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A B S T R A C T   

This manuscript presents a comprehensive survey on recent computer vision based food grain classification 
techniques. It includes state-of-the-art approaches intended for different grain varieties. The approaches pro-
posed in the literature are analyzed according to the processing stages considered in the classification pipeline, 
making it easier to identify common techniques and comparisons. Additionally, the type of images considered by 
each approach (i.e., images from the: visible, infrared, multispectral, hyperspectral bands) together with the 
strategy used to generate ground truth data (i.e., real and synthetic images) are reviewed. Finally, conclusions 
highlighting future needs and challenges are presented.   

1. Introduction 

With the continued population growth, the food industry needs to 
keep increasing production and improving the quality of products. 
Directly or indirectly related to the increase in food production are the 
cereals, which are at the base of the pyramid of the food industry, both 
for human and animal consumption. According to the Food and Agri-
culture Organization’s last report the world cereal production in 2020 
has been 2765 million tonnes, 2% higher than 20191. The report shows 
that the increase in production has kept the same ratio during the last 
decade and it is expected to keep the same ratio in the near future. 
Therefore, since it is difficult to increase the arable land, improvements 
are required in other processes in the production chain to increase 
productivity. One of these improvements is related to the automation of 
the classification of food grains, where a great effort has been devoted in 
recent years by proposing new approaches to perform the classification 
in an automatic way. It should be noticed that the food grain classifi-
cation problem requires specific features according to the type of variety 
or problem. Some classes (seeds) have a large inter-class variability 
making easier the solution while others show a very tiny inter-class 
variability (e.g., classify between good grain and infected one). Actu-
ally, some of these challenging problems (small inter-class variability) 
requires the usage of multispectral or hyperspectral technology. The 
contributions of this survey are as follows. Firstly, it presents a general 
pipeline that is used to analyze the different stages generally involved in 

the classification process, providing discussions for each one of them. 
Due to the lack of common benchmarks for validation and the 
complexity of reproducing different approaches, quantitative compari-
sons become difficult. Therefore, the survey presents an analysis of the 
most important proposals for each stage and provides quantitative 
evaluations when possible. Finally, general conclusions are given 
pointing out the current limitations and future trends from a more 
general viewpoint. 

2. Literature review 

This section presents a deep review of works related to the different 
stages involved in the food grain classification problem. The reviewed 
works are grouped following different criteria. Firstly, the main modules 
generally used in grain classification are considered—i.e., image 
acquisition, preprocessing, segmentation, and classification (see Fig. 1). 
It should be mentioned that although not all these modules are present 
in the reviewed works, for instance in Olgun et al. (2016), Sendin et al. 
(2019) and Singh and Chaudhury (2016) the authors propose a classi-
fication directly from the given images, this break down is useful to 
cluster the approaches in the literature for further analysis and com-
parisons. These four modules are reviewed in Section 2.1, Section 2.2, 
Section 2.3 and 2.4. Then, Section 2.5 clusters the approaches in the 
literature according to the most common applications they are intended 
for. All these reviewed approaches are listed in Table 1 detailing their 
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main features. Next, in Section 2.6, the works are grouped according to 
the variety of classified grains (e.g., rice, corn, coffee beans, etc.), in-
sights on the particularity of each approach are given. Finally, a review 
of state-of-the-art dataset generation strategies, including both real and 
synthetic data, together with ground truth annotation are presented in 
Section 2.7. 

2.1. Image acquisition 

The first stage of the general pipeline is related to image acquisition. 
Although images from the visible spectrum (e.g., monochromatic im-
ages, color images represented in the RGB color space) are generally 
considered as input by the food grain classification systems, there are 
several works devoted to processing images from other spectral bands, 
for instance, infrared spectrum. Furthermore, some approaches exploit 
other types of images (e.g., multispectral or hyperspectral), covering not 
only the visible spectrum but also the ultraviolet or infrared spectral 
bands. These kinds of images allow us to obtain information useful for 
the classification process, which is not available in the classical single 
band domain. This section reviews state-of-the-art approaches on visible 
and infrared spectral bands together with multispectral and hyper-
spectral based approaches, highlighting their limitations, advantages, 
and drawbacks. 

2.1.1. Visible and infrared spectral bands 
Most of the approaches in the literature are based on the use of a 

single spectral band. In general, visible spectrum cameras are considered 
due to the low cost and availability of such devices. In addition to the 
visible spectrum, there are few approaches relying on near infrared 
imagery due to the possibility to better discriminate different objects in 
the given scene. In spite of that, the visible spectrum is more widely 
used, for instance, Fernandez-Gallego et al. (2018) propose a robust, 
low-cost, and efficient approach to evaluate wheat ear density in the 
visible spectrum. Also focusing on the usage of low-cost and easily 
available devices, Kaisaat et al. (2017) present a flat-surface scanner to 
measure the color of the rice and their corresponding uniformity. 
Similarly, Kozłowski et al. (2019) propose a flatbed scanner to acquire 
images and perform recognition of barley varieties. In addition to the 
use of scanners, in recent years, there are some proposals based on the 
usage of mobile devices to acquire images of the visible spectrum, which 
are later on used in the food grain classification process. For instance, 
Komyshev et al. (2017) present an approach to evaluate the phenotypic 
parameters of the grains using mobile devices obtaining quite precise 
results. More recently, Kar et al. (2019) propose a deep learning based 
system to estimate food grain quality by means of a mobile device with 
limited resources. 

2.1.2. Multiespectral 
In general, multispectral images correspond to shots of a given scene 

captured within specific wavelength ranges across the electromagnetic 
spectrum, including the visible spectrum together with the infrared and 
ultra-violet ranges. Typically, multispectral images consist of 3 to 20 
spectral bands. Having several images of a given grain, at different 
spectral bands, allow tackling the classification problem, in a more 
robust and easy way. In the food grain classification problem, some 
approaches rely on multispectral images from the ultraviolet, visible, 
and near infrared spectral bands. For instance, Gomez et al. (2019) 
propose an approach to classify cocoa beans, from spectral signatures of 
the visible and near infrared spectral bands. The cocoa beans dataset has 
been split up into two categories: well fermented and over fermented. 
For the experiments, multispectral images of 64 grains were acquired. 
For each grain 11 spectral images, in the spectral range of 350 nm to 950 
nm, have been acquired. After the image acquisition, the spectral 
signature of each grain has been obtained obtaining the best results. 

Also working in the visible and near infrared spectral bands, Liu et al. 
(2014) propose a method to determine the purity of rice seeds of non- 
transgenic varieties from their transgenic counterparts. The approach 
is based on multispectral image analysis combined with the study of 
chemometric data. For the experiments, 200 samples of the transgenic 
and non-transgenic rice seeds, respectively, of the visible and near 
infrared spectra, in the range of 405–970 nm, were used. The use of 
multispectral images combined with chemometric has shown the best 
results of the classification. In Liu et al. (2016), the authors propose 
another rice seed classification method based on the usage of multi-
spectral images. This technique uses 19 different wavelengths belonging 
to the visible and NIR regions—between 405 to 940 nm. From this image 
information, morphological features are extracted to classify the five 
rice varieties. Another approach in the multispectral domain has been 
presented in Sendin et al. (2018). In this case, the authors propose also to 
use 19 spectral bands, spanning from the ultraviolet, visible, and near 
infrared bands (from 375 nm to 970 nm). The approach is proposed to 
classify white corn defects. The types of defective materials were divided 
into 13 classes. The images were acquired with a specialized multi-
spectral capture imaging device. 

2.1.3. Hyperespectral 
On the contrary to multispectral imaging, which measures spaced 

spectral bands, hyperspectral imaging measures continuous spectral 
bands. This results in a large number of images, more than 20, in gen-
eral, 200 bands, covering a vast portion of the electromagnetic spec-
trum. In Qiu et al. (2018), the authors propose the use of hyperspectral 
images to identify rice seeds in four different varieties. The approach has 
been developed using two different spectral ranges (380–1030 nm and 

Fig. 1. Stages generally involved in a grain classification pipeline.  
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Table 1 
Main elements of the classification pipeline for different approaches.  

