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a b s t r a c t

During the next decade, on-board pedestrian detection systems will play a key role in the challenge of
increasing traffic safety. The main target of these systems, to detect pedestrians in urban scenarios,
implies overcoming difficulties like processing outdoor scenes from a mobile platform and searching
for aspect-changing objects in cluttered environments. This makes such systems combine techniques
in the state-of-the-art Computer Vision. In this paper we present a three module system based on both
2D and 3D cues. The first module uses 3D information to estimate the road plane parameters and thus
select a coherent set of regions of interest (ROIs) to be further analyzed. The second module uses Real
AdaBoost and a combined set of Haar wavelets and edge orientation histograms to classify the incoming
ROIs as pedestrian or non-pedestrian. The final module loops again with the 3D cue in order to verify the
classified ROIs and with the 2D in order to refine the final results. According to the results, the integration
of the proposed techniques gives rise to a promising system.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, traffic accidents represent one of the major causes of
death worldwide. According to the World Health Organization,
everyday 3000 people die as a result of a road accident [1]. Con-
cretely, in the vehicle-to-pedestrian accidents case the Economic
Commission for Europe reported almost 150,000 injuries and
7000 killed pedestrians only in the European Union in 2003, repre-
senting the second source of fatalities just after vehicle-to-vehicle
accidents [2]. However, contrary to the socially accepted view of
traffic accidents as a random and unpredictable consequence of
road transportation, these fatalities can be tackled by prevention
and sensible measures. As a result, in the last decades such a prob-
lem is gaining more attention from both governments and indus-
try, which invest big efforts in traffic safety research.

In last decade, in addition to the improvements in the road
infrastructures (e.g., visibility enhancements, roundabouts, speed
controls, better signposting, etc.), a new area of research has re-
ceived a special focus: the Advanced Driver Assistance Systems
(ADAS). ADAS are intelligent on-board systems that aim at antic-
ipating and preventing accidents, or at least, minimizing their ef-
fects when unavoidable. Examples of ADAS are the Adaptive
Cruise Control, which adjusts the own vehicle speed in order to
keep a safe gap with the preceding vehicle, or the Lane Departure
Warning, which warns the driver in case that the vehicle leaves the
ll rights reserved.
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lane inadvertently. One of the most complex ADAS applications are
the Pedestrian Protection Systems (PPSs), focus of this paper. In
this case, the aim is to detect and localize static or moving people
in a defined area in front of the vehicle in order both to provide
information to the driver and to perform evasive or braking ac-
tions. Fig. 1 illustrates the typical risky areas to be tackled by a
PPS. In regular conditions, the vehicle stopping distance is about
5 m at 30 km/h , increasing up to 12 m at 50 km/h, thus the sys-
tems must intelligently focus their techniques on the danger of
detecting a pedestrian in these areas.

Computer Vision, by the use of passive sensors like cameras,
plays a key role in most of these systems. For instance, cameras
are used in PPSs in order to detect the traffic objects of interest
(i.e., pedestrians) taking advantage of their rich amount of cues
and high resolution. The topics involved in ADAS are in the frontier
of the state-of-the-art since they require real-time interpretation
of outdoor scenarios (uncontrolled illumination) from a mobile
platform (fast background changes and presence of objects of un-
known movement). Furthermore, in the PPSs context, pedestrian
detection is even more challenging due to the high variability of
their appearance (i.e., different articulated pose, clothes, distance
and viewpoint) and the cluttered scenarios usually found in urban
environments. It is worth to mention that the moving nature of
ADAS makes some well-established techniques from other human
detection areas, like background subtraction methods for surveil-
lance, not applicable in our case.

In this paper we present a pedestrian detection system that
makes use of Computer Vision cues, specially taking advantage of
3D information to enrich the classification, which is typically based
on 2D. The system is divided in three steps. First, 3D data
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Fig. 1. The different areas of risk when driving. High risk area, in red, corresponds to a big danger of collision with pedestrians, always depending on the speed of the vehicle.
Pedestrians in the medium risk area, in yellow, are likely to cross the front road, so typically no imminent is expected but the system must be aware of them. The low risk area,
in green, contains pedestrians with no danger of imminent collision but that must be detected in advance since they stand in the vehicle’s path. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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computed from a stereo rig are used to estimate the road pose,
which is needed to adjust pedestrian sized windows in 3D. These
windows, regions of interest (ROIs from now on), are then pro-
jected onto the 2D image plane where they are labeled as pedestri-
ans or non-pedestrians by our proposed classifier: Real AdaBoost
learning algorithm with Haar wavelets (HW) and edge orientation
histogram (EOH) features. The final stage of the system verifies
each positive labeled ROI by checking its 3D position and size. A fi-
nal refinement stage is used to group overlapped redundant detec-
tions in 2D.

The remainder of this paper is as follows. After overviewing the
related research in Section 2, an introduction to the proposed sys-
tem is described in Section 3, fitting it to a general PPS architecture
presented in [3]. Then, the modules of the current system, which
make use of the aforementioned techniques, are placed in this
architecture context. The first module, described in Section 4,
makes use of the 3D-based adaptive image sampling technique.
Section 5 presents the 2D classification module. Section 6 presents
the last module, consisting of the 3D verification and the final 2D
detections grouping. Finally, Section 7 presents experimental re-
sults of each of the three modules and of the whole system. Con-
clusions are summarized in Section 8.
2. Related research

By having a look at the literature [3] it is seen that most of the
systems are based on feature selection and machine learning to
perform 2D pedestrian classification. Some examples are the sym-
metry and binary template based approach by Broggi et al. [4],
SVM on gradient images approach by Grubb et al. [5], the hierar-
chical template matching (Chamfer System) and neural networks
by Gavrila et al. [6] or the parts-based SVM and AdaBoost approach
by Shashua et al. [7]. In fact, PPSs can take advantage from a grow-
ing number of general people detection approaches proposed in re-
cent years. For instance, Dalal and Triggs [8] propose histograms of
oriented gradients (HOG) features and SVM. In [9], Leibe et al. per-
form the detection in two steps. First, image patches are extracted
around difference of Gaussians keypoints [10]. Then, these patches
are matched to a pedestrian model, which provides their spatial
distribution, later used to cast votes to an hypotheses map. Finally,
these hypotheses are verified and refined using template matching
inspired in [6]. Tuzel et al. [11] base their classifier on the covari-
ance of different measures (position, first and second order deriv-
atives, gradient module, gradient orientation) in subwindows as
features and boosting using Riemannian manifolds. Wu et al. [12]
propose a parts-based scheme consisting of four body parts and
three view categories to train a boosting-like classifier. They use
short edge segments as features. Felzenszwalb et al. [13] use
HOG and SVM in a parts-based approach, too. In this case, six dif-
ferent dynamic parts (not constrained to a fixed position in the
hypothesis) are used.

