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Most of the techniques proposed for tackling the Structure from Motion problem (SFM) cannot deal with
high percentages of missing data in the matrix of trajectories. Furthermore, an additional problem should
be faced up when working with multiple object scenes: the rank of the matrix of trajectories should be
estimated. This paper presents an iterative multiresolution scheme for SFM with missing data to be used
in both the single and multiple object cases. The proposed scheme aims at recovering missing entries in
the original input matrix. The objective is to improve the results by applying a factorization technique to
the partially or totally filled in matrix instead of to the original input one. Experimental results obtained
with synthetic and real data sequences, containing single and multiple objects, are presented to show the
viability of the proposed approach.
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1. Introduction

The Structure from Motion problem (SFM) consists in extracting
the 3D shape of a scene as well as the camera motion from trajec-
tories of tracked features. In the computer vision context, factoriza-
tion is a theoretically sound method addressing this problem. Since
it was introduced by Tomasi and Kanade [26] many variants have
been presented in the literature (e.g., [24] for the case of paraper-
spective camera model; a sequential factorization method in Refs.
[21,5,10] for the multiple object case, etc.). The 2D image coordi-
nates of a set of 3D features (points in general, but also lines [25]
and planes [22]) are stacked into a matrix of trajectories, where
every row represents a frame of the sequence and every column
a given feature. Factorization techniques aim at expressing this ma-
trix of trajectories as the product of two unknown matrices,
namely, the relative camera/object motion at each frame ðMÞ and
the 3D shape ðSÞ of the object:

W2f�p ¼ M2f�rSr�p ð1Þ

where f ;p are the numbers of frames and feature points, respec-
tively, and r the rank of W. Given an input matrix W, the goal is
to find the factors M and S that minimize kW �MSk2

F , where k � kF

is the Frobenius matrix norm [7]. These factors can be estimated
thanks to the key fact that W is rank deficient and due to constraints
derived from the orthonormality of the camera axes.
ll rights reserved.
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The Singular Value Decomposition (SVD) [7] gives the closed-
form solution to this problem when there are not missing entries.
Unfortunately, trajectories are often incomplete or split due to
objects occlusions, missing on the tracking or simply because they
exit the camera field of view. Hence other methods need to be used
in these cases.

1.1. Related work

In their seminal paper, Tomasi and Kanade [26] propose an ini-
tialization method in which they first decompose the largest full
sub-matrix by the factorization method and then the initial solu-
tion grows by one row or by one column at a time, filling in the
missing data. The main drawback of this technique is that finding
the largest full sub-matrix is a NP-hard problem. Jacobs [12] treats
each column with missing entries as an affine subspace and shows
that for every r-tuple of columns the space spanned by all possible
completions of them must contain the column space of the com-
pletely filled matrix. Unknown entries are recovered by finding
the least squares regression onto that subspace. One drawback of
this approach is that the solution is strongly affected by noise on
the data. It is used as an initialization by other approaches. An iter-
ative algorithm for recovering missing components in a large noisy
low-rank matrix is provided by Chen and Suter [4]. The algorithm
begins with a complete sub-matrix which grows at each iteration
by one row or column, filling in the missing entries at the same
time. They present a criterion based on the SVD’s denoising capacity
versus missing data in order to decide which parts of the matrix
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should be used in the iterative process. The goal is to recover the
most reliable incomplete sub-matrix by using the iterative algo-
rithm. Then, other columns and rows are projected on it using an
imputation method. In Ref. [13], Jia et al. present an algorithm that
aims the SFM recovery with noisy and missing data. It is similar to
the aforementioned one [12], but instead of selecting several r-tu-
ple of columns, it uses the most reliable sub-matrix to recover the
3D structure. The authors define a criterion that provides a mea-
sure of the sensitivity of a sub-matrix to perturbation due to noise:
the deviation parameter. Using this criterion, the sub-matrices with
smallest deviation parameter are considered to build the final
matrix.

Wiberg [29] presents an algorithm that uses the Gauss–Newton
method to compute the principal components of a matrix of data
with missing observations. The key point is to separate the vari-
ables into two sets and compute them alternatively. In a recent pa-
per, Okatani and Deguchi [23] present in detail Wiberg algorithm
focusing on the matrix factorization problem and demonstrating
its good performance compared to the Levengerg–Marquardt
(LM) technique.