Author(s) Image (T: Type; B:Back- Segmentation Classification Application 
ground; M: Multitouch) 

T B M 

Chu et al. (2020) Hyperspectral Black Otsu OW-PCA-SVM Fungi detection 

Shamim et al. (2020) 
RGB Black Canny CNN (customized architecture) Grain purity analysis 

Singh and Chaudhury 
(2020) 

HSV Green Hue channel thresholding Cascade network classifier Improve the performance of the rice 
classifier 

Toda et al. (2020) 
RGB Black Mask R-CNN Mask R-CNN Plant phenotyping 

Velesaca et al. (2020) 
RGB White Mask R-CNN CNN (CK-CNN) Grain quality 

Altuntaş et al. (2019) 
RGB White Blue channel thresholding CNN (VGG-19) Advanced maize breeding 

Aukkapinyo et al. (2019) 
RGB Black Marker-based watershed Mask R-CNN Localize and classify grain 

García et al. (2019) 
HSV/ CIELAB White Thresholding K-NN Quality coffee beans 

Gomez et al. (2019) 
Spectral images Black Thresholding using 

heuristics 
SVM Quality cocoa beans 

Huang et al. (2019) 
RGB Black Grayscale thresholding & 

color detector 
CNN (customized architecture) Coffee bean picking system and grain 

quality detection 

Huang et al. (2019) 
RGB Black Watershed CNN (GoogLeNet) Classification of seed defects 

Kozłowski et al. (2019) 
RGB Black Background subtraction CNN (customized architecture) Quality of barley for the beer brewing 

process 

Sendin et al. (2019) 
Hyperspectral - Background subtraction PLS-DA Grading maize whole kernel 

Son and Thai-Nghe (2019) 
RGB Black Background subtraction CNN (customized architecture) Grain quality evaluation 

Xia et al. (2019) 
Hyperspectral Da Adaptive threshold Multi-linear discriminant 

analysis 
Maize seed classification 

Arboleda et al. (2018) 
RGB White - Geometric features Bean quality controller 

Lin et al. (2018) 
RGB Black - CNN (customized architecture) Intelligent detection system of rice species 

Miao et al. (2018) 
Hyperspectral - - t-distributed stochastic 

neighborhood embedding 
Waxy maize seed quality testing 

Qiu et al. (2018) 
Hyperspectral Black Thresholding CNN (customized architecture) Identify rice seed varieties 

Sendin et al. (2018) 
Multispectral - - PLS-DA Grading whole kernel 

Tin et al. (2018) 
RGB Black Edge detection Geometric features Quality control and classification of maize 

grains 

Wah et al. (2018) 
RGB Black Otsu K-NN Classification of export-rice quality 

Wen et al. (2018) 
RGB/ HSV/ 
CIELAB 

- - Correlation analysis Determine corn seeds conditioning and 
parameter selection 

Vlasov and Fadeev (2017) 
RGB White - K-means clustering Classification of grain crops seed 

Sabanci et al. (2017) 
RGB Black Otsu ANN Classification of the wheat grains 

Yin et al. (2017) 
RGB - - Fisher discriminant analysis Classification of moldy maize samples 

Huang et al. (2016) 
Hyperspectral Black Adaptive threshold LS-SVM Maize seed variety classification 

Liu et al. (2016) 
Multispectral Black Thresholding SVM Online variety discrimination of rice seeds 

Ribeiro (2016) 
HSV Black - FCC  + LBP Grain classification 

Shrestha et al. (2016) 
Grayscale Black Watershed ANN System to separate and identify laboratory 

sprouted wheat kernels 

Singh and Chaudhury 
(2016) 

RGB - - ANN Rice grain classification 

Olgun et al. (2016) 
RGB - K-means clustering SVM Wheat grain classification 

Tan et al. (2016) 
Infrared 
spectrum 

- - SVM Identification of quality of wheat grain 

Birla and Chauhan (2015) 
Grayscale Black Grayscale thresholding Geometric features Rice quality analysis 

Kaur and Singh (2015) 
Grayscale White Grayscale thresholding Geometric features Rice grains quality estimation 

Szczypiński et al. (2015) 
RGB Black Background subtraction ANN Quality of barley for the malt brewing 

process 

Wen et al. (2015) 
RGB/ HSV/ 
CIELAB 

Black - Correlation analysis Determines optimal physical parameters 
for sorting seeds 

Zareiforoush et al. (2015) 
RGB Black Grayscale thresholding Fuzzy logic Quality measurement of milled rice 

RGB Blue Region growing Probabilistic neural network Classification and quality analysis of food 
grains 

(continued on next page) 
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874–1734 nm). Another hyperspectral based classification approach has 
been proposed by Pan et al. (2018), referred to as MugNet, which is a 
simplified deep learning model based on hyperspectral image classifi-
cation. This hyperspectral imagery has 144 spectral bands between 400 
to 1000 nm spectral regions. The proposed multi-grained scanning 
strategy could not only extract the joint spectral-spatial information but 
also combine different grains’ spectral and spatial relationships. On the 
contrary to the previous approaches, in Chu et al. (2020) an infrared 
hyperspectral (900–1700 nm) approach has been proposed. The authors 
tackle the classification of healthy corn from infected from one of the 
three hybrid classes of fungi: dented, waxy, and semi-flint endosperms. 
Also working in the infrared spectral band, Berman et al. (2007) present 
an infrared hyperspectral approach to perform the classification of in-
dividual sound and stained wheat grains, belonging to 24 Australian 
different varieties. The image data were normalized based on its means, 
using only the spectral shape. The experiments were carried out with 
image samples over the 420–2500 nm, 420–1000 nm, and 420–700 nm 
wavelength range. Also in the infrared hyperspectral domain, Sendin 
et al. (2019) propose an approach to classify whole white corn kernels. 
The method performs 13 classes division of disposal materials using 
hyperspectral imaging from 1118 to 2425 nm with a 6.3 nm spectral 
resolution between the 209 spectral points. Hyperspectral imaging is 
also exploited by Chu et al. (2020), where an approach to classify 
infected corn seeds is proposed. It uses infrared hyperspectral images in 
the range of 900 to 1700 nm. 

2.1.4. Discussions on image acquisition 
Although most of the approaches proposed in the literature for the 

seed grains classification problem work on the visible spectrum (see 
Table 1) there is an increasing number of approaches that rely on in-
formation from other spectral bands or other types of images (e.g., 
multispectral, hyperspectral), mainly due to the reduction in the prices 
of these technologies during the last decades. According to the reviewed 
papers, multispectral and hyperspectral based approaches are good so-
lutions not only to classify grains according to their features, such as 
healthy or fermented but also to classify the grain varieties, which 
sometimes are quite similar from a visual point of view. For instance, 
some multispectral approaches can classify transgenic and non- 
transgenic varieties. Another detail to highlight from this review is 
that most multispectral and hyperspectral approaches work on the 
visible and near infrared spectral bands, just a few approaches go further 
NIR spectral band reaching the short-wavelength infrared or even mid- 
wavelength infrared. Regarding the ultraviolet spectral band, just a 
couple of works exploit this band. 

It could be mentioned as a general conclusion that multispectral and 
hyperspectral technologies offer many possibilities that still need to be 
explored. The main drawback that can be observed is the lack of well- 
documented and available datasets for reference. In most of the ap-
proaches presented in the literature, researchers acquire their dataset 
and make their contributions, which makes it difficult to compare the 
different techniques. Hopefully, common benchmarks will be shortly 
available to be used as references by the community. 