Given that these methods are based on processing 2D images, a
simple way of applying them is to classify windows of all the pos-
sible positions and sizes in the incoming image, which is often re-
ferred to as exhaustive window scanning (Fig. 3a). However,
although widely used in general human detection approaches
[14,8], this procedure not only is too expensive in terms of compu-
tational time (millions of windows should be classified) but also
potentially increases the number of false positives by providing
not relevant ROIs (e.g., sky areas). As a result, prior knowledge of
the scene is generally considered to reduce this large amount of
windows. For instance, since the system looks for pedestrians, only
windows on the road surface should be taken into account for clas-
sification. Hence, an intuitive technique often used in ADAS litera-
ture is to fix an image row corresponding to the horizon and then
assume that all pixels below this row belong to the road surface. As
a result, a window laying on each pixel can be generated according
to some mean pedestrian size constraints and the geometry of im-
age formation. This approach, used by Gavrila et al. [6], has an im-
plicit assumption: the relative position and orientation between
the camera and the road do not change, i.e., the horizon line row
is defined for the first frame and kept constant through the whole
video sequence. They refer to this constraint as flat world assump-
tion. However, due to vehicle movement, road slope and even road
surface irregularities, there are many cases where such assumption
is not fulfilled, specially in urban scenarios. Therefore, in order to
compensate camera changes, many possible different windows
per pixel should be considered, which would translate again in a
very high processing time and potential false positives.

Some strategies to avoid the flat world assumption have been
proposed. For instance, Soga et al. [15] propose a dense stereo
based candidate window selection step that avoids an exhaustive
searching of the whole image. Candidate windows are defined in
those regions that contain solid objects (i.e., vertical surfaces) with
a height in between 70 cm and 250 cm. Broggi et al. [16] propose
first to identify vertical objects using a kind of v-disparity image
[17] obtained from a stereo head. Then, further classification stages
are focused only on those vertical objects.

Some systems propose a further step to reinforce detections.
Gavrila et al. [6] make use of a disparity consistency test from a cal-
ibrated stereo rig to validate silhouette-based hypotheses. Ess et al.
[18] propose a multi-frame scheme that jointly estimates scene
geometry and verifies hypotheses by using a graphical model. In-
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stead of using a dense depth map, Leibe et al. [19] propose a real
time Structure from Motion (SFM) based geometry estimation for
continually estimating the camera pose and scene’s ground plane
at every frame. In this case this online calibration is not used for
reducing searching space but for refining each hypothesis (de-
tected pedestrian) under a 3D location prior. Main challenge on
SFM-based scene geometry estimation approaches lies on a robust
feature point extraction and matching, in particular when the
scene contains large amount of moving object.

3. 2D–3D system

The literature overview leads us to two important points, which
are taken as keypoints for the current proposal. First, it is difficult
to think of a perfect classifier just using 2D cues, thus we bet for
combining it with 3D information. Second, a common methodol-
ogy can be inferred from such proposals when tackling the devel-
opment of a PPS. In fact, in a recent survey, Gerónimo et al. [3]
propose a general architecture for ADAS pedestrian detection. It
consists of six modules in which a complete system can be divided.
The name and target of all the modules is described next:

� Preprocessing: It is the very first computation made with the
image, aimed at preparing it for further processing. An example
of preprocessing is to perform distortion rectification or contrast
adjusting.

� Foreground segmentation: It extracts ROIs to be sent to the clas-
sification module. The key is to avoid as many background ROIs
as possible but not discarding the ones containing pedestrians
(Section 4).

� Object classification: It labels the selected ROIs as pedestrians or
non-pedestrians (Section 5).

� Verification and refinement: It provides additional checks for the
ROIs classified as pedestrians. It is focused on filtering false pos-
itives by using criteria not overlapped with the object classifica-
tion ones (Section 6).

� Tracking: It follows pedestrians along time both to filter out spu-
rious detections and predict their future position and direction.

� Application: It consists of all the high level warnings and actions
taken by making use of the information of the previous modules.
Some examples are acoustic warnings, automatic deployment of
airbags or automatic braking.
Fig. 2. The three core modules
In the current proposal we focus on three modules, that we
understand as the core ones for a PPS: foreground segmentation,
object classification and verification/refinement. Next sections de-
scribe the proposed solutions within the framework of these three
modules as the scheme in Fig. 2 introduces.

In the current work, the richness of stereo vision information is
first exploited in a foreground segmentation module according to
the following scheme. Initially, it is used to automatically compute
current horizon line without assuming a predefined set of con-
strains such as those used by monocular based systems. The under-
lying methodology is to fit a surface to 3D road data. Hence, since
3D data are referred to camera coordinate system, the camera po-
sition and orientation related to the fitted surface are easily ob-
tained. Nedevschi et al. [20] propose to fit a clothoid model of
the road surface using a lateral projection of the 3D points. A sim-
ilar approach is presented by Danescu et al. [21] in the context of
guardrails and fences detection. Both approaches are intended for
extracting 3D points above the road, which are later on clustered
into objects. In both cases all the processing is performed using
only stereo vision information. The main drawback of these ap-
proaches lies on the use of edge points mainly coming from the
road lane markings; hence they become useless in those areas
where lanes are not well defined as often happens in urban scenar-
ios, which are natural ones for pedestrian detection applications. A
different approach was presented by Sappa et al. [22]. Although it
uses a simple planar model of the road surface, it has been shown
useful to cope with uphill/downhill driving, as well as dynamic
pitching of the vehicle. In the current paper, a new approach based
on 3D data provided by a stereo vision system is presented. It fits a
plane to the 3D data points and places uniformly distributed pe-
destrian sized windows on the estimated road surface. With this
adaptive image sampling, the amount of 2D ROIs to classify is re-
duced in three orders of magnitude, i.e., from millions to thousands
(Fig. 3b). Notice that the road estimation technique could also ben-
efit other ADAS functionalities (e.g., vehicle detection and road
segmentation).