Wiberg’s algorithm is generally referenced in the literature
(e.g., [3,8]), as the origin of what is called the Alternation tech-
nique. This iterative technique starts with an initial random A0

or B0 and, at each iteration k, computes alternatively each of
the factors Ak and Bk, until the product AkBk converges to W.
The key point of this 2-step algorithm is that, since the updates
of A given B (analogously in the case of B given A) can be inde-
pendently done for each row of A (or column of B), missing en-
tries in W correspond to omitted equations. Due to that fact,
the method could fail to converge when the amount of missing
data is large. Several variants of this approach have been pro-
posed in the literature. In Ref. [8], Guerreiro and Aguiar introduce
the Row-Column algorithm, which is very similar to the Alterna-
tion technique. They study its performance and compare it with
the Expectation-Maximization (EM) algorithm. They conclude
that it performs better than the EM and, besides, it is more robust
to the initialization. Hartley and Schaffalitzky [11] suggest to add
a normalization step between the two factor updates at each iter-
ation. This particular Alternation technique is denoted as Power-
Factorization. Furthermore, the authors propose another variant
to Alternation, focussing on the SFM problem. In this case, A
and B factors correspond to the motion M and shape S matrices,
respectively. Hence, since S contains the 3D feature points in
homogeneous coordinates, it can be imposed that the last row
of S is equal to 1 (where 1 represents a vector of 1). In Ref. [1],
Aanaes and Fisker present a factorization scheme, based on the
Alternation, that can deal with mismatched features, missing fea-
tures and noise on the features. In Ref. [3], Buchanan and Fitzgib-
bon summarize factorization approaches with missing data and
propose the Alternation/Damped Newton Hybrid, which combines
the Alternation strategy with the Damped Newton method. The
latter is fast in valleys, but not effective when far from the min-
ima. The goal of introducing this hybrid scheme is to give a meth-
od that has fast initial convergence and, at the same time, has the
power of non-linear optimization.

Additionally, several techniques that are not purely factoriza-
tion have been proposed to tackle the SFM problem with missing
data. Martinec and Pajdla [20] propose a technique for 3D recon-
struction by fitting low-rank matrices with missing data. It consists
in taking rank-four matrices of minimal size and in combining
spans of their columns in order to constraint a basis of the whole
fitted matrix. The solution is valid for the affine and the perspective
camera models. This method does not try to fill in the missing data
in the matrix of trajectories. In fact, only the known data are used.
The formulation is similar to the one presented in Ref. [12]. The
main difference is that the problem is formulated in terms of the
original subspaces, while in Ref. [12] the complementary ones
are used. Finally, Guilbert et al. [9] present a batch method for
recovering an Euclidian structure and motion from sparse image
data. Using closure constraints [27], the camera coefficients are
formulated linearly in the entries of the affine fundamental
matrices.

In summary, most of the proposed SFM approaches tackle only
the single object case. In the multiple object case, trajectories
belonging to the same object are first clustered together. Then,
the structure and motion of each object in the scene are recovered
by applying a single object SFM technique.
1.2. Objective

The main drawback of factorization techniques is found work-
ing with a large percentage of missing data; the obtained solutions
get worse as the percentage of missing data increases. Addressing
to this problem, an iterative multiresolution scheme, which fill in
missing data in the matrix of trajectories was presented in Ref.
[14]. Improvements to this approach were presented in Ref. [15]
and, more recently, in Ref. [17]. The key point of this approach is
to work with sub-matrices, instead of with the whole matrix of tra-
jectories. That is, reduced sets of feature points along a few number
of consecutive frames are selected. Then, missing entries in each
selected set can be filled in just by multiplying the recovered fac-
tors obtained by applying a factorization technique. Experimental
results in Ref. [17] study the performance of the proposed iterative
multiresolution scheme by considering different factorization
techniques. Concretely, results obtained with the Alternation
[29], the PowerFactorization [11], and the Alternation/Damped
Newton [3] are compared. It is shown that the Alternation tech-
nique is the most appropriate to fill in missing data by using this
iterative multiresolution scheme. This paper is an extension of
the iterative multiresolution scheme presented in Ref. [17] to the
case of multiple objects in the scene.

It is well known that the rank of the matrix of trajectories cor-
responding to a single rigid object is at most four [5]. Unfortu-
nately, in the multiple object case the rank of the matrix of
trajectories is not known a priori. Actually, it is not even bounded
when the number of objects in the scene is not known. Therefore,
an additional problem should be faced up in the multiple object
case: the rank of the matrix of trajectories should be estimated be-
fore applying any factorization technique. The current paper uses
the missing data matrix rank estimation technique proposed in
Ref. [16], as explained in Section 2.2.

