.g.,
(Li et al., 2023), (Blythman et al., 2020)). These
efforts have led to the creation of various method-
ologies, including deep learning models like Varia-
tional Autoencoders (VAEs) and Generative Adver-
sarial Networks (GANs). The field of conditional syn-
thetic thermal image generation has become a valid
alternative, offering new solutions to the challenges
associated with obtaining real thermal images (Mizgi-
nov and Danilov, 2019).

The present work introduces a novel approach to
generate thermal images, from the given visible spec-
trum images, by using a CycleGAN architecture. The
main novelty lies in using a multi-cue source of infor-
mation to feed the network—i.e., the depth and edge
maps corresponding to the given visible spectrum im-
age are used as input to the network. Input depth maps
are obtained by an off-the-shelf architecture that gen-
erates depth maps for a given 2D image. Additionally,
by incorporating the edges of the real image accentu-
ates image features, improving contour definition on
the synthesized thermal image. The use of depth maps
is motivated by the correlation between depth infor-
mation and the thermal energy propagation model in
the given scene. The contribution of this work can be
highlighted as follows:

• Present a novel CycleGAN-based generative ar-
chitecture that uses multi-cue input—depth and
edge maps—to generate thermal images from vis-
ible spectrum images improving the accuracy of
synthesized thermal images.

• A multiple loss functions to ensure effective train-
ing by addressing different aspects of image qual-
ity. This combination of losses enhances spa-
tial coherence, feature preservation, and structural
similarity, leading to highly accurate and realistic
synthesized thermal images.

The manuscript is organized as follows. Section
2 provides a review of related work in the fields of
thermal image synthesis. Section 3 presents the ap-
proach proposed for generating synthetic thermal im-
ages, based on the usage of both depth and edge maps.
Experimental results and comparisons with different
approaches are given in Section 4. Finally, conclu-
sions are presented in Section 5.

2 RELATED WORK

This section reviews state-of-the-art approaches pro-
posed in the literature for generating synthetic thermal
images using deep learning architectures. Through a

detailed examination of various strategies and tech-
niques employed in these approaches, we seek to un-
derstand the advances and challenges in this field,
thereby establishing the foundation for the proposed
methodology. In the field of thermal imaging, high-
quality image synthesis using convolutional networks
has become a promising approach. Researchers have
explored multiple methodologies that leverage condi-
tional GANs and prior information to generate ther-
mal images that are both realistic and visually ap-
pealing. Therefore, conditioning generative networks
with complementary data such as semantic informa-
tion, distances, or physical characteristics of the scene
have managed to obtain significant improvements in
the definition and quality of synthetic thermal images.

One of the approaches is the work of (Zhang et al.,
2018) where the authors propose to use an image-to-
image translation model to generate synthetic thermal
infrared data from the more readily available labeled
RGB data. With this synthetic data, they create an ex-
tensive labeled dataset of synthetic thermal infrared
sequences. These sequences can be used to train end-
to-end optimal features specifically for thermal in-
frared tracking. A similar strategy has been proposed
in Pons et al. (Pons et al., 2020); the authors develop
a method to generate thermal images from the visible
spectrum for facial emotion recognition using a Cy-
cleGAN; the authors propose to translate images from
the visible spectrum to thermal images, thus optimiz-
ing the capabilities of emotional recognition systems.
Güzel et al. (Güzel and Yavuz, 2022) investigate the
use of CycleGAN training a paired image schema
rather than unpaired, based on a better simulation of
the normalization of the electromagnetic spectrum to
improve the quality of the generated images. In Im-
tiaz et al. (Imtiaz et al., 2021), a Lightweight Pyra-
mid Network (LPNet) is proposed for image synthe-
sis. Their approach is based on Laplacian-Gaussian
pyramidal decomposition and subsequent reconstruc-
tion to improve the thermal signature and maintain the
contours of objects in the images. Continuing with
convolutional architectures, Pavez et al. (Pavez et al.,
2023) present a deep learning technique for the gener-
ation of high-quality synthetic thermal images. Their
study introduces a database with paired visible and
thermal facial images, proposing a cross-spectral fa-
cial recognition framework that facilitates quick and
easy integration into existing facial recognition sys-
tems.