Once the reduced ROI set is selected, the classifier is aimed at
labeling the selected ROIs as pedestrians or non-pedestrians. In
this paper we propose to use a combination of Haar wavelets
(HW) and edge orientation histograms (EOH) as features and Real
AdaBoost as learning machine to provide a linear classifier. These
simple and fast-to-compute features, together with the fast and
of the system architecture.



Fig. 3. (a) Exhaustive scan, showing just 0.1% of the total ROIs. (b) Adaptive image
sampling, showing only 10% of the ROIs.

Fig. 4. (a) Front view of the camera setup. (b) Snapshot of the 3D data points
obtained with the forward-facing stereo rig (notice that the image contains a large
amount of holes due to occlusions and homogeneity in the image texture). (c)
Desired sparse sampling: ROIs size in the 2D image space is automatically defined
by the corresponding depth and the average pedestrian size.
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effective classifier represent a very convenient option given the
computational time restrictions of the problem. We show that this
classifier can improve the results of the people classification ap-
proach proposed by Dalal et al. [8], which up to our knowledge rep-
resents the state-of-the-art in human classification.

Finally, after the 2D based classification stage, stereo informa-
tion is used again but this time for verifying results obtained with
the classifier when possible. In this case, aiming at discarding as
many false positives as possible, it is checked that the 3D values
of the detected object in each positive ROI match the expected val-
ues to the ROI position and size. A final refinement stage groups
the overlapped redundant 2D detections by using the mean-shift
mode selection method proposed in [23] in order to provide one
single detection per pedestrian in the scene.

This novel and more elaborated strategy of combining 2D/3D
information results on a robust approach in the sense that every
stage is implemented being aware of limitations of 2D/3D data.
Hence, 3D is initially used for scene geometry estimation avoiding
common problems related with poor stereo data. Then, pedestrians
are detected by means of an efficient 2D classification over a re-
duced set of ROIs. Finally, 3D information is used for validating ob-
tained results, and at the same time for clustering redundant 2D
detections. The aim of this stage is to provide refined detections
to the tracking module, not included in the current system, which
would make use of temporal coherence to feed tracked detections
to the application level.
4. Adaptive image sampling

The main target at this stage is to define a set of ROIs, by a uni-
form sampling of the road surface that results in an adaptive sam-
pling of the image plane (Fig. 4c). It works by fitting a plane to the
road surface using a RANSAC based least squares fitting.

In order to acquire the 3D information of the region in front of
the host vehicle (Fig. 4b), a commercial stereo vision system (Bum-
blebee from Point Grey (http://www.ptgrey.com) has been used
(Fig. 4a). The baseline of the stereo head is 12 cm and it is con-
nected to the computer by a IEEE-1394 interface. Right and left col-
or1 images were captured at 5 fps at a resolution of 640 � 480
pixels. Camera control parameters were set to automatic mode to
compensate global changes in the light intensity. After capturing
these right and left images, 3D data were computed by using the
provided 3D reconstruction software.
1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
The camera focal length, 6 mm, provides a horizontal field of
view (HFOV) of 43�, and a vertical of 32.97�, which allows to detect
pedestrians at a minimum distance of 5 m. The aforementioned
reconstruction software provides 3D information until 50 m, which
fits our requirements as seen in Fig. 1.

A world coordinate system ðXW ;YW ; ZWÞ is defined for every ac-
quired stereo image, in such a way that: the XW ZW plane is con-
tained in the current road fitted plane, just under the camera
coordinate system ðXC ;YC ; ZCÞ; the YW axis contains the origin of
the camera coordinate system; the XW YW plane contains the XC

axis and the ZW YW plane contains the ZC axis. Due to that, the six
extrinsic parameters (three for the position and three orientation
angles) that refer the camera coordinate system to the world coor-
dinate system reduce to just three, denoted in the following as
ðP;U;HÞ (i.e., camera height, roll and pitch). Fig. 5 illustrates the
world and camera coordinate systems.

From the ðP;U;HÞ parameters, in most situations the value of U
(roll) is very close to zero. This condition is fulfilled as a result of a
specific camera mounting procedure that fixes U at rest and because
in normal urban driving situations this value scarcely varies [24].

The proposed approach presents a new method that, although
similar in philosophy to the one presented in [22], reduces process-
ing time by more than four. It consists of two stages : (i) 3D data
point projection and cell selection and (ii) road plane fitting and
ROIs setting. Both stages are detailed below.
4.1. 3D data point projection and cell selection

Let Dðr; cÞ be a depth map provided by the stereo pair with R
rows and C columns, where each array element ðr; cÞ, is a scalar
that represents a scene point of coordinates ðxC ; yC ; zCÞ, referred
to the camera coordinate system (Fig. 5). The aim at this first stage
is to find a compact subset of points, f, containing most of the road
points. To speed up the whole algorithm, most of the processing at
this stage is performed over a 2D space. Initially, 3D data points are
mapped onto cells in the ðYCZCÞ plane, resulting in a 2D discrete
representation wðo; qÞ; where o ¼ bDYðr; cÞ � rc and q ¼ bDZðr; cÞ�
rc;r representing a scale factor that controls the size of the bins
according to the current depth map (Fig. 6). The scaling factor is
aimed at reducing the projection dimensions in respect to the
whole 3D data in order to both speed up the plane fitting algorithm
and be robust to noise. It is defined as: r ¼ ððRþ CÞ=2Þ=
ðDX þ DY þ DZÞ=3Þ; ðDX;DY;DZÞ is the working range in 3D space.
Every cell of wðo; qÞ keeps a reference to the original 3D data points
projected onto that position, as well as a counter with the number
of mapped points.

http://www.ptgrey.com
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From that 2D representation one cell per column (i.e., in the Y-
axis) is selected relying on the assumption that the road surface is
the predominant geometry in the given scene. Hence, it picks the
cell with the largest number of points in each column of the 2D
projection. Finally, every selected cell is represented by the 2D

barycenter 0;
Pn

i¼0yCi

� �.
n;
Pn

i¼0zCi

� ��
n

� �
of its n mapped points.

