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Over the past years, inverse perspective mapping has been successfully applied to several problems in the
field of Intelligent Transportation Systems. In brief, the method consists of mapping images to a new
coordinate system where perspective effects are removed. The removal of perspective associated effects
facilitates road and obstacle detection and also assists in free space estimation. There is, however, a
significant limitation in the inverse perspective mapping: the presence of obstacles on the road disrupts
the effectiveness of the mapping. The current paper proposes a robust solution based on the use of
multimodal sensor fusion. Data from a laser range finder is fused with images from the cameras, so that
the mapping is not computed in the regions where obstacles are present. As shown in the results, this
considerably improves the effectiveness of the algorithm and reduces computation time when compared
with the classical inverse perspective mapping. Furthermore, the proposed approach is also able to cope
with several cameras with different lenses or image resolutions, as well as dynamic viewpoints.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Intelligent Transportation Systems offers one of the most
relevant frameworks for data fusion [1]. Within this scope,
Advanced Driver Assistance Systems (ADAS) are considered to have
paramount importance, since they have a significant impact in the
safety of both passengers and pedestrians alike [2].

One very important aspect of ADAS is road detection or lane
marker detection techniques [3], i.e., the automatic estimation by
the vehicle of its position with respect to the road. Robust road
position awareness is one of the primary features that an intelli-
gent vehicle should present [4].

This paper focuses on a particular technique called Inverse Per-
spective Mapping (IPM) which is very often used in vision-based
road estimation algorithms as a pre-processing component. IPM
uses information from the camera’s position and orientation
towards the road to produce a bird’s eye view image where
perspective effects are removed. The correction of perspective
allows much more efficient and robust road detection, lane marker
tracking, or pattern recognition algorithms to be implemented. In
reality, IPM has been employed not only with the purpose of
detecting the vehicle’s position with respect to the road, but also
in many other ADAS related applications, e.g., obstacle detection
[5,6], free space estimation [7], pedestrian detection [8] or ego
motion estimation [9].

Therefore, IPM is of paramount importance to a large number of
automated tasks that should be handled by an intelligent vehicle. If
IPM provides input to many other algorithms, then special care
should be given to it. In this paper, we focus on the robustness of
the IPM algorithm, since it still presents some limitations when
applied in the context of on-board road mapping. IPM works under
three core assumptions: the road must be a flat surface, there
should be a rigid body transformation from the camera to the road,
and the road should be free of obstacles. We focus on the last
assumption: obstacle free road. This is the least realistic assump-
tion of all, since very often the roads are populated by other
vehicles, protection walls, pedestrians, etc. In fact, the classical
IPM algorithm fails to produce an accurate projected image when
the input images from the cameras contain other things other than
the road itself. An example of this is shown in Fig. 1: in (a) the road
is free of obstacles, which leads to an IPM image (c) which is very
accurate. In Fig. 1(b), there is another vehicle on the road. As a con-
sequence, the resulting IPM image (d) contains artifacts which
might be misleading for example for pattern recognition
algorithms.

In this paper, we propose an extension to the classical IPM that
can still compute accurate IPM images when obstacles are in front
of the vehicle. To accomplish this, we make use of an additional
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Fig. 1. Two input images (a) and (b) and their corresponding IPM projected images, respectively (c) and (d). In (b), the presence of a blue color vehicle on the road causes the
IPM image to present blue artifacts (d). The yellow lines show the areas of the images that are used for IPM projection. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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laser range finder (LRF). These sensors are especially designed for
obstacle detection purposes. In fact, nowadays, some of-the-shelf
vehicles already have these sensors installed to assist collision
avoidance or collision mitigation systems.1 In comparison with
alternative on-board distance measuring devices, such as stereo
vision or radar, LRFs produce more accurate data at higher output
frequencies. They are also robust, since they work in challenging
conditions such as fog, shadows or even at night. The core idea
behind the proposed approach is to fuse the laser data with the pix-
els in the image in an attempt to identify which pixels should be
used as input for IPM. As will be shown, this multimodal sensor
fusion framework is capable of producing much more accurate IPM
images when compared to the classical IPM approach.

In addition to this, we will show that the proposed approach is
faster to compute than the classical IPM. The reason for this is that
our approach employs a faster direct projection mechanism (from
3D world to image, i.e., 3D points to pixels) to discover mappable
pixels, before operating the slower IPM based inverse projection
(from pixels to 3D points). Classical IPM approaches make no con-
siderations on this topic (e.g., [10–12]).

The paper is organized as follows. First, Section 2 presents the
state of the art on IPM techniques, then Section 3 presents the
mathematical formulation of the problem to be used in Section
4; the new reference system, proposed in the current work, is
introduced in Section 5. Finally, Section 6 describes the proposed
multimodal inverse perspective mapping through the computation
of the mappable pixels. Experimental results are given in Section 7,
and conclusions are presented in Section 8.