Table 1 (continued ) 

Author(s) Image (T: Type; B:Back- Segmentation Classification Application 
ground; M: Multitouch) 

T B M 

Siddagangappa and 
Kulkarni (2014) 

Kambo and Yerpude 
(2014) 

RGB Black Region growing Geometric features Classification of basmati rice grain variety 

Liu et al. (2014) 
Multiespectral - - SVM Identification of transgenic rice seeds 

Gujjar and Siddappa 
(2013) 

RGB Black, 
blue 

Thresholding ANN Quality of basmati rice grains 

Kaur and Singh (2013) 
RGB Black Otsu SVM Classification and grading the different 

varieties of rice grains 

Mebatsion et al. (2013) 
RGB/ HSV/ 
CIELAB 

Black Edge detection Least square classifier Classification of cereal grains 

Silva and Sonnadara 
(2013) 

Grayscale Black Background subtraction Multi layer perception Classification of rice varieties 

Mousavirad et al. (2012) 
RGB Black Grayscale thresholding ANN Expert system for rice kernel 

identification 

Guevara-Hernandez and 
Gil (2011) 

RGB White Edge detection K-NN System for cereal grain classification 

Patil et al. (2011) 
CIELAB - - K-NN Identification and classification of food 

grains 

Douik and Abdellaoui 
(2010) 

RGB Black Background subtraction ANN, Fuzzy logic, Statistical 
classifier 

Cereal grain classification 

Choudhary et al. (2008) 
RGB/ HSV/ 
CIELAB 

- Red channel thresholding Linear discriminant classifier Improvement in the classification method 
of cereal grains 

Zapotoczny et al. (2008) 
RGB - Thresholding Linear discriminant analysis Exploratory investigation of classification 

of Polish spring barley 

Berman et al. (2007) 
Infrared 
spectrum 

- - Pixel-wise classifications Wheat grain quality 

Kılıç et al. (2007) 
RGB Black Red channel thresholding ANN Quality inspection of beans 

Paliwal et al. (2003) 
RGB - Thresholding ANN Classification and identification of cereal 

grains 

†ANN (Artificial Neural Network). †K-NN (K-Nearest Neighbor). †SVM (Support Vector Machine). †PCA (Principal Component Analysis). †OW (Object Wise). 
†CNN (Convolutional Neural Network). †LBP (Local Binary Pattern). †PLS-DA (Partial Least Squares-Discriminant Analysis). †FCC (Freeman Chain Code). 
†LS-SVM (Least Squares-Support Vector Machines). 

a D: Diffuse reflectance whiteboard. 
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2.2. Preprocessing 

The reviewed approaches, in general, have some kind of pre-
processing to the given raw images to put them all in the same format (e. 
g., cropping, scaling, color space mapping, etc.), or to facilitate the 
segmentation and classification process by enhancing the given images 
(e.g., noise filtering, contrast, sharpness enhancement, etc.) (García 
et al., 2019). Hence, this section reviews the most relevant preprocessing 
approaches. 

2.2.1. Cropping and scaling 
In case raw data corresponds to a high resolution image, some 

cropping or scaling is needed. The cropping technique consists of split-
ting up the given image into regions of small size (patches) to obtain a 
more easy representation to process images (Velesaca et al., 2020). This 
splitting process allows to discard unwanted parts of the images and to 
focus just on the object of interest (e.g., Gujjar and Siddappa, 2013; Son 
and Thai-Nghe, 2019; Wah et al., 2018; Zareiforoush et al., 2015). Image 
cropping is also used by some authors, after segmenting the given image, 
to focus the classification process just on a region of interest that con-
tains just a single instance (e.g., Velesaca et al., 2020; Aukkapinyo et al., 
2019). Image scaling is also a very common process, it points to resize 
the given images to represent them all at the same size. It involves a 
trade-off between efficiency, smoothness, and sharpness (Gujjar and 
Siddappa, 2013). In Huang et al. (2019), for instance, the authors do a 
resize to fit and represent the data according to the model requirements, 
they resize the images to width and length of 180 pixels each. In Auk-
kapinyo et al. (2019) the authors also apply a resize to their inputs to 
1024× 1024, which is the default setting for Mask R-CNN. In Shamim 
et al. (2020), Wah et al. (2018), and Altuntaş et al. (2019) image scaling 
is also considered in the preprocessing stage as an important operation 
in their pipeline. 

2.2.2. Image enhancement 
Image enhancement steps are focused on the improvement of the 

image’s quality from the human perception point of view, some exam-
ples are: removing blurring, noise, or increasing the content’s contrast 
(Gujjar and Siddappa, 2013). In Aukkapinyo et al. (2019) an image 
enhancement is performed as a pre-processing step. Applying the 
contrast-limited adaptive histogram equalization technique. In the case 
of noise filtering, the most common approach is to apply a Gaussian 
filter. For instance, García et al. (2019) deal with this problem by using 
Gaussian filters with 2D Gaussian smoothing. In Shamim et al. (2020), 
Siddagangappa and Kulkarni (2014), and Silva and Sonnadara (2013) 
Gaussian filters are also applied due to the type of noise they have to 
tackle. On the contrary, in those cases where the noise is produced by the 
low lighting conditions, other filters are considered. In other words, 
depending on the type of noise different filters should be applied; for 
instance, in Gujjar and Siddappa (2013) a special median filter is used to 
remove noise and smooth the given image. In Kambo and Yerpude 
(2014) a median filter is also applied because it preserves the edges 
during the noise removal process; (Kaur and Singh, 2013; Kaur and 
Singh, 2015) follow the same approach. In most cases, a previous 
grayscale conversion is considered for the operations of filtering. Both 
Tin et al. (2018) and Shamim et al. (2020) apply a median filter while 
they use Sobel edge detection to preserve edges during the noise removal 
process. 

2.2.3. Morphological operations 
Morphological operations, such as classical erosion or dilation, have 

been also used as preprocessing to tackle some specific tasks. For 
instance, in Siddagangappa (2014) and Kulkarni (2011), the authors use 
erosion to eliminate shadows of grains followed by dilation to enhance 
the image after the erosion and improve the boundary sharpness. Other 
solutions, for instance, Wah et al. (2018), use morphological operations, 
during the preprocessing stage to remove white spot noise in the 

background. Although results are improved after using morphological 
operators, the main drawback lies in its high computational cost. 

2.2.4. Color conversion 
Color space conversion is generally used to produce robust solutions 

or to highlight some specific features of the given image. There are 
different color spaces (e.g., RGB, CIELAB, CIEXYZ, CMYK, etc.), being 
the RGB the one generally used in the grain classification problem. The 
capability of working at different color spaces is exploited by Patil et al. 
(2011); in this work, the RGB color model is mapped to an L*a*b and HSI 
color spaces to later on make possible the color feature extraction, which 
is going to be the input for the classifier. In Ribeiro (2016) the author 
proposes an approach for the classification of five types of grains, 
extracting morphology, color, and texture features. To increase the ac-
curacy of the classification, the original RGB color space is converted to 
an HSV color, which obtains the best results. A similar approach is fol-
lowed in Singh and Chaudhury (2016) where the authors present an 
approach to classify five types of rice, using a vector of characteristics 
applying the BPNN algorithm using the luminance component of the 
converted HSV color spaces. More recently, the same research team has 
proposed an extension (Singh and Chaudhury, 2020) of their previous 
work. In this case, the hue channel and an algorithm based on a neuro- 
diffuse cascade network are used to obtain similar results for all four 
types of rice grains. Others authors, like (Wah et al., 2018; Huang et al., 
2019; Birla and Chauhan, 2015), propose to convert the given images to 
grayscale and use them as inputs to the system. Actually, working in 
grayscale, just one dimension is considered, hence in these cases the 
texture or intensity analysis is considered (Zareiforoush et al., 2015). 

On the other hand, in Altuntaş et al. (2019), Mousavirad et al. 
(2012), and Guevara-Hernandez and Gil (2011) the authors propose the 
usage of color histograms to obtain the best threshold value. Based on 
the information obtained from the color histogram of the RGB image 
channels, some authors (e.g., Altuntaş et al., 2019; Birla and Chauhan, 
2015; Choudhary et al., 2008; Kılıç et al., 2007) propose to use just one 
channel of the input image. Altuntaş et al. (2019) use the blue channel of 
the RGB image to converts it to grayscale and then apply morphological 
operations using a median filter to reduce noise on corn kernel images. 
In the case of Birla and Chauhan (2015), the authors propose to use the 
green channel of the given image to converts it to grayscale and then 
apply a manual threshold to obtain the segmented image of rice grain. 

2.2.5. Discussions on preprocessing approaches 
As in most computer vision applications, the quality of the final re-

sults is directly related to the quality of the input data; noisy data, low 
contrast, poor lighting, overlapping objects all of these factors would 
represent a challenging problem. Hence, there is a clear trade-off be-
tween the time and effort spent in the preprocessing stage and the 
quality of the final results. A common characteristic among the reviewed 
works is that all the image acquisition conditions are kept under control. 
This reduces the processing operations and helps to obtain good results. 
Due to the particular nature of each problem, having the correct color 
representation is a key factor when classifying the different types of 
grains, since the classic RGB representation is not always the best option, 
which is why it would be necessary to carry out a preliminary evaluation 
of the different color models within the preprocessing stage to find the 
best option depending on the problem to be addressed. Another chal-
lenge related to this problem is a multi-touch scenario, which makes the 
classification task difficult. Most of the recent works are based on deep 
learning; in these cases, some authors use preprocessing techniques of 
cropping and scaling to generate the necessary amount of diversity of 
scenarios to carry out the training of the model. 