The set of these barycenters defines a compact representation of
the selected subset of points, f. Using both one single point per se-
lected cell and a 2D representation, a considerable reduction in the
CPU time is reached during the road plane fitting stage.
4.2. Road plane fitting and ROIs setting

The outcome of the previous stage is a compact subset of points,
f, where most of them belong to the road. As stated in the previous
subsection, U (roll) is assumed to be zero, hence the projection is
expected to contain a dominant 2D line corresponding to the road
together with noise coming from the objects in the scene.

The plane fitting stage consists of two steps. The first one is 2D
straight line parametrisation, which selects the dominant line cor-
responding to the road. It uses a RANSAC based [25] fitting applied
over 2D barycenters intended for removing outlier cells. The sec-
ond step computes plane parameters by means of a least squares
fitting over all 3D data points contained into inlier cells and finally
places a set of ROIs uniformly distributed over the fitted plane.
Both steps are described next.

Initially, every selected cell is associated with a value that takes
into account the amount of points mapped onto that position. This
Fig. 6. YZ projection and r

ZC
XC

YC

YW

XW

ZW

Camera
height

Pitch

Roll

Fig. 5. Camera coordinate system ðXC ;YC ; ZCÞ and world coordinate system
ðXW ; YW ; ZW Þ.
value will be considered as a probability density function. The nor-
malized probability density function is defined as follows:
pdfi ¼ ni=N; where ni represents the number of points mapped
onto the cell i and N represents the total amount of points con-
tained in the selected cells.

Next, a cumulative distribution function, Fj, is defined as:
Fj ¼

Pj
i¼0pdfi; If the values of F are randomly sampled at n points,

the application of the inverse function F�1 to those points leads to a
set of n points that are adaptively distributed according to pdfi.

4.2.1. Dominant 2D straight line parametrisation
At the first step a RANSAC based approach is applied to find the

largest set of cells that fit a straight line, within a user defined
band. In order to speed up the process, a predefined threshold va-
lue for inliers/outliers detection has been defined (a band of
±10 cm was enough for taking into account both data point accu-
racy and road planarity); an automatic threshold could be com-
puted for inliers/outliers detection, following robust estimation
of standard deviation of residual errors [26]. However, it will in-
crease CPU time since robust estimation of standard deviation in-
volves computationally expensive algorithms (e.g., sorting
functions).

Repeat the following three steps L times (e.g., L = 80)

(1) Draw a random subsample of two different barycenter
points ðP1; P2Þ according to the probability density function
pdfi using the above process.

(2) For this subsample, indexed by l ðl ¼ 1; . . . ; LÞ, compute the
straight line parameters ða; bÞl,

(3) For this solution, compute the number of inliers among the
entire set of barycenter points contained in f, as mentioned
above using a ±10 cm margin.

4.2.2. Road plane parametrisation and ROIs setting
At the second step plane parameters are computed by using all

3D data points contained into inlier cells (Fig. 6).

(1) From the previous 2D straight line parametrisation choose
the solution that has the highest number of inliers.

(2) Compute ða; b; cÞi plane parameters by using the whole set of
3D points contained in the cells considered as inliers, instead
of the corresponding barycenters. To this end, the least
squares fitting approach [27], which minimizes the square
residual error ð1� axC � byC � czCÞ2 is used.
oad plane estimation.
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(3) In case the number of inliers is smaller than 40% of the total
amount of points contained in f (e.g., severe occlusion of the
road by other vehicles), those plane parameters are dis-
carded and the ones corresponding to the previous frame
are used as the correct ones.

Finally, by using the fitted plane parameters, a set of ROIs
sampling the whole road plane is defined. The ROIs are rectangu-
lar boxes orthogonal to the ðXW ; ZWÞ plane with their shortest
edge parallel to the XW axis. These ROIs are placed every 0.5 m,
in both XW and ZW axes (see points in Fig. 4b). Actually, in order
to cope with the different pedestrian dimensions, for every dot in
that grid a set of five ROIs with the following width and height
(in meters) is defined: fð0:75� 1:5Þ; ð0:80� 1:6Þ; ð0:85� 1:7Þ;
ð0:90� 1:8Þ; ð0:95� 1:9Þg. These ROIs, around 2000 in total, are
projected to the 2D image plane to be classified in the next stage.
The projection process consists in computing the four corner
coordinates ðv i;uiÞ of each 2D ROI as: v i ¼ v0 � fyCi

=zCi
;

ui ¼ u0 � fxCi
=zCi

; where f is the focal length in pixels, ðv0;u0Þ
are the coordinates of the principal point and ðxCi

; yCi
; zCi
Þ are

the corner coordinates of the given ROI in the 3D camera coordi-
nate system. Then, each ROI can be represented in the image as
ðvR;uR;wR;hRÞ, where ðvR;uRÞ are the left-bottom coordinates
and ðwR;hRÞ the width and height.
5. ROI classification

Once the list of ROIs laying on the ground has been generated,
this stage is aimed at labeling them as pedestrians or non-pedestri-
ans, now by using just one of the cameras. Generally, in PPSs, ob-
ject classification approaches can be broadly divided into two
categories: silhouette matching and appearance based. The papers
laying in the former one (e.g., head-and-shoulders binary silhou-
ette [4] or the Chamfer System [6]) have been proven not to be ro-
bust enough to carry out the classification task. Thus, appearance
based methods must be attached to improve robustness. Some
examples of appearance based methods [8,9,6,11–13] have been
described in Section 2.