2. Related work

Over the last decades, IPM has been successfully applied to
several problems, especially in the field of Intelligent
Transportation Systems. Although it was some years ago that
1 http://en.wikipedia.org/wiki/Collision_avoidance_system, last accessed February
2014.
authors began to mention the advantages of IPM (e.g., [13,14]),
several recent publications (e.g., [15–17]) show that this is still a
topic of interest to the robotics, computer vision and Intelligent
Transportation Systems communities. The core application of IPM
is the determination of the vehicle’s position with respect to the
road, commonly referred to as ‘‘road detection’’ or ‘‘lane marker
detection’’. There are several examples of using IPM for assisting
road detection in the literature (e.g., [18,12,19,20]). The usage of
IPM on-board a vehicle may also aid other automatic detection sys-
tems such as generic obstacle detection [21,22], free space estima-
tion [23,7], pedestrian detection [8,24], or optical flow
computation [25].

The IPM method receives as input the image from the camera,
the 6D position of the camera with respect to the road reference
system (i.e., extrinsic parameters), and a description of the proper-
ties of the lens (i.e., intrinsic parameters). Under the assumption
that the road ahead of the vehicle is flat, that there is a fixed rigid
body transformation from the camera to the road’s reference
frame, and that there are no obstacles present, the input image pix-
els are mapped to the road reference system, and a new image is
produced where perspective effects are removed. The image that
is produced by the IPM will, henceforward, be named simply IPM
image. Considering on-board road detection setups, cameras are
usually mounted somewhere close to the rear view mirror inside
the vehicle, facing the road in front of it. The camera’s position
and orientation induces perspective associated effects to the cap-
tured road images. The IPM technique consists of transforming
the images by mapping the pixels to a new reference frame where
the perspective effect is corrected. This reference frame is usually
defined on the road plane, so that the resulting image becomes a
top view of the road. Fig. 2(a) shows an example of a road scene;
Fig. 2(b) depicts the input image captured by the camera; and
Fig. 2(c) represents the image produced using IPM.

One of the advantages of IPM is that the subsequent perception
algorithms can be computed in the IPM resulting image, which is
defined in a new reference system where the geometric properties
of road painted patterns are independent from the perspective of
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Fig. 2. (a) A typical road scene with a camera mounted on the host vehicle facing the road. The camera reference system is labelled XcYcZc and the road reference system is
labelled XrYrZr . (b) An example of an image captured by the camera. This image is used as input to IPM. (c) The output image of IPM. Since the road is viewed from above no
perspective distortion is present.
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the camera, i.e., from the position of the camera. In [14], the
authors claim that the parallelization of road features is crucial
for curvature determination. Another advantage is that, since the
perspective effect associates different meanings to different image
pixels, depending on their position in the image, after the removal
of the perspective effect, each pixel represents the same portion of
the road, allowing a homogeneous distribution of the information
among the pixels of the resulting IPM image [22]. Other authors
have also employed steerable filters for lane markings detection
and sustain that filtering on the IPM image allowing a single kernel
size to be used over the entire area of interest [18]. Furthermore,
since images are mapped to a new reference system, several cam-
eras may be used to produce a single IPM image mosaicking, which
is a subject also present in the literature [22,20]. It should also be
noted that IPM requires no explicit feature detection, which con-
tributes to the overall robustness of the algorithm. In addition,
there are also dedicated hardware systems being developed to
compute the IPM images [26].

Given this, it is fair to say that IPM is a cornerstone in the devel-
opment of on-board video processing systems. It assists, or is very
frequently a primary step, in road modelling, obstacle and pedes-
trian detection, free space estimation and many other advanced
drivers assistance systems.

Despite the advantages of IPM, the current state of the art on
this method has some limitations. These derive mostly from the
fact that the classical IPM algorithm makes three assumptions: sta-
tic position of the camera with respect to the road, flat road plane,
and obstacle free road. Each of these assumptions and proposed
solutions are described in the following lines.

Since the position of the camera with respect to the road plane
is considered static, pitch and roll variations from the host vehicle
(and thus of the camera which is rigidly attached to it) are
neglected. Pitch variations occur during demanding brake or
acceleration maneuvers, while roll changes are expected to appear
during hard turns. When the vehicle rolls or pitches, the position of
the camera with respect to the road changes. As a consequence, the
accuracy of IPM decreases during these maneuvers. This problem
has been identified in [27,28,19,29]. In fact, some authors claim
that even a small error in the vehicle’s roll/pitch estimation leads
to a massive terrain classification error [30]. In [31] an algorithm
is proposed that also fuses vision and laser data. However, in this
case, the objective is to correct the laser range measurements,
rather than to correct the projection of the image pixels, as is pro-
posed in the current paper. In that paper, a stereo vision system is
used to detect the road plane and thus estimate the position of the
lasers with respect to the road. With this information, it is possible
to compensate for roll or pitch variations continuously, which in
turn is used for correcting raw laser scan data.

Another assumption that is generally made, is to consider the
road as a flat surface. The approximation of the road surface to a
plane is acceptable. Nonetheless, in some specific cases such as a
road climbs, this could also be a factor for low IPM accuracy. In
[32] a solution to this problem is proposed, where the ‘‘height’’
of the lane markings is estimated with respect to a reference plane.
Using this technique, it is possible to compute IPM images in
sloped roads.