2.3. Segmentation 

Following the pipeline defined in this work, after carrying out the 
preprocessing tasks the next step is to segment the grains present in the 
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image; most of the approaches in the literature make use of state-of-the- 
art segmentation techniques, instead of developing an ad hoc approach 
for the grain segmentation problem. Segmentation techniques are op-
erations that allow us to split up the given image into the different re-
gions present on it. In this section approaches generally used on grain 
segmentation are reviewed; they are grouped into two categories: i)
classical image processing based approaches; and ii) deep learning based 
approaches. 

2.3.1. Classical approaches 
One of the most widely used image grain segmentation techniques is 

just the thresholding; this technique works on grayscale images and 
performs the binarization using a threshold value, which depends on the 
type of grain analyzed together with the background color (Paliwal 
et al., 2003). It should be mentioned that sometimes, after the image 
segmentation, some postprocessing techniques are applied to enhance 
the results, some of these postprocessing approaches are described next. 
The main drawback of thresholding techniques lies in their sensitivity to 
the selected threshold value used to generate the binary image. 

As mentioned above, in some cases, after thresholding techniques 
some additional processes are performed to the obtained binary image to 
improve the results from the further classification process; the problems 
generally found are related to the presence of noise and holes from the 
segmentation. For instance, in Kaur and Singh (2015) the authors apply 
smoothing and an enhancement to reduce noise and improve image 
contrast on the segmented rice kernels. Arboleda et al. (2018) use image 
processing techniques and color feature extraction of input images to 
segment coffee kernels. Shamim et al. (2020) use Canny’s edge detection 
algorithm to identify the boundaries of rice grains and hysteresis 
thresholding to improve the binarization process. Mebatsion et al. 
(2013) use a set of operations—thresholding, edge detection, and chain 
coding—to segment the given image. Wah et al. (2018) removes the 
noise of binary image (areas smaller than 10 pixels) applying two 
morphological operations, first erosion, and then dilation. Huang et al. 
(2019) improves segmentation by applying a color detection method to 
remove the background of the coffee beans. Finally, Qiu et al. (2018) are 
the only one in the reviewed literature that uses the spectral dimension 
and then applies thresholding to obtain the binary image. 

On the other hand, Silva and Sonnadara (2013), Son and Thai-Nghe 
(2019), and Douik and Abdellaoui (2010) use the background subtrac-
tion method for segmenting rice kernels; in Silva and Sonnadara (2013) 
an additional morphological opening is applied together with a contrast 
stretching to the given grayscale image. The usage of morphological 
operations has been also exploited in Guevara-Hernandez and Gil (2011) 
and Siddagangappa and Kulkarni (2014) to delete shadow and improve 
edge sharpness to get better results. Some authors (e.g., Kaur and Singh, 
2013; Sabanci et al., 2017; Wah et al., 2018) use the Otsu method to 
convert the grayscale image to a binary image, according to the defined 
threshold value, to extract the grain from the background. 

Watershed is another technique widely used to extract segmented 
grains from the background. This technique uses a grayscale image 
where the tonality variations could be represented as a topographic 
surface where the highest intensity values would be the peaks while the 
lowest values would be the valleys. At the beginning of the process each 
valley is filled in with a different color, then it continues to fill in until 
the adjacent regions begin to touch and the boundaries between each 
region are well defined. As a result of this process the regions obtained 
with the different colors are the resulting segmented image. Huang et al. 
(2019) and Shrestha et al. (2016) use the watershed method to obtain 
the segmented instance of each grain; in the first case, this method is 
used to segment corn kernels while in the second case it is used to 
segment wheat kernels. After generating the binary mask elements are 
extracted from the original given input image to proceed with the 
classification stage; Actually, some authors carry out several additional 
steps to separate each instance of grain, this will depend on whether the 
image has a single kernel or a cluster of grains. In the case of clusters, 

each instance must be identified in order to be used in the classification 
task. Altuntaş et al. (2019) propose an approach to extract bounding 
boxes using contour lines for each grain. Zareiforoush et al. (2015) and 
Kılıç et al. (2007) use a set of functions to separate and label each grain 
that existed in the image. Guevara-Hernandez and Gil (2011) calculate 
the center of mass of the regions obtained in the binarization process to 
label each instance of the wheat and barley grains. Finally, another 
approach is proposed in Siddagangappa and Kulkarni (2014); once the 
image is binarized, a labeling process is performed over connected 
components by using labels and the similarity of gray level values. 

2.3.2. Deep Learning Based Approaches 
On the contrary to the classic approaches reviewed in the previous 

section, the techniques based on deep learning use artificial neural 
networks, to extract the higher-level features present in the given image. 
There are two types of segmentation under the deep learning frame-
work: semantic segmentation and instance segmentation. According to 
each case, there are specialized networks that can obtain the binary 
mask of the objects of study, which are classified (e.g., people, cars, 
fruits). Semantic segmentation involves linking each pixel of an image to 
a class label, that is, a binary image is generated for each class of object 
present in the image (Ronneberger et al., 2015); while instance seg-
mentation allows differentiating between each instance of the objects 
(He et al., 2017). 

Based on the reviewed literature, it was found that the Mask R-CNN 
architecture (He et al., 2017), has been the most commonly used ar-
chitecture (e.g., Aukkapinyo et al., 2019; Toda et al., 2020; Velesaca 
et al., 2020). This network allows us to perform the segmentation of 
instances and obtain the binary mask of each grain present in the input 
image. In all these approaches the authors did not change the original 
architecture. It should be mentioned that the Mask R-CNN is used to 
segment different types of cereals; in Aukkapinyo et al. (2019) different 
varieties of rice grains are segmented, while (Toda et al., 2020) performs 
the segmentation of different types of grains, such as rice, lettuce, oats, 
and wheat; on the contrary to previous works, (Velesaca et al., 2020) 
uses the Mask R-CNN to segment corn kernels. 

2.3.3. Discussions on segmentation approaches 
According to the reviewed literature, one of the techniques most 

used by the authors was thresholding. The main reason for its popularity 
is because this technique presents a very low degree of difficulty in its 
implementation, while provides acceptable results. It should be noticed 
that most of the success of this technique lies in the fact that all the 
environmental conditions, such as lighting, background colors, among 
others, are controlled and very well studied to obtain the most optimal 
results. These approaches tend to fail in those multitouch kernel sce-
narios, where grains not only touch but also have partial occlusions. A 
common element in most of the classical image processing based ap-
proaches is the usage of some post processing stage to improve the 
segmentation result, before going to the classification stage. For 
instance, morphological operations are generally used to eliminate 
noise, fill in holes, and improve the grains’ boundaries on the binary 
image resulting from the segmentation. Like in most of computer vision 
applications, deep learning frameworks are also getting used in the grain 
segmentation problem; among the different models, the Mask R-CNN 
architecture is the most widely used. Given the results obtained with the 
approaches based on the deep learning framework, the trend in recent 
publications indicates that this is the framework to apply in future 
contributions. Fig. 2 presents the chronology of segmentation ap-
proaches used in the food grain variety problem showing this trend. 

2.4. Classification 

Following the pipeline presented in Fig. 1, once images are 
segmented, every single instance is classified according to the required 
categories. Like in the segmentation module reviewed in the previous 
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section, approaches in the literature are grouped in two categories: 
classical pattern recognition techniques (e.g., SVM, K-NN, linear 
discriminant analysis) are reviewed first and then recent deep learning 
based approaches are considered. 

2.4.1. Classical approaches 
Most of the time, classical approaches follow a features extraction 

stage, where the goal is to obtain the most representatives features, 
which will then be used by a machine learning classification algorithm 
to be trained. In this context, according to the reviewed literature and 
before the growth and popularity of deep learning, Artificial Neural 
Network (ANN) was used. In Shrestha et al. (2016) an ANN model was 
designed using as an input the features extracted from the alpha-amylase 
activity, together with the corresponding labels. By using ANNs and 
visual features as inputs Sabanci et al. (2017) and Shrestha et al. (2016) 
approaches perform the classification of wheat grains. Both authors 
agree that features such as color, texture, and size are ideal for 
addressing the grain classification problem. 