In the current proposal we exploit an appearance based method
by making use of a combination of two simple and fast-to-compute
sets of features. They are scale and contrast invariant features
which are efficiently computed thanks to the integral image repre-
sentation. Due to the big number of features to learn, among all the
possible learning algorithms, Real AdaBoost [28], a well-known
fast and robust machine learning algorithm, is used to train the
model with simultaneous feature selection. In our case, Real
AdaBoost provides a linear combination of threshold-based weak
classifiers. These ingredients are specially suitable for such a time
and robustness demanding system. Next, these components are
described in detail.
Filter configuratio

R

(x,y)

w

h

(a) (b)

Fig. 7. Computation of Haar wavelet features: (a) Haar feature placed in a sample image;
size.
5.1. Feature sets

Although a recent paper [8] presents poor results with Haar
wavelets (HW) for human detection when used in a single scale
basis, they still represent a very fast and efficient approach when
using the original formulation [14], i.e., using overcomplete
dictionary (overlapped filters) over multiple scales. Moreover,
in this paper we combine these features with edge orientation
histograms (EOH), which provide complementary information
by capturing geometric properties that are difficult to extract
with HW. For instance, it is difficult for HW to represent the ori-
entation of pedestrian legs whilst EOH are specially suitable for
this case.

5.1.1. Haar wavelets
HW are widely used in other object detection systems [14,29]. A

feature of this set is defined by a filter that computes the gray level
difference between two defined areas (white and black; Fig. 7a):

FilterHaarðx; y;w; h; type;RÞ ¼ EwhiteðRÞ � EblackðRÞ; ð1Þ

where x; y is the bottom-left position of the given filter in the ROI R;
w; h represent its width and height; type is one of the filter config-
urations listed in Fig. 7b, and EareaðRÞ is the sum of the pixels inten-
sity in the filter region area.

Due to the perspective, the size of ROIs to be classified can vary
significantly. Hence, some kind of size normalization is required to
establish equivalence between features in the different ROIs. Some
authors propose to resize all the ROIs to some standard dimensions
(e.g., 64 � 128 in [8]) and then compute features using the rescaled
window. This procedure, however, would result in too small win-
dows when used in ADAS applications, i.e., the smallest ROIs hardly
measure 30 pixels high. Therefore, in this proposal, ROIs are not re-
sized since this would result in a big information loss. Instead, fea-
ture position and dimensions are calculated according to a
canonical window (in our case, 12 � 24 pixels, which corresponds
to a ROI at 50 m), but mapped to the original ROI dimensions when
computing their value, thus not losing resolution (Fig. 7c). In addi-
tion, thanks to the use of the integral image representation [29],
the time required to compute features is constant, independently
of the size.

5.1.2. Edge orientation histograms
EOH are proposed by Levi and Weiss for face detection in [30].

They rely on the richness of edge information, so they differ from
the intensity area differences of Haar wavelets. In this case, the fea-
tures are illumination invariant by themselves since gradient ori-
entations do not change, as long as lighting changes in the image
are monotonic.

First, the gradient image is computed by a Sobel mask convolu-
tion (contrary to the original paper, no edge-thresholding is ap-
plied in our case). Then, gradient pixels are distributed into K
ns Incoming windowCanonical window

12×24
60×120

3×3 pixels 15×15 pixels

(c)

(b) some filter configurations; (c) filter normalization according to the incoming ROI



Fig. 8. Computation of edge orientation histograms. The feature can be viewed as the ratio of two orientations.
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images (in our case we have tested K ¼ f4;6;9g) corresponding to
K orientation ranges (also referred as bins). Therefore, a pixel in bin
kn 2 K contains its gradient magnitude if its orientation is inside
kn’s range, otherwise is null. Integral images are now used to store
the accumulation image of each of the edge bins. At this stage, we
improve the original Levi’s algorithm by adding a bin interpolation
step that distributes the gradient value into adjacent bins. This step
is used in SIFT [10] and HOG [8] features, and in our case it im-
proves the performance of the original EOH formulation in a 1%
Detection Rate (DR) at a 1% False Positive Rate (FPR). Finally, the
feature value is defined as the relation between two orientations,
k1 and k2, of the filter in ROI R as:

FilterEOHðx; y;w;h; k1; k2;RÞ ¼
Ek1
ðRÞ þ e

Ek2 ðRÞ þ e
: ð2Þ

If this value is above a given threshold, it can be said that orien-
tation k1 is dominant to orientation k2 in the subregion of R defined
by ðx; y;w;hÞ. The small value e is added to the factors for smooth-
ing purposes. Fig. 8 illustrates the previous process.

5.2. Learning algorithm

From the many available options in the literature, the learning
algorithm to choose must fulfill the following two requirements.
First, given that the set of features is large (over 120,000), it must
be able to select a representative subset in an effective manner.
Second, the computation in testing time must be low according
to the requirements of the application. As a result, Real AdaBoost
[28] has been chosen.

6. 3D verification and ROI grouping

Although the classification module provides satisfactory results
when classifying state-of-the-art pedestrian databases as illus-
trated in Section 7, the number of false positives (FP) is still high
to fulfill the requirements of ADAS. In addition, as a result of road
sampling technique and a desired shift tolerance of the classifier, a
number of overlapped ROIs containing a pedestrian are expected to
be labeled as positive. Hence, two requirements are expected to be
fulfilled by this module: to discard most of the false positives with-
out discarding true positives and to provide one single detection
window per pedestrian in the scene. Consequently, this module
is divided into two stages. The first one, verification, aims at filter-
ing out the false positives received as a result of 2D misclassifi-
cation. Thus, the filtering is based on 3D information. The second,
refinement, groups overlapped detected windows by using a 2D
approach with the aim of providing one single detection per target.

We propose to first perform the 3D verification and the cluster-
ing, thus the algorithm is based on the original selected regions
and then refinement is done just on the correct ROIs. Otherwise,
if refinement came first, the verification could provide innaccurate
results since it would be based on windows grouping both true and
false positive ROIs, which would be useless.