The final assumption is that there are no obstacles on the road.
This is often the case when other vehicles, buildings or pedestrians
appear in the image. When these obstacles are present in the
image, the mapping of IPM is disrupted because, in the classical
IPM approach, all pixels from the input image are assumed to be
on the road plane and are thus used in the projection. In real auto-
motive applications it is unfeasible to assume an obstacle-free sce-
nario. Nonetheless, no previous solution has been proposed. In this
paper we propose a multimodal laser vision sensor fusion strategy
that addresses the obstacle-free road assumption.
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3. Problem formulation

Let cRr be the classical 3� 3 rotation matrix in 3D and cTr be the
3� 1 translation vector in 3D that relates two coordinate systems.
Their combination maps a point in the 3D road coordinate system
Q r ¼ ½Xr Yr Zr �T to a point in the camera’s coordinate system
Q c ¼ ½Xc Yc Zc �T :

Q c ¼cRr � Q rþcTr : ð1Þ

Let K be the intrinsic parameters matrix of a given camera,
represented as:

K ¼
ax b x0

0 ay y0

0 0 1

2
64

3
75; ð2Þ

where ax and ay are the lens scaling factors in both directions, x0

and y0 the principal point coordinates in pixels and b the skewness
factor. These parameters can be obtained by an offline calibration
since they are constant for each camera-lens setup.

The projection of an arbitrary 3D point Q ¼ ½X Y Z �T to a
point qh ¼ ½ u v w �T in the camera’s homogeneous image coor-
dinate system, is described as:

qh ¼ KðcRr � Q þc TrÞ: ð3Þ

Finally, the coordinates of a pixel q ¼ ½ x y �T are obtained by
adjusting the homogeneous coordinates with the scaling factor w:

q ¼ qh

w
: ð4Þ

For simplification purposes, the current paper will use the
following notation:

K�cRr ¼ P ¼
p11 p12 p13

p21 p22 p23

p31 p32 p33

2
64

3
75; ð5Þ

and also:

K�cTr ¼ t ¼
t1

t2

t3

2
64

3
75: ð6Þ

The above formulation may describe the projection of a point to
a pixel in the image (direct projection), or it may be used to obtain
the 3D point from the pixel coordinates (inverse projection). The
direct projection (dp) may be formulated as dp : R3 ! Z2; Q ! q.
In the case of inverse perspective mapping, what is sought is the
3D coordinates of a given pixel. This is the inverse projection (ip),
defined as ip : Z2 ! R3; q! Q .
4. Solutions for direct and inverse projections

The following subsections present the general form solutions
for the direct and inverse projections.

4.1. Direct projection

As discussed in Section 3, the direct projection aims at obtaining
the pixel coordinates of a 3D world point projected to the image.
Eq. (3) may then be rewritten as:

u

v
w

2
64

3
75 ¼ p11 p12 p13

p21 p22 p23

p31 p32 p33

2
64

3
75 X

Y

Z

2
64

3
75þ t1

t2

t3

2
64

3
75: ð7Þ

Using (4), we get the definition of the direct projection dp
x ¼ p11X þ p12Y þ p13Z þ t1

p31X þ p32Y þ p33Z þ t3
;

y ¼ p21X þ p22Y þ p23Z þ t2

p31X þ p32Y þ p33Z þ t3
;

8>><
>>: ð8Þ

this system of equations defines the direct projection of a point in
the world reference system Q ¼ ½X Y Z �T to a pixel in image
coordinates q ¼ ½ x y �T .

4.2. Inverse projection

The inverse projection is the problem of obtaining the real
world coordinates of a point from a pixel in the image. The prob-
lem is under-defined, since the three real world coordinates are
sought from only two pixel coordinates. In IPM, the system is com-
pleted by defining the plane onto which the pixel is projected. Let
an arbitrary plane, defined as:

P : aX þ bY þ cZ þ d ¼ 0; ð9Þ

be the plane that contains the projection of the pixel. The system of
equations in (3) may be extended to include the constraint of the
projection plane, defined in (9):

w

x

y

1
0

2
6664

3
7775 ¼

p11 p12 p13 0
p21 p22 p23 0
p31 p32 p33 0
a b c d

2
6664

3
7775

X

Y

Z

1

2
6664

3
7775þ

t1

t2

t3

0

2
6664

3
7775; ð10Þ

rearranging this formulation, the equations for inverse perspective
mapping can be obtained. First, variable d may be moved inside
the translation vector:

w

x

y

1
0

2
6664

3
7775 ¼

p11 p12 p13 0
p21 p22 p23 0
p31 p32 p33 0
a b c 0

2
6664

3
7775

X

Y

Z

1

2
6664

3
7775þ

t1

t2

t3

d

2
6664

3
7775; ð11Þ

then, (11) may be rearranged:

�t1

�t2

�t3

�d

2
6664

3
7775 ¼

p11 p12 p13 0
p21 p22 p23 0
p31 p32 p33 0
a b c 0

2
6664

3
7775

X

Y

Z

1

2
6664

3
7775�w

x

y

1
0

2
6664

3
7775; ð12Þ

and finally, the vector of pixel coordinates can be embedded inside
the projection matrix:

�t1

�t2

�t3

�d

2
6664

3
7775 ¼

p11 p12 p13 �x

p21 p22 p23 �y

p31 p32 p33 �1
a b c 0

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

X

Y

Z
w

2
6664

3
7775; ð13Þ

rearranging the system of equations results in the inverse projec-
tion (ip) of a pixel to a known plane:

X

Y

Z

w

2
6664

3
7775 ¼

p11 p12 p13 �x

p21 p22 p23 �y

p31 p32 p33 �1
a b c 0

2
6664

3
7775
�1 �t1

�t2

�t3

�d

2
6664

3
7775; ð14Þ

this is a valid solution whenever matrix A is invertible and not sin-
gular. In other words, the projection formulation is invalid when the
projection plane and the image plane are parallel and the projection
plane is behind the image plane. The term behind will be clarified in
Section 6.1 with the introduction of the half space of projection.
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5. Road and vehicle reference systems

In the classic IPM formulation the camera and road reference
systems have a known static transformation between them. The
IPM projection will transform the pixels from the camera to the
road reference system. In the current paper we use an additional
reference system, the vehicle reference system. The vehicle refer-
ence system is fixed to the host vehicle. It is the reference system
to which all sensors on the vehicle are related. Therefore, a fixed,
rigid body transform is used to represent the pose of the camera
with respect to the vehicle reference system. Hence, three
reference systems are used: the camera system fXcYcZcg, the road
reference system fXrYrZrg and the vehicle reference system
fXvYvZvg. Fig. 3 shows the reference systems for the vehicle, road
and camera.

The general camera to road reference systems transformation
was introduced in (1). Let the rotation and translation matrices
of (1) be assembled into a global transformation matrix cHr in
homogeneous format, so that:

Q c¼cHr � Q r; ð15Þ

the global transformation from the camera to the road is obtained
as the product of a fixed camera to vehicle transformation and a
dynamic (pitch, roll, therefore time dependent) vehicle to road
transformation.

Q c ¼cHv �v HrðtÞ � Q r : ð16Þ

In the general mathematical model proposed here, the classic
IPM approach may still be used: vHrðtÞ is constant for all values
of t, i.e., the coefficients of (9) are defined to represent the XvYv

plane Proad : ar ¼ br ¼ dr ¼ 0 and cr ¼ 1; or the road plane may be
actually detected, if vHrðtÞ is estimated over time using stereo or
laser sensors pointed towards the road, i.e., some estimation
function of the parameters in (9) is running continuously. An
example of real time estimation of road to vehicle transformation
is presented in [33].

6. Mappable versus unmappable pixels

IPM is the application of (14) to the pixels in the image. How-
ever, in a given image, not all pixels may be interesting or even
possible to project. The current work addresses this problem by
using a laser sensor to detect mappable regions, together with a
set of criteria to select which pixels should be mapped.

In summary, the fusion mechanism we propose is the following:
using several criteria, we compute a set of polygons in 3D (defined
in the road’s reference frame). Each polygon delimits the area of
the road which, in accordance with the corresponding criteria,
should be mapped using IPM. Then, we fuse all these criteria by
Fig. 3. A typical road scene. The host vehicle has a camera mounted on the roof. Note tha
may not coincide.
computing a polygon (the projection polygon) which results from
the intersection of the several criteria driven polygons. The projec-
tion polygon now encodes the region of the road that should be
mapped using IPM. However, the projection polygon is defined in
the road’s reference frame (in 3D). Hence, to use this information
as input to an IPM projection, we first need to project the projec-
tion polygon onto the image plane (this is done using a direct pro-
jection mechanism), which we call the image projection polygon.
The image projection polygon is the tool that allows the pixels to
be labelled as mappable or not: pixels inside this polygon should
be mapped and pixels outside the polygon are skipped. Note that
in this approach we are fusing multimodal data, since that some
of the criteria we use are related to the vision sensor and others
to the LRF sensor data.

The following subsections present the different criteria used to
find which pixels in an image are possible to be projected.

6.1. Half space of projection

Eq. (14) is the mathematical solution of the intersection of the
optical ray of a given pixel with the road plane. Because of this, a
pixel above the horizon line in the image will be projected to the
back of the camera’s plane. Fig. 4 shows the projection rays of
two pixels, one is projectable and the other should be discarded.

Although the presented solution is a valid mathematical solu-
tion, for the proposed model, however, the unprojectable pixels
must be handled in accordance. This is done by first computing
the image plane. The image plane divides the three-dimensional
Euclidean space into two parts. One of them is called half space
of projection. It is defined as the region of the Euclidean space
where all points contained by it may be virtually projected into
the image plane. The image plane is defined as Pimage : aiXþ
biY þ ciZ þ di ¼ 0; it is obtained as follows: Let M0; M1 and M2

be three non collinear points in the XrYr plane of the road reference
system. As an example M0 ¼ ½0 0 0 �T ; M1 ¼ ½1 0 0 �T and
M2 ¼ ½0 1 0 �T . The points are projected from the cameras refer-
ence frame by means of the transformation matrix defined in (1).
In the camera’s reference system, those points are contained by
the image plane and may be used to define two vectors whose
cross product defines the vector normal to the image plane:

ai

bi

ci

2
64

3
75 ¼ CRV � M0 �M1ð Þ

� �
� CRV � M0 �M2ð Þ
� �

; ð17Þ

where � denotes the cross product. The remaining image plane
parameter di is obtained by substituting in the plane equation one
of the projected points:

di ¼ �ðaiX0 þ biY0 þ ciZ0Þ: ð18Þ
t the figure shows the reference systems of both the vehicle and the road, since they