The proposed approach should be seen as a pre-processing
technique; that is, first the matrix of trajectories is partially or to-
tally filled in with the proposed iterative multiresolution scheme.
Then, any factorization technique could be applied in order to fill
in missing entries of the whole matrix of trajectories. In the single
object case, the recovered factors correspond to the motion and
structure of the whole matrix. In the multiple object case, trajecto-
ries belonging to the same object should be first clustered to-
gether; then, the structure and motion of each of the objects in
the scene can be independently computed. The final goal is to im-
prove results when the factorization is applied to the matrix filled
in with the proposed scheme, instead of applying it directly to the
original input matrix, which has a higher percentage of missing
data.

The remainder of the paper is organized as follows. Section 2
presents the extension of the iterative multiresolution scheme to
the multiple object case. Experimental results considering syn-
thetic and real data sequences, containing single and multiple ob-
jects, are reported in Section 3. Section 4 contains conclusions and
future work.
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2. Iterative multiresolution scheme: single and multiple object
cases

Essentially, the basic idea of the iterative multiresolution
scheme is to work with sub-matrices that have a reduced percent-
age of missing data. Then, a factorization technique is used to
decompose each sub-matrix into two factors A and B and the miss-
ing data are filled in with the resulting product AB. The proposed
approach consists of two stages, which are described below.

2.1. Observation matrix splitting

Let W2f�p be the given missing data matrix of trajectories (also
referred to through the paper as original input matrix) of p feature
points tracked over f frames. For the sake of presentation simplic-
ity, hereinafter denoted as W. Feature points belong to a scene con-
taining a single or several rigid objects. Let k be the index
indicating the current iteration number.

The aim at this first stage is to split the matrix of trajectories W
up into sub-matrices with a reduced percentage of missing data.
This splitting process consists of the following two steps:

� Splitting: In the first step, the original input matrix W is split up
into a set of k� k non-overlapped sub-matrices, defined as wi

k,
with a size of b2f

k c � b
p
kc

1 and where i ¼ 1; . . . ; k2. Hereinafter, the
input matrix at the current iteration level k will be referred to
as Wk.

� Multiresolution approach: Although the idea is to focus the pro-
cess in a small area (sub-matrix wi

k), which is supposed to have
a reduced percentage of missing data, recovering information
from a small patch can be affected from noisy data. Hence, in
order to improve the confidence of recovered data, in this sec-
ond step, and only when k > 2, a multiresolution approach is fol-
lowed. It consists in computing four overlapped sub-matrices
win

k ;n ¼ 1; . . . ;4 (see Fig. 1) with twice the size of wi
k, and for

every sub-matrix wi
k.

The idea of this enlargement process is to study the recovered
entries in wi

k when different size overlapped regions are considered
together. The latter avoids obtaining results from small single re-
gions. Other strategies were tested in order to compute in a fast
and robust way sub-matrices with a lower percentage of missing
entries (e.g., quadtrees, ternary graph structure), but they do not
give the desired and necessary properties of overlapping.

Since generating four win
k , for every wi

k, is a computationally
expensive task, a simple and more direct approach is followed. It
consists in splitting the matrix Wk in four different ways, by shift-
ing win

k half of its size (i.e., wi
k) through rows, columns or both at the

same time. Fig. 2 illustrates the five partitions of matrix Wk—i.e.,
the one generated by all the wi

k and the other four ones, obtained
1 babc correspond to the integer part of the quotient a
b.
with all the win
k sub-matrices, generated at the sixth iteration.

When all these matrices are considered together, the overlap be-
tween the different areas is obtained, see textured cell in Figs. 1
and 2.

Missing data at corners cells are only considered to be filled
twice (wi

k and one win
k ), while border cells three times (wi

k and
two win

k ). Other missing data in other cells are considered five times
(wi

k and its four win
k ).

2.2. Sub-matrices processing

At this stage, the objective is to recover missing data by apply-
ing an imputation method at every single sub-matrix. At the same
time, initially known values could also be modified. One important
point that must be highlighted is that sub-matrices with a high
percentage of missing data are discarded (as mentioned above, in
the current implementation only sub-matrices with a percentage
of missing data below 50% are considered).