6.1. 3D verification

The ROI verification is based on the fact that the 3D data corre-
sponding to the image pixels contained in a 2D ROI should be con-
sistent with the 3D ROI position and that the ROI content fulfills
the pedestrian size constraints. The algorithm is divided into the
following steps:

(1) Fill in points that lack of 3D information (due to occlusions
or poor texture and illumination) by weighted interpolation
with the pixel neighborhood (Fig. 9b). The filling does not
provide any improvement by itself but it is mandatory for
the next processing step.

(2) Apply a region growing algorithm using a single seed in the
center of the ROI and depth as grouping criterion (Fig. 9c).

(3) Finally, a ROI is verified as a pedestrian if the dimensions of
the contained object are similar to the ones of a standard
pedestrian, and if the computed object depth (z) matches
the defined depth of the ROI (Fig. 9d–f). Formally, this trans-
lates into fulfilling the following three constraints:

jhS � ehj < �h þ e; ð3Þ
jwS � ewj < �w þ e; ð4Þ

jdS � edj 6 �d; ð5Þ

where hS; wS; dS are the silhouette height, width and depth to the
camera; eh; ew; ed are the height, width and depth of a standard pe-
destrian in the given ROI; �h; �w; �d are the maximum allowed er-
rors for the previous parameters; and e is the error of the stereo
computation, which exponentially increases according to the dis-
tance to the camera. All these parameters were either set by using
standard dimensions (a pedestrian is about 1.70 m height) or man-
ually tuned according to quantitative evaluations (e.g., the error
margins in distance and dimensions).

6.2. ROI grouping

Once the ROIs are verified they are referred as detections. The
refinement process is aimed at grouping multiple overlapped
detections that contain only one pedestrian.

In this case, the non-maxima suppression algorithm proposed
by Dalal in [23] is used. The algorithm first represents the set of
detections as a kernel density estimate [31] and then searches
for the local modes using mean shift [32]. First, a hard clipping
function [23] discards detections with small confidence (in our
case, lower than 3). Then, mean shift is iteratively computed for
each detection until each one converges to a mode (Fig. 10c). As
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Fig. 10. Detections grouping. (a) Verified ROIs containing a pedestrian. (b) and (c) Mapping of detections to s ¼ ½v ;u; s� space, mean-shift algorithm selects the mode of the
detections and selection of the nearest detection to the mode in s space. (d) The verified ROIs which overlap are grouped to provide a single detection window.
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a result, the overlapped detections containing the same pedestrian
should be represented by the same mode, i.e., each mode is a final
detection (Fig. 10d).
Fig. 11. Horizon line variation along a short video sequence. (a) Plot displaying for each
annotated horizon line position (gray-shaded area), together with the horizon line est
respectively the annotated and the estimated horizon line position in some selected f
provided by the proposed approach (dashed line) is always within the confidence regio
Final detections contain a label indicating the distance to the
pedestrian in the final detection, which is computed by averaging
the distance of the pixels in the segmented silhouette.
frame the estimated velocity (top-most plot), and the 95% confidence region of the
imated by the proposed method (solid line). Labeled squares and circles highlight
rames. These frames are displayed next ((b)–(d)) to illustrate that the estimation
n (brighter image region).



Fig. 12. Estimated horizon line (white line) in frames acquired in a narrow urban road. The robustness of the proposed technique can be qualitatively appreciated, in spite of
the car-cluttered street.
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Fig. 13. Comparisons between horizon lines computed with the proposed tech-
nique and with a previous approach presented in [22].

Fig. 14. Some positive samples of the database illustrating the high variability in
terms of clothes, pose, illumination, background, and sizes. The size in the image (in
pixels) and the approximate distance to the camera is noted below each sample.
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7. Experimental results

As in any complex system, the obtained final result will depend
on the success of every single component. In this section, the per-
formance of each module is evaluated. Then, some final detection
images illustrate the whole system results. A 3.2 GHz Pentium IV
PC with a non-optimized code has been used.

7.1. Adaptive image sampling performance

In this section the performance of the proposed approach is
studied by using several stereo video sequences. Final results will
depend on the one hand on the accuracy of the estimated camera
position and orientation, referred to the world coordinate system;
and on the other hand on the accuracy of the fitted plane. For this
reason, an initial validation procedure of the camera position and
orientation technique is proposed. This validation procedure mea-
sures the quality of obtained results by representing them as a sin-
gle value: the horizon line. The horizon line position ðv iÞ for a given
frame i is computed by back-projecting into the image plane a
point, PiðxCi

; yCi
; zCi
Þ, lying over the fitted plane, far away from the

camera coordinate system. Let yCi
¼ ð1� czCi

Þ=b be the yC coordi-
nate of Pi by assuming xCi

¼ 0. The corresponding yCi
back-projec-

tion into the image plane, which defines the row position of the
sought horizon line, is obtained as v i ¼ v0 þ fyCi

=zCi
¼ v0þ

f=zCi
b� fc=b; where v0 represents the vertical coordinate of the

principal point; and zCi
is the depth value of Pi. As mentioned

above, since the point is far away from the camera ðzCi
!1Þ, the

horizon line is finally computed as v i ¼ v0 � fc=b. The automati-
cally computed horizon line position is compared with a value
manually annotated by nine different users. Users were asked to
locate a vanishing point in every frame, taking advantage of paral-
lel structures observed on the road region neighboring the vehicle
holding the camera (mainly lane borders and lane markings). From
the collected annotation, the Gaussian distribution of the most
likely horizon line location at each frame was considered.