Also based on classical approaches, in García et al. (2019) an image 
processing plus machine learning approach is proposed to classify green 
coffee beans. The beans are classified as good or defectives (five types of 
defects), using the K-NN algorithm; previously, a feature extraction 
stage is accomplished obtaining: surface area, roundness, area relation, 
and eccentricity. These features are used to train the classifier. Vlasov 
and Fadeev (2017) also follow this approach classifying five different 
types of seeds with K-means clustering. 

In the context of classical approaches, some authors use the SVM, 
also known as a hyperplane classifier, to classify food grains. The main 
objective of this algorithm is to determine an optimal line (plane or 
hyperplane, depending on the feature space dimension) that allows 
separating two given classes (Olgun et al., 2016). However, in the case of 
performing a multiclass classification, it is necessary to build a combi-
nation of several binary classifiers; this is the case of the work presented 
by Kaur and Singh (2013) that performs the multiclass classification of 
different qualities of rice grains. 

Another approach followed by some authors in the reviewed litera-
ture is the usage of Partial Least Squares Discriminant Analysis (PLS- 
DA), which is a classification method that integrates the characteristics 
of conventional PLS regression with the discrimination benefits of a 
classification technique. The main advantage is that the relevant sources 
of data variability are modeled by the so-called latent variables, which 
are linear combinations of the original variables, and, consequently, it 
enables graphical visualization and understanding of different data 
patterns. In the reviewed literature, Sendin et al. (2018) address the 
problem of classifying defects in corn using the PLS-DA technique 
described above. This approach uses multispectral images. The same 
authors (Sendin et al., 2019), in an update to the previous work, use PLS- 
DA models to classify grains of white corn using hyperspectral images 
obtaining precision in the classification of about 98%. 

2.4.2. Deep learning based approaches 
Since the evolution of the technology, especially regarding memory 

capabilities and parallel processing of a big amount of data, deep 
learning has taken a big advantage with a variety of tasks in the com-
puter vision field. In the particular case of image recognition, for agri-
cultural problems, it is not the exception. CNNs ensure significant 
facilities by suppressing manual feature extraction, usually executed in 
classical approaches, and overcoming state-of-the-art results for such 
tasks (Altuntaş et al., 2019). Hence, in recent years new approaches have 
been proposed to tackle the grain classification problem; in this section, 
the most relevant deep learning based approaches are reviewed. 

Altuntaş et al. (2019) found a solution for automating identification 
between haploid and diploid corn seeds. Their proposal includes the 
usage of very extended networks for classification such as AlexNet, 
VGGNet, GoogLeNet, and ResNet. A transfer learning strategy is used in 
that work, which consists of fine-tuning the model starting by trans-
ferring the weights from a pre-trained network to the new one. The 
authors of that work compare the different classification architectures 
and obtain the best results with VGG-19. A similar approach to the one 
presented above has been followed by Huang et al. (2019); in this case, 
the authors propose to classify defectives corn kernels from goods, with 
defects including mold, worm, damages, and discoloration. In this work, 
GoogLeNet and VGG networks were evaluated under a transfer learning 
scheme, and the first one obtains better results. Both approaches over-
come machine learning state-of-the-art results. Finally, in Qiu et al. 
(2018), the authors also use VGGNet to speed up the learning process 
and outperforming state of the art results. 

On the contrary to previous approaches, there are some recent works 
where authors design a custom solution (e.g., Huang et al., 2019; 
Velesaca et al., 2020; Lin et al., 2018). In the case of Huang et al. (2019) 
a two convolutional layer network, with a Rectified Linear Unit (RELU) 
activation function, is proposed; this network is trained with grayscale 
images in order to make it easier to detect the shape of green coffee 
beans and their dark color. In the case of Velesaca et al. (2020), the 
authors propose a lightweight CNN architecture, referred to as CK-CNN, 
to classify corn kernels into three categories: good kernels, defective 
kernels, and impurities. The network receives as an input a single 
element from the segmentation module. It consists of five layers: three 
convolutional layers defined with a 3× 3 size kernels and two fully 
connected layers. Finally, in Lin et al. (2018) a novel architecture is 
designed with five convolutional blocks, each containing a linear oper-
ator followed by non-linearities such as RELU and max-pooling. The 
main purpose of this network is to improve the accuracy of the classi-
fication of three distinct groups of rice kernels. This simple architecture 
outperforms traditional popular hand-engineered classification algo-
rithms such as pyramid histogram of oriented gradients, K-NN, SVM, and 
mixes of them. 

2.4.3. Discussions on classification approaches 
From all the works presented above, we could conclude that deep 

Fig. 2. Timeline of segmentation approaches used in the food grain classification; this timeline shows the first time a given approach is used.  
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learning approaches are becoming the most widely used solution. 
Among the different architectures, although general purpose networks 
have been used, such as Alexnet, GoogLeNet, VGGNet, recent ad hoc 
models have been designed showing appealing results. One of the main 
advantages of such a kind of customized solution lies in the reduced 
number of parameters. The weakness of these type of classification ap-
proaches is that the architectures are designed according to the type of 
grain and the most relevant features of it, for example, the architecture 
that gives good results in the case of rice, perhaps is not the best model 
for grains such as wheat or corn. According to the recent literature, we 
could state that there is a lot of space for improvement in the classifi-
cation module of the pipeline presented in Fig. 1. Just to have everything 
in a single picture, Fig. 3 depicts the chronology of classification ap-
proaches used in the food grain classification problem; it includes the 
approaches that have been considered to solve this problem during the 
last 20 years—the first time an approach is considered it is presented in 
the chronology. 

2.5. Applications 

There are several food grain applications based on computer vision, 
in general, they can be grouped in: i) quality control approaches and ii)
grain variety classification. Some examples of each one of them are 
provided in the next subsections. 

2.5.1. Quality control 
Grain grading approaches evaluate constituent features (e.g., mois-

ture, crude protein, fiber, etc.) as well as visual features such as shape 
(including perimeter, area, elongation, among others), color, and 
texture of a given sample set of grains. Constituent measurements are 
obtained using tools and machines especially devoted to such tasks, 
while visual features are manually extracted employing trained opera-
tors. This manual process is a time consuming operation and cannot 
ensure consistency due to the difference in the operator’s evaluation 
ability. There are several works proposed in the literature to perform 
grain quality control. In Tan et al. (2016) the authors present an algo-
rithm to recognize strong and weak gluten wheat. Also focusing on grain 
quality, Birla and Chauhan (2015) propose a method for estimating the 
size of Oryza sativa L rice class along with the detection of chalky and 
broken rice. Another rice quality control application can be found in 
Kaur and Singh (2013), where the authors present a multiclass SVM 
algorithm to determine the grade of 4 types of rice kernels. There are 
also approaches in the literature for wheat grain quality control, for 
instance in Kar et al. (2019) the authors propose a CNN approach to 
evaluate wheat grains according to electronic National Agriculture 
Market parameters of India, which enforce automatic grain quality, 
using inexpensive mobile phones. 

Also related with the quality control problem, but for a given sample 
set, some approaches evaluate the sample as a whole, in other words, 
they measure the percentage of good kernels, defective kernels 
(including broken or rotten kernels), and impurities (e.g., pieces of 
straw, foreign elements, dust) in the given sample set. A review of these 
applications is found in the works proposed by Shamim et al. (2020) to 
grade rice quality, or (Singh and Chaudhury, 2020; Velesaca et al., 
2020) to classify corn according to their quality using CNN. 