Different factorization techniques could be used as imputa-
tion method at this stage. The performance of this iterative mul-
tiresolution scheme considering different factorization
techniques is studied in Ref. [17]. In particular, the Alternation
[29], the PowerFactorization [11] and the Alternation/Damped
Newton are tested. Reported results in Ref. [17] show that the
Alternation is the most appropriate method for the iterative
multiresolution scheme.

As mentioned in Section 1, an additional problem should be
faced up in the multiple object case: the rank of the matrix of tra-
jectories should be estimated before applying any factorization
technique. Missing data matrix rank estimation is out of scope of
the current paper. It has been a stand-alone research topic during
the last decades in the computer vision community (e.g., [2,18,30]),
as well as other research fields (e.g., [6,28]). In the current work,
the technique proposed in Ref. [16] is used to estimate the rank
of the given input matrix, while the percentage of missing data is
lower than 20%. Then, this rank value is used through the whole
experiments (matrices containing a high percentage of missing
data) to process both, originally given input matrices as well as
the corresponding sub-matrices. 3 is intended to compare results
from the proposed iterative scheme with respect to those obtained
from the Alternation, but not how they are affected by a wrong
rank value.

Independently of their size hereinafter sub-matrices will be re-
ferred to as Ws. Therefore, given a sub-matrix Ws with a percent-
age of known data of at least 50%, its corresponding As and Bs

matrices are obtained by using the Alternation technique, taking
the previously estimated rank r. Then, the product AsBs is used to
fill in the matrix Ws. Finally, the root mean squared (rms) is com-
puted as follows:

rmss ¼
kWs � AsBskFffiffiffi

n
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jjðWsÞij � ðAsBsÞijj

2

n

s
ð2Þ
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where i and j correspond to the index pairs where ðWsÞij is defined
and n is the number of those pairs in Ws.

Since the rmss is generally adopted as a measure of the good-
ness of the recovered data, it will be used later on as a weighting
factor for merging data on overlapped areas after finishing the cur-
rent iteration. Concretely, every point of the filled in Ws is associ-
ated with a weight, defined as 1

rmss
.

Finally, when every sub-matrix Ws has been processed, recov-
ered missing data are used for filling in the original input matrix
W. In case a missing entry has been recovered from more than
one sub-matrix (overlapped regions) those recovered data are
merged by using their corresponding normalized weighting fac-
tors. The average of the initial value and the new one, obtained
after the merging process, is assigned.

Once recovered missing data have been used for filling in the in-
put matrix W, the iterative process starts again (Section 2.1) split-
ting the new matrix W up either by increasing k by one or, in case
the size of sub-matrices wi

k at the new iteration stage is too small,
by setting k ¼ 2. This iterative process is applied until one of the
following conditions is true: (a) a maximum number of iterations
is reached; (b) at the current iteration no missing entries were
recovered; (c) the matrix of trajectories is full. An outline of the
algorithm can be found below; Fig. 3 presents an overview of the
algorithm.

2.2.1. Outline of the algorithm
Inputs: W, original input matrix of trajectories; r, rank of matrix2

W; data, percentage of known data in W; itmax, maximum number
of iterations; minsize, sub-matrix minimum size.

Set k ¼ 2; it ¼ 1;W0 ¼W and repeat the following steps while:
2 r is estimated by using [16] while the percentage of missing data is lower than
20%.
(it < itmax) and (datak > datak�1) and (datak < 100%)

(1) Split the matrix W0 up into k� k sub-matrices wi
k, obtaining

Wk. If sizeðwi
kÞ < minsize, set k ¼ 2; it ¼ it þ 1 and repeat step

1.
(2) Multiresolution approach: compute the four partitions of

matrix Wk (generated by win
k ;n ¼ 1; . . . ;4).

(3) Sub-matrices processing: apply Alternation to all the sub-
matrices, considering the estimated rank value r.

(4) Merge the data by using the weights and update Wk. Set
W0 ¼Wk; k ¼ kþ 1; it ¼ it þ 1. Go to Step 1.

Solution: Wfilled ¼Wk; datak > data0.
3. Experimental results

This Section presents an evaluation of the performance of the
iterative multiresolution scheme in the single and multiple object
cases. The aim is to study the robustness to missing and noisy data
of a factorization technique applied to the partially or totally filled
in matrix obtained with the proposed iterative scheme. This study
is performed by comparing the result when the same factorization
technique is applied directly to the original input matrix. In sum-
mary, the methodology proposed to evaluate the obtained results,
which is shown in Fig. 4, consists in applying:

� a factorization technique over the original input matrix W;
� a factorization technique over the matrix filled in with the iter-

ative multiresolution scheme Wfilled.