Fig. 4. An example of a pixel that cannot be projected (green) since its optical ray intersects the road plane on the back of the image plane. Inversely, the pixel in red is
projectable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M. Oliveira et al. / Information Fusion 24 (2015) 108–121 113
Having the parameters of the image plane, and a test point
Q t ¼ ½Xt Yt Zt �T that is sure to be inside the half space of projec-
tion (for example a point a couple of meters in front of the host
vehicle), a test is devised to assess if a point Q ¼ ½X Y Z �T

belongs to the half space of projection (denoted as Pþimage):

Q 2Pþimage; if ðaiXt þ biYt þ ciZt þ diÞðaiXþ biY þ ciZþ diÞ> 0;

Q R Pþimage; otherwise:

(

ð19Þ

The half space of projection in (19) is shown in Fig. 5. It is used
to define projectable polygons in 3D, as detailed in the following
sections.
6.2. Desired area of perception

For an autonomous system, it is important to define the area of
perception that it requires to effectively navigate. A very large
perception area increases the computational cost, while a small
perception area might make the system unfit to handle quick
variations in the road scenario. This section addresses the desired
perception limits, i.e., how the programmer can effectively set an
Fig. 5. The half space of projection computed after the image plane.
area of interest for the host vehicle to perform the IPM operation.
In the case of a vehicle travelling in urban scenarios for example,
perhaps 30 m of view range are sufficient. The desired area of
perception is formally defined as a polygon wdap in the road’s pro-
jection plane. This polygon must be contained in the half space of
projection (wdap � Pþimage). Fig. 6 shows an example of an area of
perception.

Currently, wdap is set as a four vertices polygon, defining, in the
road plane, a rectangle in front of the host vehicle. The rectangle’s
side in the direction of the vehicle’s movement may dynamically
increase size depending on the vehicle speed.

6.3. Image boundaries

Besides the desired area of perception, other regions of the road
plane must be defined in order to perform an effective IPM opera-
tion. The camera lens properties and orientation towards the road
plane define a possible area of projection. Let c be the list of pixels
in the image boundaries, obtained from all image pixels q (c # q)
that are in accordance with:

qi ¼
xi

yi

� �
2 c; if ðxi ¼ 1 _ xi ¼W _ yi ¼ 1 _ yi ¼ HÞ;

qi R c; otherwise;

8><
>: ð20Þ

where W and H are the image width and height respectively. The
boundaries of the image are then projected onto the road plane
using the inverse projection ip from (14), and the real world coordi-
nates of the image boundary pixels C are obtained. The half space of
projection is again used to assert the validity of 3D points:

C ¼ ipðcÞ; 8ipðcÞ 2 Pþimage: ð21Þ

The list of world points C are used to form the vertices of the
polygon wC (an illustration is shown in Fig. 7).

6.4. Laser generated polygon

The IPM technique requires that the road surface seen from the
cameras is flat. This might not always be the case, particularly
when other vehicles or obstacles lie on the road, as shown in the
IPM resulting images published by some authors [18,22,10]. In
these examples, artifacts are generated in the regions of the image
where the flat road assumption fails. Vehicles are mapped as if they
had been painted on the road (see Fig. 1(b) and (d)). Some authors



Fig. 6. The desired area of perception, polygon (wdap) in green. All vertices of this polygon should be contained by the half space of projection, according to (19). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The projection of image boundary pixels onto the road plane results in the image boundaries polygon ðwCÞ.
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have taken advantage of this phenomenon to detect obstacles in
the road, by using the differences in two IPM images, from a pair
of stereo cameras [22]. This method is called stereo IPM. Although
the latest is a valid approach, the fact is that calibration issues tend
to disrupt the perfect mapping of stereo images. Because of this, it
may sometimes be difficult to distinguish if disparities in the IPM
stereo are due to a sub-optimum calibration or to an obstacle that
lies on the road surface. There is also work related to sensor inte-
gration using both vision and laser in autonomous vehicles [31],
Fig. 8. A typical urban road scenario with s
but in this case the objective was to enhance obstacle detection.
Fig. 8 shows a typical urban road scenario with several obstacles
near the host vehicle.

Let Q laser ¼ ½Xlaser Ylaser Zlaser �T be the 3D points obtained by
the laser range finder, referenced in the world coordinate system.
Assuming that objects picked up by the laser have a vertical
expression, the coordinates where obstacles touch the floor, i.e.,
the object baseline Q bln, is obtained by the vertical projection of
laser points onto the road plane:
everal obstacles near the host vehicle.
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Q bln ¼

Xlaser

Ylaser

�ðarXlaser þ brYlaser þ drÞ
cr

2
664

3
775: ð22Þ

The laser generated polygon wlaser is defined by the list of verti-
ces at generic coordinates given by Q bln.
6.5. Image projection polygon