Continuing with the review, we can mention the
work presented in (Suárez and Sappa, 2023), where
a generic framework is proposed to generate thermal
images of any environment, from the corresponding
RGB images. In this case, an unpaired adversarial
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Figure 1: Proposed CycleGAN architecture.

cyclic generative model is proposed. It allows the
simulation of the temperature of the objects present in
the scene. Another translation model named ToDay-
GAN is presented in (Anoosheh et al., 2019), which
introduces the task of localizing images from the
same area captured during the day and night. The pro-
posed model converts nighttime driving images into
more useful daytime representations. The problem of
domain translation has also been extensively studied
in the remote sensing community, focusing on devel-
oping models capable of translating coaligned images
between modalities such as RGB-IR, Synthetic Aper-
ture Radar (SAR)-Electro-Optical (EO), SAR-IR, and
SAR-RGB. This challenge has motivated the research
community to organize competitions in various fo-
rums to evaluate the performance of different con-
tributions. An example of these competitions is the
one held annually at the PBVS-CVPR workshop (e.g.,
(Low et al., 2024), (Low et al., 2023)).

According to the state-of-the-art, all the reviewed
techniques focus on generating representations in a
domain other than the given one using generative ap-
proaches. However, a crucial aspect that has not been
widely explored is the use of additional information
to facilitate and improve results. All the reviewed
approaches take as an input the given information,
which could be the grayscale, RGB, SAR, etc. image.
In the present work, we propose an approach that uses
multi-cue information as input (i.e., depth and edge
maps), instead of the given gray scale image, to im-
prove the generation of thermal images. This change
on the representation of the given image, offers a sig-
nificant improvement in the quality and usefulness of
the generated synthetic images, as will be presented
in this paper.

3 PROPOSED APPROACH

This section presents the proposed CycleGAN archi-
tecture for generating synthetic thermal images based
on (Zhu et al., 2017) and inspired by (Suárez and

Sappa, 2023). This method takes advantage of the
inherent characteristics of the depth maps combined
with the corresponding edge map computed from the
brightness channel of the HSV color space. This dual-
input strategy addresses challenges commonly associ-
ated with cross-modal image translation, such as loss
of fine details or spatial inconsistency, and contributes
to generating thermal images that are both realistic
and semantically meaningfulIt is worth mentioning
that thermal images capture the thermal energy emit-
ted by the object in the scene, rather than its colors
in the visible spectrum. In the proposed model, the
depth information is considered since, as will be pre-
sented next, it is more correlated with the tempera-
ture levels depicted in the thermal images, acting as
an indicator of the thermal radiation of the object in
the scene. This allows the model to prioritize inten-
sity variations, just like thermal cameras, which fo-
cus more on the heat emitted by objects than on their
color. As input to the network, the combination of
the depth map with the edges of the corresponding
2D images is considered. This resulting fused image
provides features that allow contour translation to im-
prove the quality and sharpness of the generated syn-
thetic images. To perform the experiments, we have
used the depth map generated by the technique pre-
sented in Yin et al. (Yin et al., 2021), which esti-
mates depth with unknown scale and offset and uses
3D point cloud encoders to estimate the missing depth
offset and focal length. Figure 1 shows an illustration
of the proposed architecture.

Depth maps provide essential information about
the three-dimensional structure of the scene, includ-
ing the surface orientation and the distance between
objects. This spatial information is crucial to accu-
rately infer thermal gradients, occlusions, and object
boundaries within thermal images. Using depth maps,
the model can better understand how thermal energy
propagates through the scene, resulting in more ac-
curate and realistic thermal representations. In addi-
tion, the inclusion of edge features of the 2D image
accentuates the details and contours of objects, im-
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proving the definition of shapes and boundaries in the
synthesized thermal images. This approach ensures
that even the most subtle features are preserved, re-
sulting in a higher-quality thermal image that captures
the complexities of the scene.