Taking into account results obtained in Ref. [17], the Alternation
technique is used inside the proposed scheme. Actually, it is also



Fig. 4. Evaluation study: comparison of rms obtained in each case. In our experiments, the Alternation is used as factorization technique. IT stands for iterative scheme. In this
example, the input matrix only contains 31% of known data.
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used in the evaluation study to split the whole matrix of trajecto-
ries up into shape and motion matrices.

Experiments using both synthetic and real data are presented
below. Different amounts of missing data are considered—from
10% up to 70%. Furthermore, in the synthetic case, different levels
of Gaussian noise are added to the 2D feature point trajectories—
standard deviation r with a value from 1

3 to 1 and zero mean. Only
results corresponding to the case of r ¼ 1 are shown in the current
paper, just to illustrate the case of noise in the data. The obtained
matrices are denoted as cW . Notice that in the case of real data the
original input matrix W already contains noisy values. For each set-
ting (amount of missing data and level of noise) 100 attempts are
repeated and the root mean square error (rms) is computed:

rms ¼ k
cW � ABkFffiffiffi

n
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jjðcW Þij � ðABÞijj

2

n

s
ð3Þ

where i and j correspond to the index pairs where ðcW Þij is defined
and n is the number of those pairs in cW .

Given a matrix where all values are known Wall, different per-
centages of missing data are generated by automatically removing
parts of random columns in order to simulate the behaviour of
tracked features. The removing process randomly selects a cell in
the given column, splitting it up into two parts. One of these parts
is randomly removed, simulating features missed by the tracker or
new features detected after the first frame, respectively. Different
numbers of frames could be used to achieve the percentages of
missing data, but the idea is to work with matrices of the same
size, since the performance of factorization techniques is not inde-
pendent of the size of the matrix. Note that missing data could sim-
ply be obtained by randomly removing entries in Wall, but it would
not simulate a realistic situation. Besides, the performance of fac-
torization techniques are far better dealing with random missing
data and it may not be appropriate for an evaluation study.

As pointed out in Ref. [4], the rms defined by the expression (3)
could be ambiguous and in some cases contradictory. That is be-
cause it only takes into account the recovered values correspond-
ing to initially known entries in the original input W, but it
ignores how the rest of entries are filled in. Since in our experi-
ments all the entries are initially known in Wall, as mentioned
above, the root mean square error considering all the entries in
Wall can be computed. Hereinafter, this measure will be referred
to as rmsall and it is defined as follows:

rmsall ¼
kWall � ABkFffiffiffiffiffiffiffi

2fp
p ð4Þ

where 2fp is the size of the matrix Wall.

3.1. Synthetic data

This Section presents results obtained with two data sets from
different objects. The first data set is generated by randomly dis-
tributing 3D feature points over the surface of a cylinder, see
Fig. 5(left). The second data set is generated from 3D points of a tri-
angular mesh (nodes), representing a Beethoven sculptured sur-
face, see Fig. 9(left). In this second object the points are not as
uniformly distributed as in the previous object. Different se-
quences are obtained with these objects by performing rotations
and translations over each of them. At the same time, the camera
also rotates and translates. Although missing data can be obtained
due to self occlusions of the objects, all the points are considered,
as mentioned above.
3.1.1. Single object case
The first sequence containing a single object is defined by 200

frames containing 300 features from the first data set. The trajecto-
ries are plotted in Fig. 5(right). Fig. 6 shows an example of recov-
ered shape (left) and motion ((middle) and (right)) obtained by
applying the Alternation technique to the matrix filled in with
the proposed iterative scheme. The original input matrix has about
20% of missing data.

The obtained rms considering different percentages of missing
data are shown in Fig. 7. Concretely, a boxplot representation is
used in order to show the rms obtained in the 100 attempts. These
boxplots enclose data in between the lower and the upper quartiles
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(medians are represented by horizontal lines in thinner regions)
and the crosses correspond to outliers. It should be highlighted
that these boxplots are more representative than the mean value
used in Ref. [17]. The reported experiments correspond to the no
noise case (left) and to the case where a Gaussian noise of a stan-
dard deviation ðrÞ ¼ 1 and zero mean (right) is added.