Fig. 11 shows a short video sequence, where the host vehicle
performs quite sudden changes on its velocity on a quite flat road.
Fig. 11a depicts both: ðtopÞ the estimated vehicle velocity at each
frame; ðbottomÞ the ground truth confidence region of the anno-
tated horizon line and the horizon location computed with the pro-
posed technique. The information plotted in this second graphic is
represented graphically in three frames of this short video se-
quence, in order to provide a better understanding of the method
performance. It is clearly observed that the image row coordinate
of the horizon line increases notably when the vehicle accelerates,
decreasing more abruptly in the decelerations due to the behavior
of the vehicle suspension system. This sequence also shows hori-
zon line variations due to a change in the road pavement (around
frame 50), and to the crossing of roads with different slopes (final
frames). The major difference between the algorithm output and
the ground truth annotation, around frame 80, corresponds to
the quality of 3D road points provided by the acquisition system,
which are notably sparse and noisy (due to the road homogeneity
observed in these frames, very few road points can be reliably
matched in the images of the acquired stereo pair), causing a less
precise plane characterization. However, the difference on the
horizon line location is less than 10 pixels. In general (90% of the
processed frames) this horizon line location error is smaller than
or equal to 4 pixels, which is a remarkable performance.

Robust location of horizon line in narrow urban scenarios can
be appreciated in Fig. 12. The proposed approach works even in
those frames where the image regions corresponding to the road
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HOG features (the best one is marked with a star).
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is notably smaller than the one present in the previous testing
frames. This scene has been used to compare the proposed ap-
proach with a former one presented in [22]. Main difference with
the previous approach lies in the road plane fitting stage (Section
4.2). While in [22] the road plane parameters were computed
through a RANSAC based approach directly performed over the
raw 3D road data points, in the current version firstly a dominant
2D straight line is obtained. This 2D straight line is then used to de-
fine the set of 3D points (inliers) considered to compute the plane
parameters by means of the least squares fitting approach.
Improvements are twofold, on the one hand the one-dimension
reduction and on the other hand the proposed probability density
based 2D point selection. This allows a reduction in the CPU time.
Fig. 13 plots the horizon line position as a function of time by using
the proposed technique and [22]. As can be appreciated, similar re-
sults are obtained, but more than four time faster with the pro-
posed approach. On average, the new proposal took 78 ms per
frame including both 3D points computation and on-board estima-
tion of camera position and orientation.
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Fig. 17. Comparison between the proposed classifier and the best HOG-based
classifier.
7.2. ROI classification performance

In order to evaluate the performance of the classifier a pedes-
trian database has been built [33]. Contrary to other non ADAS-ori-
ented databases [8], it contains images at different scales from
urban scenarios. In our case, since color information is discarded
as an useful cue, samples are transformed to grayscale. The com-
plete database consists of 1000 positive samples, i.e., pedestrians;
(Fig. 14) and 5000 negative ones, i.e., ROIs fulfilling the pedestrian
size constraints but not containing pedestrians, thus no easy sam-
ples containing sky or building facades are likely to be selected.
Samples are 1:2 aspect ratio, and maintain the original dimensions
(not rescaling).

Each experiment randomly selects 700 positive and 4000 nega-
tive samples (training set) to learn a model, and use the remaining
(testing set) to measure the classifier performance. The perfor-
mance rates and plots are the result of averaging four independent
experiments.

The proposed classifier is compared with, as far as we are con-
cerned, the current state-of-the-art best classifier for human detec-
tion, which uses histograms of oriented gradients (HOG) features
and support vector machine (SVM) learning, proposed by Dalal
and Triggs [8]. HOG are SIFT-inspired features [10] that rely on gra-
dient orientation information. The idea is to divide the image into
small regions, named cells, that are represented by a 1D histogram
of the gradient orientation. Cells are grouped in larger spatial re-
gions called blocks so the histograms contained in a block are at-
tached and normalized.

We have followed the indications of the authors as strictly as
possible, and tuned the best parameters for our database in order
to provide a rigorous and fair comparison with our proposal. As
the authors suggest, no smoothing is applied to the incoming im-
age, and a simple 1D [�1,0,1] mask is used to extract the gradient
information. Next, we have tested the best parameters for our
database: number of bins (K ¼ f4;6;9g in 0—180�), cell sizes
(g ¼ f1� 1; 2� 2; 3� 3g pixels) and block sizes (1 ¼ f1�
1; 2� 2; 3� 3g cells), for our 12 � 24 canonical windows (notice
that, similarly to HW and EOH, in this case blocks and cells are also
scaled according to the size of the sample, as appreciated in
Fig. 15). Although it is not done in the original proposal, we have
made use of the integral image representation to speed up the
computation of HOG. Block overlapping is set to the maximum
possible, i.e., 1-fold coverage for each cell. Bin interpolation is also
used here. As a last step, the block histogram is normalized using
L2-Hys, the best method in the original paper, i.e., L2-normalizing,



(Raw detections) (Verification) (Raw detections) (Verification) (Raw detections) (Verification)

Fig. 18. Three different frames illustrating some false negatives, i.e., discarded positive detections (marked with a black arrow), after the verification stage as a result of slight
shifted or oversized ROIs. In typical situations, though, a number of positive detections fitting the same pedestrian is accepted and passed to the refinement.

Fig. 19. Verification and refinement example. Note that images are cropped and scaled, so dimensions do not correspond to the ones in Fig. 20. (a) Classifier output has both
false detections and overlapped correct detections. (b) 3D verification discards the FP, labels the detections that fulfill the Section 6 constraints as verified ROIs (yellow color),
and as low-certainty ROIs the ones that lack of 3D information (red color). (c) Finally, overlapped ROIs are grouped and distance is estimated. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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clipping values above 0.2 and then renormalizing. Finally, the fea-
tures are fed to a linear SVM (following the authors indications,
SVMLight2 with C = 0.01 has been used). According to Fig. 16, the
optimum parameters are K ¼ 9; g ¼ 2� 2 and 1 ¼ 2� 2, which
provide a Detection Rate (DR) of 92.5% at a False Positive Rate
(FPR) of 1%.

Regarding our proposal, we have also made tests with
K ¼ f4;6;9g for EOH, with very similar results. Hence, we bet for
the K ¼ 4 bins version since it requires less computational time.