In the current work, a relativistic GAN loss, pro-
posed by (Jolicoeur-Martineau, 2018), has been con-
sidered, instead of the traditional GAN loss suggested
by (Goodfellow et al., 2020). The relativistic GAN
loss considers that in each mini-batch, at least 50% of
the generated data are false. The learning divergence
is then minimized based on this assumption. This ap-
proach is beneficial because it enables us to estimate
that in a minibatch of randomly generated data, there
are more realistic samples than false ones. This leads
to better training of the GAN, being more stable train-
ing process, and improved image quality. and con-
sequently, more accurate synthetic thermal images.
Specifically, the relativistic loss is defined as follows:

LG
RGAN(x,y) = E(x,y)∼(P,Q) [g(C (y)−C (x))] , (1)

LD
RGAN(x,y) = E(x,y)∼(P,Q) [ f (C (x)−C (y))] , (2)

where, E(x,y)∼(P,Q) corresponds to the expectation
over the real data x sampled from the distribution
P and the fake data y sampled from the distribution
Q; f (C (x)−C (y)) is the function that measures the
difference between the scores of the real and fake
data for the discriminator and g(C (y)−C (x)) is the
other function that measures the difference between
the scores of the fake and real data for the generator.

In addition, in the current work, a contrastive loss
function introduced in (Liu et al., 2021), has been im-
plemented, which helps the model to learn the sim-
ilarities between the latent spaces it generates. This
approach is based on the principles outlined in (An-
donian et al., 2021). This loss helps to group similar
representations while ensuring that the different ones
are distinctly separated. The proposed loss function
can be written as:

Lcontr(X ,Y ) =
L

∑
l=1

Sl

∑
s=1

�contr (v̂s
l ,v

s
l , v̄

s
l ) . (3)

This loss compares the predicted feature vectors v̂s
l

with the true feature vectors vs
l and their correspond-

ing sets of other feature vectors v̄s
l . According to the

authors in (Andonian et al., 2021), the shape of the
tensor Vl ∈ RSl×Dl is determined by the network ar-
chitecture, where Sl is the number of spatial locations
in the tensor. vs

l ∈RDl represents the feature vector at

the sth spatial location and v̄s
l ∈ R(Sl−1)×Dl represents

the collection of feature vectors at all other spatial lo-
cations except s.

To prevent the intensity levels of the pixels from
exceeding the bounds of the objective domain dur-
ing the data transformation process, the model also

employs the identity loss function. This means that
the generative network must retain the most impor-
tant characteristics, such as the thermal intensity level
and object shape, while maintaining the formation
model’s stability. Specifically, the generative network
must ensure that G(x)≈ x and F(y)≈ y.

Lidentity (G,F,x,y) = Ex∼pdata(x)[‖G(x)− x‖]
+Ey∼pdata(y)[‖F(y)− y‖], (4)

where, G and F are the generative networks, x and y
are samples from the data distributions pdata(x) and
pdata(y) respectively,

Additionally, the spatial feature loss is defined. It
is a custom function that computes the distances be-
tween the input and target tensors by evaluating their
spatial features. This loss can be defined as:

Lspatial(x,y) =
C

∑
i=1

(
L i

vertical +L i
horizontal +L i

average

)
,

(5)
where each spatial feature loss term (vertical, hori-
zontal, average) is computed using the Mean Squared
Error (MSE) for each channel, which is defined as:

MSE(x,y) =
1

n

n

∑
j=1

(x j− y j)
2, (6)

where x and y are the input and target tensors, respec-
tively, and n is the number of elements in the tensors x
and y. This represents the total number of spatial fea-
tures (e.g., pixels) over which the error is averaged.

Another index used as a reference is the structural
similarity index, proposed in (Wang et al., 2004). This
index assesses images by considering the sensitivity
of the human visual perception system to alterations
in local structure. The underlying concept of this loss
function is to help the learning model in generating
visually enhanced images. The structural similarity
loss is defined as:

LSSIM(x,y) = 1−SSIM(x,y), (7)

where SSIM(x,y) is the Structural Similarity Index
(see (Wang et al., 2004) for details), y represents the
output of the neural network that we are trying to op-
timize, and x is the reference or ground truth image.
It represents the target image that the model aims to
reproduce or approximate as closely as possible.

Finally, all loss functions presented above are
combined in the final loss function (Lfinal) as follows:

Lfinal = LRGAN(G,D,x,y)+λX Lcontr(G,F,x)(8)

+ λY Lcontr(F,G,y)+ γLidentity(G,F,x,y)
+ βLSSIM(x,y)+αLspatial(x,y), (9)

where λX and λY represent the weights attributed to
the contrastive loss function for the domains x and
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Figure 2: Illustration of the input images (i.e., a combination of estimated depth and edge maps); note how the enhanced
estimated depth map, when integrated with the edge map, closely resembles the real thermal image.

y, respectively. These values are empirically deter-
mined based on experimental outcomes. γ and β are
the weights of the Identity and SSIM loss functions
respectively; α is the weights that control the contri-
bution of Spatial feature loss. All of these values have
been empirically defined according to the results of
the experiments.