It can be seen that in general the Alternation applied to the ma-
trix filled in with the iterative scheme performs better than applied
directly to the originally given input W. When the percentage of
missing data is below or equal to 40% (Fig. 7), no improvements
are obtained by using the iterative scheme since the Alternation
performs quite well with such amount of missing data. With more
than 40% of missing data, the rms obtained when the Alternation is
applied directly to the input matrix becomes higher than when it is
applied to the matrix filled in with the iterative multiresolution
scheme. Fig. 7(right) shows that the difference between the results
obtained by applying Alternation to the matrix filled in by the iter-
ative scheme and to the original input one is not as marked as in
the free noise case (Fig. 7(left)).

As mentioned above, the rmsall, which considers all the entries
in the original input matrix instead of only the initially known
ones, is also studied. Fig. 8 shows the obtained values. It can be
seen that compared to rms, the rmsall is in general higher, which
means that the initially known entries are better recovered than
the missing ones in most cases. Notice that the difference between
rms and rmsall is higher when the Alternation is applied directly to
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Fig. 8. Cylinder scene; rmsall in logarithmic scale, for different percentages of missing data: (left) no noise; (right) r ¼ 1.
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Fig. 10. Beethoven’s sculpture scene: (left) 3D reconstruction; (middle) recovered camera motion; (right) zoom in the recovered camera motion.
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Fig. 11. Beethoven scene; rms in logarithmic scale, for different percentages of missing data: (left) no noise; (right) std ¼ 1.
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the original input matrix than when it is applied to the matrix
filled in with the iterative scheme.

Experimental results in Ref. [17] show that the S and M factors
are better recovered when the Alternation is applied to the matrix
filled in with the iterative scheme than when the Alternation is ap-
plied to the original input matrix (see [17] for more details).

The second sequence containing a single object is generated by
considering 200 frames and 266 trajectories from the second data
set. Feature point full trajectories are plotted in Fig. 9(right).
Fig. 9(left) contains a large amount of 3D points (about 2655) in or-
der to visualize better the object. Fig. 10 shows an example of the
recovered shape (left) and motion ((middle) and (right)) obtained
by applying Alternation to the matrix filled in with the proposed
iterative scheme (input matrix with 20% of missing data).

The obtained rms in this second sequence are plotted in Fig. 11.
In the case of no noise, Fig. 11(left), it can be seen that for percent-
ages of missing data higher than 40%, the Alternation gives in gen-
eral smaller rms applied to the matrix filled in with the proposed
iterative scheme, than to the original input one.

Working with noisy data, the rms is smaller when the Alterna-
tion is applied to the matrix filled in with the iterative scheme for
percentages of missing data between 50% and 60% for r ¼ 1
(Fig. 11(right)).

Fig. 12 shows the obtained rmsall. As in the previous sequence, it
can be seen that the rmsall is in general higher than rms and, again,
the difference between rms and rmsall is higher when the Alterna-
tion is applied directly to the original input matrix. In particular,
the rmsall is smaller when the Alternation is applied to the matrix
filled in with the proposed iterative scheme, while the percentage
of missing data is higher than 40% (Fig. 12(left) and (right)).
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Fig. 12. Beethoven scene; rmsall in logarithmic scale, for differen
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Fig. 13. Synthetic cylinders: (left) 3D position of the feature points in the fi
3.1.2. Multiple object case
For simplicity, a sequence containing only two objects is consid-

ered in the multiple object case. Sequences with more than two ob-
jects can be studied analogously. The main drawback of the
multiple object case is that the rank of the matrix of trajectories
W is not known and it must be estimated before applying a factor-
ization technique. As mentioned above, the method proposed in
Ref. [16] is used to estimate the rank of W, when the percentage
of missing data is lower than 20%. Then, this estimated rank value
is used through the whole experiments.

Once the matrix of trajectories has been filled in (partially or to-
tally), trajectories belonging to the same object should be first clus-
tered together. Then, the structure and motion corresponding to
each object could be obtained by applying a single object SFM
technique.

The studied sequence contains two cylinders. The rank estima-
tion technique proposed in Ref. [16] applied to matrices with low
percentage of missing data gives a rank value of r ¼ 8, which
makes sense since both cylinders define a full-rank motion and
move independently. A total of 248 features (122 correspond to
the first cylinder and 126 correspond to the second one) are
tracked over 200 frames (Fig. 13(left)). Fig. 13(right) shows the tra-
jectories plotted in the image plane.