2.5.2. Grain variety classification 
On the contrary to previous approaches, there are some works 

intended to classify the kernels in the given sample set according to the 
different grain varieties. Choosing which variety to grow is one of the 
most important factors in the field of the agricultural industry. To obtain 
the maximum yield, cereal varieties must be effectively identified. 
Therefore, each variety of grains must be scored based on each of the 
important characteristics, such as yield, resistance to diseases, resistance 
to fungi, and quality of the grain to select the most suitable variety. In 
Kozłowski et al. (2019) the author proposes a CNN based recognition 

system for barley varieties identification; this approach is used to ensure 
the quality of the beer. In the same line of identification of varieties of 
barley, in Szczypiński et al. (2015) an automatic computer vision system 
is proposed to efficiently classify the varieties of barley grains, using 
their attributes of color, texture, and shape, to produce high quality 
malt. About corn grains classification algorithms, Huang et al. (2016) 
propose a hyperspectral imagery system to classified seed varieties using 
an LS-SVM model. In the same way, in Xia et al. (2019), the authors 
propose a system to effectively classify 17 varieties of maize seed based 
on a multi-linear discriminant analysis model. On the other hand, in 
Berman et al. (2007), the authors present an approach that implements a 
pixel-wise algorithm to classify wheat grains of 24 different Australian 
varieties. The authors in Liu et al. (2016) and Qiu et al. (2018) propose 
approaches to classify rice variety using LS-SVM and CNN respectively. 
Similarly, in Gujjar and Siddappa (2013) the authors propose an 
approach to identify six varieties of Basmati rice; the approach is based 
on color, morphological and textural features. This subsection is just a 
summary of some of the recent approaches proposed in the literature for 
grain variety classification. 

2.5.3. Discussions on applications 
As presented above, computer vision systems have been used to 

support grain grading, sample quality estimation, variety classification, 
counting elements, just to mention a few of the approaches proposed in 
the food grain handling units. Most of the applied approaches depend on 
the type of grain that is being processed; in other words, the proposed 
approaches are not for multi-grain variety problem, neither used for 
both: grain variety estimation and quality control. It can also be 
concluded that the use of several spectra has helped to improve the 
classification techniques of multiple varieties of grains, which allows 
addressing different problems with a single implementation. It can also 
be evidenced that in the quality control of grains, techniques based on 
deep learning have taken on greater relevance given the best obtained 
results. A weakness of the reviewed applications lye in the used dataset, 
up to our understanding there is not a benchmark dataset to be used as a 
reference to evaluate and compare results of applications targeting the 
same problem. 

2.6. Grain variety 

This section reviews the state-of-the-art grain classification ap-
proaches according to the type of grain. The main food grains studied in 
this section are: corn, rice, wheat, barley, and coffee; these categories are 
defined according to the number of publications on these varieties and 
sorted according to the statistics of the most worldwide cultivated ce-
reals published by the Food and Agriculture Organization Statistical 
Database (FAOSTAT)2. Approaches able to tackle the classification of 
several varieties of grains are listed in the last subsection. Table 2 groups 
the reviewed literature according to the grain variety and depicts the 
most important features of each approach. 

2.6.1. Corn 
Corn is the cereal with the highest production worldwide, being 

fundamental in the human diet and some animal species, also has high 
genetic variability, which allows it to adapt to any climatic environment 
according to FAOSTAT. Given its high industrial use, it is important to 
improve the quality control of the corn grain. Hence, this section list a 
series of techniques focused on the automatic classification of corn 
kernels. Some of them have been able to classify up to 17 different 
classes (e.g., Xia et al., 2019; Huang et al., 2016), using hyperspectral or 
multispectral images. The analyzed techniques are mostly non-touching 
kernels (Miao et al., 2018). A few approaches have been implemented 
with CNNs (Altuntaş et al., 2019), which allows improving the 

2 http://www.fao.org/in-action/inpho/crop-compendium/cereals-grains/en. 
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classification accuracy. Like in the rice and wheat cases, in the corn 
there are approaches intended to discriminate corn grains by variety 
(Miao et al., 2018), while others are intended to classify according to the 
quality of the sample (e.g., Huang et al., 2019; Wen et al., 2018). Each 
implemented approach has its own data acquisition process, generating 
a dataset that is not available for further comparisons or improvements. 

2.6.2. Rice 
Rice is at the base of the food chain in many countries; according to 

FAOSTAT rice production represents the second-largest cereal produc-
tion after corn. To improve the process of identifying the types and 
quality of rice an automatic and accurate classification process is 
required, which is a challenging problem due to the high similarity 
between the different varieties. This subsection lists the different ap-
proaches proposed in the literature for rice classification. In the 
reviewed literature, some recent approaches for classifying rice kernels 
according to the different varieties have been proposed (e.g., Liu et al., 
2016; Wah et al., 2018), other approaches have been proposed to clas-
sify rice kernels according to their quality (e.g., Kaur and Singh, 2013; 
Liu et al., 2014), while other approaches have been devoted for both, 
classifying according to the variety and quality (Siddagangappa and 
Kulkarni, 2014). Among the different reviewed approaches, hyper-
spectral and multispectral based techniques, generally using CNNs, are 
the ones that allow classifying the greatest number of varieties or 
reaching the highest performance on quality classification (e.g., Qiu 
et al., 2018; Liu et al., 2014; Liu et al., 2016). In spite of that, the vast 
majority of techniques use images from the visible spectrum (e.g., 
Aukkapinyo et al., 2019; Tin et al., 2018; Lin et al., 2018; Singh and 
Chaudhury, 2016; Son and Thai-Nghe, 2019). Most of the approaches 
are intended for the non-touching kernel scenario, which represents an 
opportunity to explore techniques that support touching kernels. 

2.6.3. Wheat 
Wheat is the third most important grain in the human food chain 

after corn and rice. The huge volume of production needs effective 
methods to evaluate the quality of the grains, and to improve produc-
tivity in the industry. The main objective is to improve quality control 
and replace manual processes that require time, effort, and are inef-
fective in most cases. The following is just a summary of some of the 
approaches proposed in the literature for the automatic classification of 
wheat grains. During last decades several techniques have been 
designed to determine the wheat variety (e.g., Olgun et al., 2016; Douik 
and Abdellaoui, 2010; Guevara-Hernandez and Gil, 2011) or quality of 
wheat grain (e.g., Shrestha et al., 2016; Vlasov and Fadeev, 2017; 
Sabanci et al., 2017). On average, the approaches proposed in the 
literature tackle the two or three class problems. On the contrary to the 
rice classification problem we can find approaches for touching kernels 
(Shrestha et al., 2016), as well as approaches for the not touch case (e.g., 

Douik and Abdellaoui, 2010; Tan et al., 2016). In the vast majority of 
cases, the proposed solutions are based on machine learning (e.g., 
Shrestha et al., 2016; Sabanci et al., 2017). Like in most computer vision 
domains, we can find also CNN based approaches for the wheat classi-
fication (Vlasov and Fadeev, 2017), although up to our knowledge there 
is not that much work based on deep learning. Hence, this can be an 
opportunity to improve the precision of current wheat classification 
approaches. 

2.6.4. Barley 
According to FAOSTAT, barley is the fourth most cultivated cereal 

worldwide and is currently grown significantly as animal feed, malt 
products, and human food, respectively. Due to the importance of this 
cereal, it is necessary to have mechanisms that allow automating specific 
tasks within the production process to optimize the available resources 
as much as possible and increase productivity. During the last years, 
several techniques have been developed for the identification and 
classification of different varieties of barley (e.g., Paliwal et al., 2003; 
Choudhary et al., 2008; Zapotoczny et al., 2008; Douik and Abdellaoui, 
2010; Guevara-Hernandez and Gil, 2011; Mebatsion et al., 2013). In 
addition to the identification and classification topics, other authors 
address the problem of quality analysis of barley grains within the beer 
and malt brewing process (e.g., Szczypiński et al., 2015; Kozłowski et al., 
2019). On the other hand, the analysis of the barley phenotype is 
another of the topics addressed in the literature (Toda et al., 2020). In 
most of the approaches, the analyzed cluster of grains contains non- 
touching kernels, which is not a realistic scenario. In a large number 
of cases, the proposed solutions are based on machine learning although 
very few works are based on deep learning techniques (e.g., Toda et al., 
2020; Kozłowski et al., 2019), which provides an opportunity to improve 
the accuracy rate of previous works. 

2.6.5. Coffee 
The quality of coffee grains is determined by factors such as color, 

odor, texture, size, among the most important. In recent years several 
techniques have been proposed to improve the selection processes of 
coffee beans. Some of these techniques are listed below, describing their 
scope and focus. The analyzed coffee classification techniques are based 
on images of the visible spectrum (e.g., Arboleda et al., 2018; Huang 
et al., 2019). The classification discrimination in most cases is limited to 
two classes (e.g., Arboleda et al., 2018; García et al., 2019). The 
developed methods generally use traditional machine learning based 
techniques (Arboleda et al., 2018). On the contrary to the previous 
cases, in the coffee beans classification problems, all techniques tackle 
the non-touching kernel classification case (Huang et al., 2019). 