As stated before, the core of IPM is applying (14) to the pixels in
the image that are known to be on the projection plane. The
objective is to be able to define for the input image which pixels
are possible (and desirable) to map. The proposed approach defines
three polygons in the road plane: a polygon defining the desired
area of perception (wdap), a polygon corresponding to the bound-
aries of the image (wC) and a polygon defining the laser scanned
objects (wlaser). The resultant projection polygon (wprojection) is
obtained by the intersection of the three other polygons:

wprojection ¼ wdap

\
wC

\
wlaser; ð23Þ

where
T

represents polygon intersection. The projection polygon is
composed of a list of vertices, i.e., 3D points defined the road
reference system (see fig. 9). The vertices defined in the road
reference system are direct projected into the image plane using
(8). The result is a list of 2D vertices that define a polygon in the
image plane. This is called the image projection polygon. Inside
the polygon are all pixels that should be mapped using IPM. Since
perspective transformation is an affine transformation, the image
projection polygon is calculated as the direct projection of the ver-
tices of the projection polygon in the road plane.
Fig. 9. A road scenario with several obstacles: isometric view (a) and top view (b).
The projection polygon (wprojection) is shown in red. It is obtained by the intersection
of the desired area of perception (wdap) in green, the image boundaries polygon (wC)
in blue, and the laser generated polygon (wlaser) in yellow. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
7. Results

Several experiments have been devised to obtain quantitative
results of the proposed IPM methodology. First, the platforms used
to obtain the results are presented: a dual camera pan and tilt unit
(PTU), a small scale robot and finally, a full scale autonomous vehi-
cle. The computational performance of the proposed approach is
compared to the classic IPM using a measure of the accuracy of
IPM. Results are presented for the accuracy of the proposed
approach. Also, a comparative study of the classic IPM versus the
laser assisted IPM shows that the accuracy of the latest is much
better when obstacles appear in the area of projection. Finally, this
section ends with some qualitative results, providing images of
IPM from on-board cameras of a full scale vehicle.
7.1. Test platforms

In order to assess the performance of the proposed methodol-
ogy, the test platforms depicted in Fig. 10 where used. Fig. 10(a)
shows the dual camera PTU. The servo actuated PTU controlled
through RS232 serial protocol was used so that the IPM is tested
when the cameras move into different positions. The cameras have
different lenses and also different image resolution. Camera 0 has a
wide angle lenses and a resolution of 800� 600 pixels, while
Camera 1 has a tele-lens and a resolution of 320� 240 pixels. This
platform is used to assess the computational performance of the
proposed approach. The time taken to perform IPM on both cam-
eras is measured during a test where the PTU moves the cameras
to different positions.

Fig. 10(c) shows the ATLASMV robotic platform. It is a small
scale autonomous robot built for participating in an autonomous
driving competition. It is equipped with four cameras and a LRF.
The side cameras (Fig. 10(b)), used to map the road in front of
the robot, have wide angle lenses and produce images with a res-
olution of 320� 240 pixels. The ATLASMV is used in two tests: one
for measuring the accuracy of IPM, another to assess the effects of
using the LRF to assist IPM. The quantitative results obtained from
the accuracy of IPM are calculated using a color2 calibrated grid
(shown in Fig. 10(c), below the robot and, in Fig. 11, viewed from
the cameras).

The grid is a 3� 1 m sheet of paper marked with a special
colored pattern. The grid is placed in a known position in front of
the cameras. Using the position and rotation of the cameras with
respect to the calibration grid, a virtual image of the grid is pro-
duced to overlap the resultant IPM image. This virtual image of
the grid serves as a test mask for measuring the IPM accuracy
(gIPM): after projection using IPM, pixels are labelled with a color
that should match the color of the virtual image. The accuracy of
the projection is obtained as the ratio between correctly projected
pixels and the total projected pixels:

gIPM ¼
number of correct projections

total number of projections
: ð24Þ

Fig. 11(a) shows all the pixels of a given projection. Pixels clas-
sified as correctly and incorrectly projected are displayed in
Fig. 11(b) and (c) respectively. Also, the virtual grid is overlaid onto
the images.

The final test platform is the ATLASCAR (Fig. 12), a real scale
robotic platform (http://atlas.web.ua.pt) [34] used for research on
autonomous driving and advanced driver assistance systems. It is
equipped with cameras and lasers. Results will show IPM images
using the three on-board cameras.
2 For interpretation of color in Figs. 10, 11 and 20, the reader is referred to the web
version of this article.

http://atlas.web.ua.pt


Fig. 10. Two of the test platforms used for testing the proposed approach: dual camera PTU unit (a); the ATLASMV small scale robot (c), equipped with a LRF and a multi-
camera perception unit (b).

Fig. 11. The entire projection obtained using Camera 0 of the ATLASMV test platform
(a). The correctly projected pixels (b). Pixels that where incorrectly projected (c).
Bellow each image, an enlarged region of the pixels in shown.

Fig. 12. The ATLASCAR full scale robotic platform. It is equipped with an active
perception unit (A), a stereo rig (B), three LRF (C, D, H), a thermal vision camera (F),
GPS (G) and an inertial measurement unit (E).
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7.2. Computational performance

The computational performance of the IPM transformation has
been a concern of some authors [21,35]. Its implementation on
on-board systems requires real time performance from the sys-
tems. In order to test the performance of the proposed approach,
the dual camera PTU setup was used (Fig. 10(a)).
In a classic IPM, all pixels in a given image are inverse projected,
i.e., (14) is applied to all pixels. On the other hand, the proposed
approach first computes the image projection polygon, and then
applies (14) only to the pixels that should be projected. The compu-
tational demand of an IPM operation depends on the amount of pro-
jected pixels, which in turn depends on the camera’s pose towards
the projection plane. For example, a camera pointing to the sky will
have only a small amount of pixels viewing the road plane.