The rms obtained in this multiple object sequence are shown in
Fig. 14. Fig. 14(left) shows that the rms is in general smaller when
the Alternation is applied to the matrix filled in with the iterative
multiresolution scheme, for percentages of missing data between
40% and 60%. Results obtained in the case of noisy data are plotted
in Fig. 14(right). It can be seen that results obtained when the
Alternation is applied to the original input matrix are better than
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rst frame; (right) feature point trajectories plotted in the image plane.
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Fig. 14. Scene containing two cylinders: rms in logarithmic scale, for different percentages of missing data: (left) no noise; (right) r ¼ 1.
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Fig. 15. Scene containing two cylinders: rmsall in logarithmic scale, for different percentages of missing data: (left) no noise; (right) r ¼ 1.
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when applied to the matrix filled in with the proposed scheme, for
any percentage of missing data.

Fig. 15(left) shows that the rmsall obtained when the Alternation
is applied to the matrix filled in with the iterative multiresolution
scheme are smaller than when it is directly applied to the original
input matrix, while the percentage of missing data is higher than
30%. Notice that the rms, which only studies the initially known
data, is always smaller when the Alternation is applied to the ori-
ginal input matrix (Fig. 14(right)) when working with noisy data.
However, in this noisy data case, the rmsall, which studies the good-
ness of recovered missing entries, is smaller when the Alternation
is applied to the matrix filled in with the proposed scheme, for per-
centages of missing data between 30% and 60%.
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Fig. 16. (left) First object used for the real scene; (right) fea
3.1.3. Summary
As a conclusion, it can be seen that in general, the Alternation

applied to the original input matrix performs quite well, while
the percentage of missing data is small. Therefore, it is not neces-
sary to firstly apply the iterative multiresolution scheme in those
cases. However, the results get worse as the percentage of missing
data grows. Actually, the number of cases in which the Alternation
applied to the original input matrix converges to a local minimum
increases as the percentage of missing data grows. See, for in-
stance, how the rms varies between 40% and 50% of missing data
in Fig. 7(left). Hence, when the percentage of missing data is high,
it is better to apply the proposed multiresolution scheme as a pre-
vious step, in order to reduce the percentage of missing data in W.
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The reported results show that the Alternation applied to this par-
tially or totally filled in matrix gives better results than applied to
the original input matrix.

3.2. Real data

A procedure similar to the one applied to the synthetic data is
now used with real data. The two objects studied in these real data
experiments are shown in Figs. 16(left) and 19(left). For each ob-
ject, a real video sequence with a resolution of 640� 480 pixels is
used and a single rotation around a vertical axis is performed. Fea-
ture points are selected by means of a corner detector algorithm.
An iterative feature tracking algorithm has been used. More details
about corner detection and tracking algorithm can be found in Ref.
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Fig. 18. First object: (left) rms in logarithmic scale, for different percentages of missing

−100
−50

0
50

100

−50
0

50
100

−100

−50

0

50

xy

z

−10 −5 0 5

−15

−10

−5

0

5

x

y

Fig. 17. First object; (left) 3D reconstruction; (middle) recovered c
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Fig. 19. (left) Second object used for the real scene; (right) fe
[19]. As in the previous case, all the points are initially known in
Wall, because only full trajectories are considered. The missing data
are generated automatically by removing parts of random col-
umns, as in the synthetic data experiments. In most of the cases,
the error values are larger than in the synthetic case. The problem
is that both objects do not rotate so much, as it can be seen in the
plot of the trajectories (Figs. 16(right) and 19(right)). Hence, the
obtained matrices of trajectories are not of full rank and we have
to deal with a degenerate case.

3.2.1. Single object case
The first sequence contains 87 points distributed over the

squared-face-box shown in Fig. 16(left) tracked along 101 frames.
Feature point trajectories are plotted in Fig. 16(right). Fig. 17 shows
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data; (right) rmsall in logarithmic scale, for different percentages of missing data.
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Fig. 20. Second object: (left) 3D reconstruction; (middle) recovered camera motion; (right) zoom in the recovered camera motion.
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Fig. 21. Second object: (left) rms in logarithmic scale for different percentages of missing data; (right) rmsall in logarithmic scale, for different percentages of missing data.
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Fig. 22. Scene containing two objects: feature point trajectories plotted in the
image plane.
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an example of the recovered shape (left) and motion ((middle) and
(right)) obtained by applying Alternation to the matrix filled in
with the proposed iterative scheme. In this example, the original
input matrix has about 10% of missing data.