4 EXPERIMENTAL RESULTS

This section provides an overview of the quantitative
and qualitative results obtained with the proposed ar-
chitecture. It also, describe the dataset used for train-
ing and detailed information about the applied pre-
processing techniques used on the images. Further-
more, it performs a comparative analysis using simi-
larity metrics and evaluates the PSNR present on the
obtained synthetic images.

4.1 Datasets

The architecture proposed in the current work has
been trained with a subset of the M3FD data set (Liu
et al., 2022). This data set was created using a binoc-
ular optical and infrared sensor and contains 4500
pairs of RGB and thermal images of outdoor scenar-
ios. From this set of images, only 826 pairs were con-
sidered for the training process; 30 pairs of images
were used for validation and 20 pairs were used to
test the trained model. Depth and edge maps have

been obtained from this subset of images from the
M3FD data set. Depth maps have been obtained us-
ing the approach presented in (Yin et al., 2021), while
edge maps have been obtained using Sobel edge de-
tector (Gao et al., 2010). Depth and edge maps are
combined in a single representation by averaging their
values. Depth maps could be also estimated with
other state-of-the-art approaches (e.g., (Suárez et al.,
2023a), (Suárez et al., 2023b), (Yang et al., 2024),
(Bhat et al., 2023)), however in the current work the
approach presented in (Yin et al., 2021) has been se-
lected due to good performance in the M3FD dataset.

4.2 Results and Comparisons

The proposed approach is evaluated and compared
with the results of two state-of-the-art models for un-
paired image translation (i.e., (Zhu et al., 2017) and
(Suárez and Sappa, 2023)). As mentioned above, the
proposed CycleGAN architecture uses as input the
depth and edge map of the given 2D image (Fig. 2
shows an illustration of this multi-cue merging pro-
cess). The central idea is to take advantage of the
spatial characteristics of the images from the depth in-
formation to obtain a better representation of the syn-
thetic images. This input data better correlates with
the corresponding real thermal image. It can be seen
in Table 1 that the merged maps obtain the highest
correlation with the given real thermal images. To
validate the advantage of using this multi-cue infor-
mation as input, the proposed CycleGAN architecture
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Table 1: Comparisons of different approaches (Corr. with GT: correlation index between the image used as input and the
corresponding thermal GT; in (Zhu et al., 2017) and (Suárez and Sappa, 2023) the brightness channels of HSV color space
are used as input).

Method PSNR SSIM Corr. with GT
Zhou et al. (Zhu et al., 2017) 15.299 0.663 -0.2607
Suárez et al. (Suárez and Sappa, 2023) 18.112 0.706 -0.2607
Prop. App. with Gray Scale 17.131 0.673 -0.2898
Prop. App. with Pseudothermal 17.084 0.616 0.2487
Prop. App. with Depth+edges 18.317 0.713 0.3011

has been also trained considering a grayscale image
as input as well as a pseudothermal image as input
(Tuzcuoğlu et al., 2024). Results from these three al-
ternatives are presented below.

Fig. 3 shows some illustrations of the obtained
synthetic thermal images and comparisons with state-
of-the-art approaches. Table 1 presents the quanti-
tative results of the averages obtained by the mod-
els: (Zhu et al., 2017), (Suárez and Sappa, 2023) and
the proposed model trained with different inputs: i)
grayscale image; ii) pseudothermal image; and iii) fu-
sion of depth and edge maps. SSIM and PSNR met-
rics demonstrate that the architecture trained by using
as an input the depth and edge maps reaches the best
results.

5 CONCLUSION

This paper presents a novel approach for generating
synthetic thermal images using depth maps and cor-
responding edge maps as inputs. This method pro-
duces a well-generalized model capable of generat-
ing clear thermal-like images that closely resemble
real thermal images. This combination enhances the
realism and accuracy of the synthesized thermal im-
ages, as evidenced by improved performance metrics
compared to those of the existing methods. Future
work will explore the usage of other depth estimation
techniques. Furthermore, exploring advanced gener-
ative model architectures and improved training tech-
niques could enhance the quality and resolution of
the synthetic images. Finally, developing new eval-
uation metrics and loss functions could further refine
its quality and sharpness.
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