Fig. 17 presents a comparison between our proposal and the
HOG-based classifier. As can be seen, with 100 features (i.e., Real
AdaBoost weak rules) we reach the same performance as HOG.
However, our proposed features are ten times faster to compute
(each ROI is classified in 0.015 ms). With 500 features the DR im-
proves 4% (at a FPR of 1%) and it is computed about two times fas-
ter than HOG-based classifier.

Zhu et al. [34] have proposed a cascaded version of the HOG-
based classifier, achieving similar detection performance to [8]
but with a lower computational time. Hence, attending to Fig. 17
our approach is also comparable in terms of detection performance
to [34]. However, a study is needed to check which of the algo-
rithms is faster, having in mind that our approach could also take
advantage of such a cascaded-scheme. Our immediate future work
goes toward the use of such efficient classification scheme.
2 http://svmlight.joachims.org.
7.3. 3D verification and ROI grouping performance

In order to evaluate the 3D verification stage, a qualitative analy-
sis has been made by computing verification statistics on the posi-
tive ROIs provided by the classifier. A testing set, not overlapped
with the classification database, consisting of five urban driving se-
quences has been used. The classifier output ROIs in these sequences,
13,666 in total, have been manually divided as true positive (2240)
and false positive (11,426), and then checked the verification output.

From the 11,426 negatives, 72% of them are discarded by the
verification, while 23% are labeled as likely pedestrian and a 5%
as pedestrians. This means that this stage is specially useful to fil-
ter out a big number of false positives. Regarding the 2240 true
pedestrians, the verification stage labels 40% as pedestrians and
38% as likely pedestrians, which happens when there is not enough
3D information available, usually further than 25 m. The drawback
of the high performance at discarding false positives lays on the
ROIs containing pedestrians which are rejected by the verification,
on average 22% of them. However, this percentage of false nega-
tives in this stage does not affect the final results thanks to dense
sampling of the scene, so at least one ROI per pedestrian is ac-
cepted and sent to the next stage (Fig. 18).

In the case of the refinement, a simple visual inspection of the
results shows that the requirement for this stage, to have one sin-
gle final window per pedestrian, is also fulfilled. In addition, the
use of stereo data to compute the pedestrian distance provides
two advantages. Contrary to other techniques [4], in our case the
final window is not required to be perfectly adjusted to the pedes-

http://svmlight.joachims.org


Fig. 20. Some snapshots of the system output when working in real urban scenarios. Notice that the bottom row of the images correspond to 5 m, as seen in Fig. 1. The yellow
bounding boxes represent detected pedestrians and the red ones are low-confident detections where the classifier labeled them as pedestrians but the posterior module did
not have enough 3D information to verify them. As expected, red detections (see (a) or (e)) correspond to far ROIs whilst yellow ones are the nearest. Next to each final
detection it is noted the average distance of the 3D data contained in the ROI. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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trian feet, overcoming problems with occluded or poor-contrasted
feet. Second, using the average of distances over all the pedestrian
area is more reliable than just using the window bottom position.

Fig. 19 illustrates the module results in a frame. As can be seen,
the verification discards false positives, marking two of them as
likely pedestrian (undetermined due to poor 3D information at
such distance). Then, the refinement provides final detections
and distances.

The consumed time to verify and refine a ROI is 1 s using Matlab
non-optimized code if the 3D information in the ROI is nearly com-
plete. Future work in this module is focused on optimizing the
computational time. Integrating this module with the others in a
single C-based framework and optimizing the 3D filling stage could
reduce the time consumption to a few milliseconds.
7.4. System results

Fig. 20 presents examples with results of the complete system.3

The adaptive image sampling module tends to adjust the ROIs cor-
3 Complete sequences can be found in http://www.cvc.uab.es/adas/projects/pedes-
trians/cviu2009.
rectly, which makes the classification module receive bounded
pedestrians, and thus provide many correct overlapped detections.
In general, the final detections (yellow) are correct for many differ-
ent scene illuminations and pedestrian poses. The ambiguity seems
to increase with distance, thus several low-certainty ROIs appear in
the background as a result of missing 3D information. However, a
big distance also involves a longer time to react and prevent a pos-
sible accident as appreciated in Fig. 1, hence these ROIs could be
tracked and further analyzed in time without danger of a sudden
collision.
8. Conclusions

This paper presents a system that detects pedestrians from a
moving vehicle in urban scenarios. There are three main contribu-
tions presented as independent modules. First, an adaptive image
sampling method estimates the relative camera/road plane posi-
tion in order to distribute pedestrian sized ROIs along the surface.
This algorithm is also useful for other ADAS tasks like vehicle
detection and road segmentation. Second, a pedestrian classifier
based on fast-to-compute features, namely Haar wavelets and edge
orientation histograms, and Real AdaBoost as learning machine, is

http://www.cvc.uab.es/adas/projects/pedestrians/cviu2009
http://www.cvc.uab.es/adas/projects/pedestrians/cviu2009
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presented, improving the results of the state-of-the-art in human
detection. Third, a final module uses 3D data and window grouping
to both verify the positive ROIs and refine the final detections, thus
reducing the false positive rate thanks to the verification stage and
providing one final detection per pedestrian thanks to the dense
sampling and the refinement stage.

In addition, we have proposed a strategy to combine 2D/3D
information in a cooperative module scheme where the output re-
sults of each step are used as input of next. In this way, 2D and 3D
cues are exploited in each step depending on the task to be
achieved and taking into account the limitations of the data.

Three main tasks, one for each module, are left as future work.
First, non-uniform road scanning schemes have to be tested in or-
der to provide a more sensible image sampling, e.g., a denser and
sparser sampling for near and far distances respectively would pro-
vide more accurate results and at the same optimized efforts (e.g.,
a ROI at 40 m and 45 m nearly projects at the same image position,
thus the scanning can be sparser at such distances). Second, to
improve the classification module by adding cascades to Real Ada-
Boost and using different classifiers for different range of distances.
Finally, a tracking module (e.g., recent proposals by Ess et al. [35]
and Zhang et al. [36]) would help to discard spurious intermittent
detections of false positives and provide stronger evidence of
detections along time providing specific actions for the different
areas of risk.
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