2.6.6. Others 
In addition to the approaches listed above, which were focused on 

Fig. 3. Timeline of classification approaches used in the food grain classification problem; this timeline shows the first time a given approach is used.  
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the largest production grains, there are other approaches intended to 
classify different food grains. These approaches are mainly motivated by 
quality classification. They can differentiate up to two or three classes of 
grains’ quality; some examples are the beans (Gomez et al., 2019) and 
cocoa beans (Kılıç et al., 2007) classification problems. In these cases, 
the approaches have been designed to work with untouched kernels, 
which reduces the complexity of the problem to be solved. In most of the 
cases, the proposed solutions are based on K-means clustering, SVM, and 
ANN techniques to obtain the best results. There is no comparison be-
tween the techniques because each one of them has implemented its own 
image acquisition system, generating its own datasets, which are not 
available for comparisons. 

2.6.7. Multi-variety 
In addition to the approaches presented above, which are focusing on 

grading techniques with a single variety of grains, there are some 
techniques able to tackle the classification of several varieties of grain 
with the same algorithm, such as rice, Brazilian beans called Carioca, 
chickpeas, lentils, corn, wheat, barley, among others. For instance, in 
Toda et al. (2020) the authors propose a multi-variety approach that is 
trained using synthetically generated images. Others multigrain 

Table 2 
Literature reviewed grouped by type of grain.  

Type of grain Author(s) # 
of 

Classif. Categories   

Rice Shamim et al. 
(2020) 

8 82.00 PR, RH-10, sharbati, sona 
masoori, sugandha, pusa 
basmati (1509, 1121 and 
1401)   

Singh and 
Chaudhury 
(2020) 

4 96.75 class A, class B, class C, 
class D   

Aukkapinyo 
et al. (2019) 

4 81.00 RD15, RD23, RD75, 
ML105   

Lin et al. (2018) 4 95.50 indica, japonica, 
glutinous, overall   

Qiu et al. (2018) 4 86.40 xiushui 134, zhejing 99, 
zhongjiazao 17, zhongzao 
39   

Tin et al. (2018) 5 80.00 paw san hmwe, lone thwe 
hmwe,ayeyarmin, kauk- 
nyinn-thwe,kauk-nyinn- 
pu   

Wah et al. 
(2018) 

4 92.00 class A, class B, class C, 
class D   

Liu et al. (2016) 5 94.00 FD2, QXY512, HXD3, 
QXY822, WKJ11   

Singh and 
Chaudhury 
(2016) 

4 96.00 type1, type2, type3, 
type4   

Birla and 
Chauhan (2015) 

4 93.57 normal, small, large, 
broken 

Rice Kaur and Singh 
(2015) 

5 97.21 pusa 44, PR122, PR121, 
pusa basmati (1509 and 
1121)   

Zareiforoush 
et al. (2015) 

5 89.80 very bad, bad, medium, 
good, very good   

Kambo and 
Yerpude (2014) 

4 79.00 classic basmati, rozana, 
mini, overall   

Liu et al. (2014) 2 100 non-transgenic, 
transgenic   

Sun et al. (2014) 2 98.05 indica, japonica   
Gujjar and 
Siddappa (2013) 

6 84.83 6 varieties of basmati   

Kaur and Singh 
(2013) 

4 86.00 premium, grade A, B and 
C   

Silva and 
Sonnadara 
(2013) 

9 91.55 AT307, BG250, BG358, 
BG450, BW267, W361, 
BW363, BW262, BW364   

Mousavirad 
et al. (2012) 

5 98.40 mahali, neda, gerde, fajr, 
hashemi 

Wheat Kar et al. (2019) 8 - full grain, damaged, 
weevilled, broken, 
immature/shrivelled, 
other food grains, 
inorganic and organic 
foreign matter   

Sabanci et al. 
(2017) 

2 99.00 bread, durum   

Shrestha et al. 
(2016) 

3 72.80 sound, sprout-damaged, 
severe sprout-damaged   

Olgun et al. 
(2016) 

40 88.33 wheat grain species   

Tan et al. (2016) 3 93.94 strong, medium and weak 
gluten   

Berman et al. 
(2007) 

4 95.00 sound, blackpoint- 
affected, fungal stained, 
pink stained 

Barley Toda et al. 
(2020) 

20 95.00 19 domesticated and 1 
wild barley   

Kozłowski et al. 
(2019) 

11 93.20 11 varieties of two-rowed 
barley   

Szczypiński et al. 
(2015) 

11 91.00 11 varieties of two-rowed 
barley   

Mebatsion et al. 
(2013) 

1 98.50 -   

1 99.00 -  

Table 2 (continued ) 

Type of grain Author(s) # 
of 

Classif. Categories   

Guevara- 
Hernandez and 
Gil (2011)   
Douik and 
Abdellaoui 
(2010) 

1 98.70 Tunisian barley   

Choudhary et al. 
(2008) 

1 98.60 Special select malt barley   

Zapotoczny et al. 
(2008) 

2 94.94 2 varieties of polish 
spring barley   

Paliwal et al. 
(2003) 

1 96.00 - 

Corn Chu et al. (2020) 3 100 jingKe, jingNuo, xianYu   
Velesaca et al. 
(2020) 

3 95.60 good, defective, impurity   

Altuntaş et al. 
(2019) 

2 94.22 haploid, diploids   

Huang et al. 
(2019) 

5 95.00 worm, mold, damages, 
good, discoloration   

Sendin et al. 
(2019) 

14 99.40 sound, 13 undesirable 
materials   

Xia et al. (2019) 17 99.13 17 varieties of corn   
Miao et al. 
(2018) 

8 97.5 Zhou 1, TZ 23, GCT 3, 
XXWCT, GHT, HJ 9, XT, 
SL78 

Corn Sendin et al. 
(2018) 

2 91.50 sound, defective   

Wen et al. 
(2018) 

2 - fresh, dry weights of 
seedlings   

Yin et al. (2017) 5 97.00 5 grades of moldy corn   
Huang et al. 
(2016) 

17 92.00 17 varieties of seeds   

Wen et al. 
(2015) 

2 - fresh, dry weights of 
seedlings 

Coffee Green García et al. 
(2019) 

6 90.00 high-quality, very long- 
berry; broken, sour, black 
and small defect 

Huang et al. 
(2019) 

2 93.00 good, bad 

Arboleda et al. 
(2018) 

2 100 normal, black 

Beans Kılıç et al. 
(2007) 

5 90.60 AA, BB, BC, CB, CC  

Cocoa Gomez et al. 
(2019) 

2 98.43 well-fermented, over- 
fermented  

bean Son and Thai- 
Nghe (2019) 

2 93.85 whole, broken  
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classification approaches use real images of the visible spectrum, for 
instance in (Ribeiro, 2016; Choudhary et al., 2008) machine learning 
based approaches are proposed to perform multiple grading of grains. In 
most of the cases, the implemented multi-variety techniques use 
morphological characteristics in order to differentiate the specific de-
tails of the grains and perform a better classification (e.g., Douik and 
Abdellaoui, 2010; Guevara-Hernandez and Gil, 2011; Mebatsion et al., 
2013; Paliwal et al., 2003). Although results from multi-variety ap-
proaches are interesting, they do not reach the performance of single 
variety approaches. Furthermore, in general, in the seed classification 
problem, there are not multi-variety scenarios. In other words, the 
grains come from the harvest of a single crop. 

2.6.8. Discussions on grain variety 
After reviewing the techniques that allow the classification of 

different types of grains it can be summarized that former works were 
mainly based on the analysis of color and texture features; geometry has 
been also considered in some cases. On the contrary to previous ap-
proaches, where handcrafted solutions were proposed, more recent 
techniques rely on deep learning strategies where CNNs are trained with 
a large labeled dataset. In most cases, the approaches use their own 
datasets to train and validate the techniques. Following the trend on 
deep learning based approaches, in the grain classification, there are 
some approaches based on the usage of synthetic ground truth. As 
mentioned above, this allows tackling the classification of different va-
rieties at a low cost (i.e., a large amount of ground truth data is obtained 
easily). Although not included in the pipeline presented in Fig. 1, ground 
truth data generation is reviewed in the next section. 