To compare the performance of classic IPM with the proposed
approach a 14 s test sequence was devised. Since the orientation
of the camera’s towards the road plane changes the amount of pro-
jectable pixels, during the 14 s of the test, the PTU is ordered to go
to specific positions:

� State 1 (0–5.5 s) the PTU is moving upwards. This causes an
increasingly smaller amount of mappable pixels for both
cameras.
� Stage 2 (5.5–8.5 s) moves the PTU down and the inverse phe-

nomena occurs.
� Stage 3 (8.5–14 s) maintains a fixed tilt and the PTU pans

increasingly to the left, which will make Camera 1 to have
increasingly less mappable pixels.

Fig. 13 shows some IPM resulting images of key points in the
test sequence. Fig. 14(a) compares the projection time of both cam-
eras using the classic IPM and the proposed approach. Fig. 14(b)
indicates the amount of projected pixels and the time saved using
the proposed approach in relation to the classic IPM.

From 0 to 5.5 s, the PTU is moving upwards and so the pitch
angle of the cameras is changing. This is observable in the differ-
ence of mapping in Fig. 13(a)–(c). Fig. 14(b) shows a reduction in
the number of projected pixels for each camera. In Fig. 14(a), a
reduction of IPM projection time using the proposed approach is
clearly noted. Camera 0 takes more time to project than Camera 1
because the resolution of the images is different (800� 600 pixels
and 320� 240 pixels, respectively).

From 5.5 to 8.5 s the PTU is moving downwards and the effects
are the inverse.

From 8.5 to 14 s the change in pan angle causes Camera 1 to
view increasingly less of the desired area of perception. Fig. 14(b)
shows a decrease in the number of projected pixels during this
period.
7.3. IPM accuracy

Although many researchers have employed the IPM operation
in order to ease the road recognition process [2–5], the fact is that



Fig. 13. Some key frames of the test sequence. First row: images taken from Camera 0, the blue area is the area of projected pixels, the red is the area outside the desired area
of perception and the green area is the area outside the half plane of projection; Second row: a map of the projection. Projected/unprojected pixels from Camera 0 in green/red.
Projected/unprojected pixels from Camera 1 in magenta/blue; Third row: the IPM resulting image after mapping both cameras. In columns, different snapshots of the test
sequence: 0 (a), 2 (b), 5.5 (c) and 12 (d) seconds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. (a) Time taken to perform the IPM projection for both cameras. The classic IPM time and the time of the proposed approach are shown. (b) Percentage of time saved
and number of projected pixels. Proposed approach compared to the classic approach. Key frames of Fig. 13 signaled as the vertical black lines.

Fig. 15. The resulting IPM projection when errors in yaw (a), (b) and in pitch (d), (e) are introduced in the calculation. The reference projection, where no errors were
introduced, is shown in (c).
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Fig. 16. IPM accuracy (gIPM) scores for errors in camera pose. Results are presented
for errors in yaw and pitch angles.

Fig. 17. IPM accuracy (gIPM) for the classic IPM (dotted lines) and the proposed
approach (dashed lines).
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no reporting of the accuracy of each implementation was found in
the literature. Despite some insights on the topic of accuracy
measurement for general projective geometry [10,11], a method
had to be devised for this particular application to provide a quan-
titative analysis of the proposed method. For this experience the
dual camera PTU setup was used (Fig. 10(a)). The calibration grid
Fig. 18. Some tested scenarios: (a) obstacle at 0.3 m in front; (b) obstacle at 0.5 m t
presented in Section 7.1 was employed and an accuracy of
gIPM ¼ 0:85 was achieved for the system. Because the current paper
is the first to present such quantitative results, a measure of the
quality of this value is not possible.

The second experiment is intended to assess how important is
to have accurate measures of the camera’s position and orientation
with the road plane. In other words, how does the uncertainty of
the camera pose estimation reflect on the final accuracy of the pro-
jection. For this purpose, errors in the yaw and pitch angles of the
camera were introduced, and the IPM accuracy was calculated.
Fig. 15 shows the resulting IPM of mappings with some errors
(a), (b), (d) and (e) and the resulting image with no errors (c).

Fig. 16 shows the decrease in IPM accuracy with the increase of
error in yaw and pitch. The pitch angle is the most relevant for the
projection accuracy, since a half degree error changes the accuracy
from 0.85 to 0.30. Variations in yaw also drop the accuracy value to
0.30, but only after a 3.5 degree deviation. This is consistent with
the concerns of several researchers worldwide that mention on-
board camera’s pitch estimation to be a cumbersome problem. In
[30], for example, it is stated that ‘‘a small error in the vehicle’s
roll/pitch estimation leads to a massive terrain classification error
forcing the vehicle off the road. Such situations occur even for roll/
pitch errors below 0.5 degrees’’.
7.4. IPM accuracy using LRF

In order to test the usage of the LRF on the IPM projection the
ATLASMV robot was used. An obstacle with 0.2 m height (green
box in Fig. 10(c)) was placed over the calibration grid in front of
the robot at several distances and in several positions (to the left,
right or in front of the robot). For each obstacle position the
accuracy was computed. Fig. 17 shows the gIPM results both for
the classic and the proposed IPM approach.