The resulting rms obtained for different percentages of missing
data are presented in Fig. 18(left). It can be seen that the Alterna-
tion applied to the matrix filled in with the iterative scheme per-
forms better than applied directly to the original input matrix,
for any percentage of missing data. The rmsall, which takes into ac-
count all the entries in the matrix W, is plotted in Fig. 18(right). As
in the rms, the rmsall is smaller when the Alternation is applied to
the matrix filled in with the iterative scheme. However, notice that
the difference between applying the Alternation to the filled in ma-
trix with the proposed scheme and to the input matrix is not as sig-
nificant as in the synthetic case.

The second sequence consists of 61 frames and 188 feature
points distributed over the object shown in Fig. 19(left). Feature
point trajectories are plotted in Fig. 19(right). Fig. 20 shows an
example of the recovered shape (left) and motion ((middle) and
(right)) obtained by applying Alternation to the matrix filled in
with the proposed iterative scheme. The original input matrix
has only about 10% of missing data.

In this second object, the error values are higher than before, as
it can be seen in Fig. 21. The rms (left) and the rmsall (right) are
smaller when the Alternation is applied to the matrix filled in with
the iterative scheme than when applied to the original input one,
for any percentage of missing data.
3.2.2. Multiple object case
Full trajectory matrices corresponding to sequences of multiple

objects are generated by merging different matrices of single ob-
ject trajectories, after swapping x and y coordinates. Overlapping
between objects are avoided for the sake of presentation simplicity
by applying translations.
As in the experiment with synthetic data, a sequence containing
only two objects is presented. Sequences with more than two ob-
jects can be studied analogously. Concretely, a scene containing
the objects shown in Figs. 16(left) and 19(left), is generated. It is
defined by 61 frames and 181 feature points (87 from the first ob-
ject and 94 from the second one). The obtained full feature point
trajectories are plotted in the image plane in Fig. 22. The rank esti-
mation technique proposed in [16] gives a rank value of r ¼ 5,
when the percentage of missing data is lower than 20%. Recall that
both objects define a degenerate motion, as mentioned above.

Fig. 23 shows the obtained rms (left) and rmsall (right), respec-
tively. It can be seen that the Alternation gives, in general, slightly
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Fig. 23. Scene containing two objects: (left) rms in logarithmic scale for different percentages of missing data; (right) rmsall in logarithmic scale, for different percentages of
missing data.
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smaller rms values applied to the original input matrix than to one
filled in with the proposed iterative scheme. On the contrary, the
rmsall (see Fig. 23(right)) is in general smaller when the Alternation
is applied to matrix filled in with the proposed scheme, instead of
when it is directly applied to the original input matrix.

3.2.3. Summary
As a conclusion from the real data experiments, it can be ob-

served that the Alternation applied to the matrix filled in with
the proposed iterative scheme gives better results than applied
to the original input matrix, when the percentage of missing data
is higher than 30%. Actually, in the single object case, it is better
to apply the Alternation to the matrix filled in with the proposed
scheme, even when the percentage of missing data is low.

4. Conclusions and future work

This paper presents an iterative multiresolution scheme for
tackling the SFM problem with high percentages of missing data
and for the single and multiple object cases. The idea of the itera-
tive multiresolution scheme is to work with sub-matrices with a
low percentage of missing data. Then, a factorization technique is
applied to recover the missing entries with the product of the ob-
tained factors. In the current work the Alternation technique is
used to factorize these sub-matrices. The goal is to improve the re-
sults obtained when a factorization technique is applied to the ma-
trix filled in with the iterative scheme instead of directly to the
originally given input one, which has a lower percentage of known
data. The main contribution of the current paper is the extension of
the previously presented iterative multiresolution scheme to the
multiple object case.

Experimental results considering synthetic and real data se-
quences that contain single and multiple objects are given. It has
been shown that, when the percentage of missing data is high,
the Alternation applied to the matrix filled in with the proposed
iterative scheme gives better results than when applied directly
to the original input matrix W. However, when the ratio of missing
data is low, the Alternation performs quite well applied to the ori-
ginal input matrix directly and it is not necessary to use the itera-
tive scheme. The goodness of the results is measured with the root
mean square error (rms) and also with the rmsall, which takes into
account all the entries in the initially full matrix Wall.

As a future work, it would be interesting to use the iterative
scheme with applications other than the SFM problem.
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