As specific conclusions for each grain variety, it can be stated the 
following. In the case of a rice grain, the proposed approaches have been 
migrating from classical machine learning techniques to CNNs models, 
in order to improve the efficiency of the obtained results. In the wheat 
grain classification domain, it could be observed that the use of multi-
spectral or hyperspectral images is generally used to improve class dif-
ferentiation. In the case of coffee grain approaches, the proposed 
techniques mostly use images of the visible spectrum and do not explore 
the use of CNNs. The touching kernel scenario has not yet been explored, 
which is an opportunity to tackle new problems. Additionally, exploring 
the use of multispectral or hyperspectral images to improve class dif-
ferentiation has not been yet considered. In the case of multi-grain 
techniques, although attractive results have been obtained, their per-
formance does not reach standalone single variety approaches. 

2.7. Ground truth 

Although not included in the pipeline presented in Fig. 1, ground 
truth data are an important part for both, validating results from a given 
approach as well as comparing performances from different proposals. 
In addition to these usages, ground truth data are needed to train ma-
chine learning-based approaches. In general, a large amount of tagged 
data are required for training algorithms, which becomes a laborious 
and time consuming task. A possible solution to this problem is to work 
with synthetic images, which include the necessary annotations, with 
which, there is no longer a dependency on trained human work in 
making annotations. This section reviews strategies followed in the 
literature to generate datasets, both real and synthetic, together with the 
corresponding annotations for a ground truth generation. 

2.7.1. Real data 
Most of the authors of the reviewed literature perform data acqui-

sition from scratch, at all times controlling the conditions of the envi-
ronment where the images are obtained. For example, the distance and 
location of the camera are always controlled, where most of the time the 
camera is orthogonal to the acquisition surface at a specific distance to 
view the largest amount of grains and also maintaining an adequate 
aspect ratio. Another important condition to consider was the light 

source, which generally is located on top of the working area where the 
grains were placed (e.g., Birla and Chauhan, 2015; García et al., 2019). 
There are different approaches to carry out annotation tasks of the 
ground truth, some authors use the manual labeling of the input data 
with the help of crowdsourcing tools such as Labelbox3, Voxel514, 
Lionbridge5, SuperAnnotate6, just to mention a few (e.g., Velesaca et al., 
2020; Toda et al., 2020). This way of performing data annotations is the 
most expensive method in terms of time and resources used and depends 
on the number of objects present in the scene. Hence, trying to avoid this 
time-consuming task, some authors (e.g., Aukkapinyo et al., 2019) use 
digital image processing techniques to partially automate the annotation 
process; among the different approaches proposed in the literature, 
watershed, discussed in Sec. 2.3.1, is the most used despite of the fact it 
has some drawbacks (e.g., over-segmentation, delimitation of incorrect 
contours, among others) but with controlled environmental conditions it 
is a good option to save time. 

2.7.2. Synthetic data 
In most of the approaches mentioned in previous sections, the 

ground truth has been obtained from images captured from the real 
world, as aforementioned this task requires a lot of effort and time on 
both activities: image acquisition and image annotation. Trying to 
overcome these problems some authors generate ground truth from 
synthetic images. This synthetic images are obtained from virtual en-
vironments where different grain distributions (e.g., Toda et al., 2020; 
Kar et al., 2019) may be generated. It should be noticed that the usage of 
3D grain models in virtual environments not only helps to avoid the time 
required for the acquisition and annotation but also it helps to generate 
datasets with large variability, which are required for training deep 
learning algorithms. As more complex the 3D grain model (parametric 
representation that allows changes in size, texture, and color) and vir-
tual environment (lighting conditions, camera models, etc.) as large the 
acquired dataset will be. Taking advantage of the generalization offered 
by the synthetic data acquisition framework, Toda et al. (2020) propose 
a deep learning based grain detection method to identify seeds of various 
types, for example, barley, rice, lettuce, oats, and wheat. Synthetic im-
ages acquired in a virtual environment are used to train the model; then, 
the validation stage is performed using real-world images. This model 
has been initially tested for barley grains, but given the obtained results, 
the evaluations were extended to other types of grains, thus minimizing 
the time and cost of the process of ground truth generation. 

On the other hand, Kar et al. (2019) perform the classification of 
wheat grains by using a hybrid strategy where real images are used in a 
virtual environment for training the instance segmentation architecture. 
In this case, the authors propose the usage of a synthetic cluster gener-
ator. This generator uses three different ways of distributing the wheat 
grains to form the clusters. The first approach places the kernel images, 
obtained from real scenarios, randomly; in the second approach the 
kernels are also placed randomly but enforcing a maximum overlap 
constraint; while in the last approach, the kernels are placed using a cell- 
population simulator. The resulting synthetic images are used as input to 
a U-Net architecture that performs the task of instance segmentation. 

2.7.3. Discussions on ground truth 
Generating ground truth involves spending time and resources that 

depend on the type of approach used to generate it. In the case of real 
data, the labeling time is very long since each of the images obtained in 
the acquisition stage needs to be manually labeled, as well as having 
experts in the area of the type of grain to be analyzed. On the other hand, 
and although used in a lesser proportion, the generation of synthetic 

3 labelbox.com.  
4 voxel51.com.  
5 lionbridge.ai  
6 superannotate.com. 
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data seems a better option. By using synthetic images there is no need to 
label the data neither to have an expert devoting time to this task; 
obviously, results would depend on the quality of the 3D model used to 
represent the given grain (i.e., how similar it is to the real grain), vari-
ability of such a 3D model (i.e., model parameters used to generate 
different representations based on the combination of shapes, texture, 
and color), and the virtual environment (i.e., lighting conditions, 
shadows, camera, and lens modeling, etc.) used to generate the synthetic 
images. Although considering all the advantages synthetic data seems to 
be the best option, it is also true that because it is a relatively new 
approach applied to the area of food grain problem, just a few authors 
use it. Most of the works are based on the usage of traditional techniques 
(i.e., ground truth manually annotated on real images). 

3. Conclusions 

After reviewing the whole literature different conclusions and needs 
for further work are identified. Firstly, it is clear the need for common 
benchmarks for each of the grain varieties. As presented in Section 2.6, 
each approach is evaluated with datasets collected by the authors, most 
of the time without taking into account previous works. Having common 
benchmarks for each grain variety will allow comparisons and contin-
uous improvement with new contributions. In addition to the need of 
having available benchmarks, source code available for comparisons is 
also needed. From all the reviewed papers just a couple of authors offer 
the source code of their approaches for further comparisons. 

Another conclusion on the food grain classification problem is 
related to the type of data to process, although most of the works are 
based on the usage of color images, with a few contributions using 
infrared spectrum, it seems multispectral and hyperspectral approaches 
are opening new possibilities. With the improvement in technology and 
the reduction in the cost of these sensors, it is expected that in the near 
future a large set of new cameras will be available to tackle this problem 
in a more efficient and robust way. 

Regarding the techniques used for the classification stage, as well as 
for the segmentation stage, it can be concluded that approaches based on 
deep learning are the trend. This is also supported by other applications 
in the computer vision literature, where deep learning has become the 
common framework. The results of these deep learning approaches are 
outperforming those based on classical techniques. Once again, having 
the source code available and evaluating the same dataset will be an 
opportunity to compare all these contributions in the same framework 
and identify the best option. Finally, regarding the variety of grains, it is 
clear that a lot of work has been done to classify rice, corn, and wheat, 
but the classification of other varieties of grains has also been recently 
explored, showing both the interest in the classification problem as well 
as the capabilities of the computer vision based technologies to solve it 
automatically. 

4. List of acronyms 

ANN: Artificial Neural Network; BPNN: Back Propagation Neural 
Network; CNN: Convolutional Neural Network; FAOSTAT: Food and 
Agriculture Organization Statistical Database; HSV: Hue, Saturation 
and Value; K-NN: K-Nearest Neighbor; LS-SVM: Least Square Sup-
port Vector Machine; NIR: Near Infra Red; PLS-DA: Partial Least 
Squares Discriminant Analysis; RELU: Rectified Linear Unit; RGB: 
Red, Green and Blue; SPA: Successive Projections Algorithm; SVM: 
Support Vector Machine; 
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using computer vision system and artificial neural networks. J. Food Eng. 78 (3), 
897–904. 

Komyshev, E., Genaev, M., Afonnikov, D., 2017. Evaluation of the seedcounter, a mobile 
application for grain phenotyping. Front. Plant Sci. 7, 1990. 
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