The laser polygon introduced in Section 6.4 is able to classify
pixels that view the obstacle as unmappable. Because of this, the
proposed IPM approach (Fig. 17, dashed lines) consistently gets
better accuracy results than the classic IPM (Fig. 17, dotted lines).
When the obstacle is very close (0.3 m, Fig. 18(a)), using a classic
IPM operation would be catastrophic (0.33 accuracy ratio) but
the proposed approach remains accurate enough (0.75).

In theory, the performance of IPM should increase when the
obstacle is moved to a higher distance. This is not always observa-
ble in Fig. 17: for example the curve Obstacle Front, Proposed IPM
shows a decrease from 0.3 to 0.5 m. We believe that these
variations in the performance measurement methodology might
possibly be caused by noise in the input images. In fact, some other
experiences also show a decrease in performance when the
distance increases. For example, Obstacle Left, Proposed IPM, also
decreases performance from 1 m to 1.25 m. Nonetheless, the main
point is that, in the cases where an obstacle is present in the image,
despite these variations in performance measurements, it is
o the left; (c) obstacle at 0.75 m to the right; and (d) obstacle at 1.5 m in front.



InputImage Classical IPM Multimodal IPM

Fig. 19. Comparison of the classical IPM (middle column) with the proposed Multimodal IPM (right column). The input image (left column) shows the image projection polygon
highlighted in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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evident that the proposed IPM always shows a better performance
when compared to the classic IPM.

Fig. 18 shows the IPM resultant images for some of the tested
scenarios.

7.5. Tests in real environments

For the final validation of the proposed approach, several tests
in real road scenarios with a full scale vehicle were done. The test
Fig. 20. Using the proposed IPM approach in real scenarios. (a) Images of the three came
using just green camera; and (d) IPM using all cameras
platform used was the ATLASCAR (Fig. 12). The platform is
equipped with three cameras (each with a different focal distance
lens) and several lasers. Several hours of data from urban and high-
way roads were used for validating the algorithm. The proposed
approach is less time consuming, is able to deal with pitch/roll
variations due to brake/turning maneuvers, and using the LRF
copes with obstacles present in the projection area. Fig. 19
provides a qualitative comparison of the classical IPM with the
proposed multimodal IPM. It is possible to observe that in the
ras on-board the ATLASCAR; (b) the distribution of mapping for each camera; (c) IPM
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presence of other vehicles or obstacles, the classical IPM produces
several artifacts on the resultant image. On the contrary, the mul-
timodal approach to IPM is able to cope with obstacles and
removes them from the resultant image. Even in free road scenar-
ios, as is the case of Fig. 19 (fourth line), the artifacts produced by
the parked cars could reduce the effectiveness of a road detection
approach.

The flexibility of the proposed approach can also handle the
usage of several input cameras. In Fig. 20, the three cameras on-
board the ATLASCAR (Fig. 12), each with different focal distance
lenses, are used to obtain a more detailed mapping of the road.
Fig. 20(a) shows images from the three cameras. The IPM is
mapped to the road plane and the distribution of pixels supplied
by each camera is shown in Fig. 20(b). Using a single camera to
map the road (the green camera), shows the classical problems
of lack of accuracy at long distances (the yellow traffic pattern in
Fig. 20(c)). However, if multiple cameras are employed, the tele-
camera (blue camera) can provide a high resolution view at long
distances, which leads to a high resolution view of the yellow pat-
tern of the road (Fig. 20(d)).

Several video sequences showing results from classical and pro-
posed IPM can be found at https://dl.dropboxusercontent.com/u/
18364290/IF/index.html.
8. Conclusions

The current paper presents a flexible mathematical model for
performing IPM. The methodology is to fuse laser data with vision
data in order to improve the accuracy of the IPM projection. The
fusion mechanism is based on the intersection of polygons defined
according to several criteria: the algorithm computes the polygons
generated from the image boundaries, the laser obstacles and the
desired area of perception; then, the combination of these poly-
gons (projection polygon) is projected back to the image plane,
resulting in the image projection polygon. The image projection
polygon is defined in the image coordinate system and can there-
fore be directly used to as a criterion to indicate which pixels are to
be mapped through IPM, and which should not be mapped.

Different test platforms, from a small scale robot to a full scale
autonomous vehicle, were used to obtain both quantitative and
qualitative results. Results show that the proposed approach is
computed in less time than the classic IPM, and that the IPM image
produced by the proposed approach has higher accuracy when
obstacles are present in the road. A study of the influence of errors
in the camera’s pose estimation to the IPM projection accuracy
which corroborates previous findings is also presented. Finally,
several hours of data both from urban roads as well as highways
were qualitatively analyzed to evaluate the robustness and effi-
ciency of the proposed approach.

In sum, this paper proposes a novel algorithm that solves a
common problem of the classical IPM: the disrupting of the IPM
image when obstacles are present in the road. The proposed solu-
tion is to fuse the information from the images with the data from
a LRF in order to specify in the image which pixels are viewing the
ground plane and should therefore be mapped using IPM. Results
show that the proposed method is more efficient than classical
IPM.
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