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a b s t r a c t

This paper presents and evaluates a framework to improve the performance of visual object classification
methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed
framework is to learn the best descriptor for each image in a given database. This goal is reached by
means of a reinforcement learning process using the minimum information. The visual classification
system used to demonstrate the proposed framework is based on a bag of features scheme, and the
reinforcement learning technique is implemented through the Q-learning approach. The behavior of the
reinforcement learning with different state definitions is evaluated. Additionally, a method that
combines all these states is formulated in order to select the optimal state. Finally, the chosen actions
are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin.
Experimental results using two public databases (ETH and COIL) are provided showing both the validity
of the proposed approach and comparisons with state of the art. In all the cases the best results are
obtained with the proposed approach.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the computer vision domain the visual object classification
(VOC) has attracted the attention of researchers over the last two
decades (e.g., [1–4]). Generally, VOC is based on the representation of
the given scene in a space of features, which were extracted and then
described by means of some feature descriptors. These feature
descriptions are then used as discriminative elements to characterize
the given objects. They are computed using information of interest
points together with their neighborhood; such interest points are
pixels with special characteristics (e.g., [5,6]). Hence, given an image,
the feature descriptors characterize the objects at a higher abstrac-
tion level, where classical learning techniques can be used in order to
recognize the target object. More elaborated techniques, such as Bag
of Features (BoF), are becoming nowadays popular for visual object
recognition (e.g., [7,3,8,9]). The BoF consists of four steps as detailed
below:

1. Extract the features from the images of the training set using a
given detector and a given descriptor.

2. Build a dictionary of visual words using the features extracted
before.

3. Construct a histogram, using (1) and (2), for each image in the
training set. Hence, the histogram bins represent the number of
times a visual word is in the image.

4. Train a classification algorithm using the histogram obtained
before.

The BoF architecture is flexible, so that there are different combina-
tions that can be used to implement the four steps presented above.
The final performance of the BoF depends on the correct algorithm
selection.

The current work is focused on the first step of the BoF; in
particular, the goal is to learn the best algorithm to describe the
interest points. From our experience, the performance of the BOF is
strongly influenced by the image feature descriptor, so we state that
identifying the best image descriptor for each image will improve
the classification rate. A naive approach to solve this problem could
be the concatenation of all the possible descriptors. However, this
solution is not always feasible since on the one hand it could take a
large amount of resources (e.g., memory, CPU time) and on the
other hand this would introduce noise to the solution [10].
The challenge of the problem and the importance of finding the
right solution have been recently addressed. An approach to select
the best descriptor for each image is presented in [10,11].
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In [10] a method for selecting the best descriptor for every image
in the database is proposed. In order to select the best descriptor,
several attributes of the image (e.g., colorfulness, roughness, shini-
ness, etc.) are taken into account. Although interesting results are
presented, their main drawback is the use of a supervised learning
scheme where the authors select the descriptors with a subjective
criterion. On the contrary, in [11] a method that learns the best
descriptor for each image using a Reinforcement Learning (RL)
scheme is presented. The RL is a simple learning method based on a
trial and error strategy. This work presents two improvements from
[11].

1. We propose to use several state definitions.
2. A multi-table scheme is introduced in order to exploit the best

state definition for each image.

In summary, this work proposes a novel method to learn the
best descriptor from a given set. In order to improve the perfor-
mance, multiple state definitions are used. This scheme works
with a BoF approach, and in concrete, the implementation uses a
kd-tree in the second step and a support vector machine (SVM) in
the fourth step. The reminder of the paper is organized as follows.
Section 2 presents the state of the art. Section 3 summarizes the RL
technique. Then, Section 4 presents in detail the proposed method.
Experimental results and comparisons are provided in section 5.
Section 6 gives the conclusions and future work.

2. State of the art

Reinforcement learning is a learning technique widely used in the
robotics community; recently, some work involving RL have been
proposed in the computer vision field. For instance, in image segmen-
tation, the RL technique is used to select the appropriate threshold
(e.g., [12,13]). In [14] the authors propose a RL based approach to
tackle the face recognition problem. The authors present a method to
learn the set of dominant features for each image. An approach that
joins an active learning with RL is presented in [15]; in this case it
learns the exploration and exploitation trade-off during the sampling
process. Finally, there are also some works in visual object recognition
using RL (e.g., [16–19]). In [20], the authors propose a bottom-up/top-
down recognition system in order to learn a similar model than the
human learning. In concrete, the method joins the RL and a first order
logic technique to recognize objects. In [17] a method that learns the
features of the image in order to recognize objects is presented . A RL
based approach is used for selecting the classification algorithm,
which is later on embedded in the fourth step of a BoF scheme [19].

In this work, we propose the use of RL to learn the best feature
descriptor for VOC with a BoFs approach. The novelty of the work,
with respect to the former one [11], is the multi-table framework
that enables the use of different states

3. Reinforcement learning

The reinforcement learning, as mentioned before, is a trial-and-
error learning process [21] where the agent does not have a prior
knowledge about which is the correct action to take. RL can be
used as a technique to solve a Markov decision process (MDP)
problem, in which the agent learns how to take an action in a given
environment in order to maximize the expected reward. These
concepts are incorporated to the tuple of MDP 〈S;A; δ; τ〉 where:

� S is a set of environment states. In this work the states are
characteristics of the image.

� A is a set of actions. This work uses five image feature descriptors
as actions: Spin, SIFT, SURF, C-SIFT and PHOW.δ

� is a transition function, δ : S � A-S. τ
� is a reward/punishment function, τ : S � A-R .

Using the definitions presented above, the RL method works as
follows: the agent interacts with the environment to select an
action (ah). The action is selected to maximize the expected reward
(rt) based on τðsz; ahÞ. Applying the action (ah) to the state (sz), the
environment gives a new state (szþ1) according to the δ function,
and a reward/punishment (rt) according to the τ function.
An illustration summarizing this process is depicted in Fig. 1.

The RL can be implemented using dynamic programming, Monte
Carlo method, and temporal difference learning. In this work, a
temporal difference based method has been used because it does not
require a model and it is fully incremental [21]. More specifically, we
decided to use the Q-learning algorithm [22]. In Q-learning, the agent
learns the action policy π : S⟶A, where the policy πmaps the states
and the actions to maximize the expected reward (formulated as
E½rtþγrtþ1þγ2rtþ2þ⋯�). The value function (Vπ) over the states is
generated using the policy π and the states (Eq. (1)) and πn is the
optimal policy that the agent must learn during the training process
(see Eq. (2)):

VπðsÞ � E½rtþγrtþ1þγ2rtþ2þ⋯� � E ∑
1

i ¼ 0
γirtþ i

" #
; ð1Þ

πn � arg maxπVπðsÞ; 8ðsÞ: ð2Þ
The best value function Vπn

is learnt with the RL strategy using
the δ and τ functions explained before. However, since none of
them (δ and τ) are known a priori the Q-learning proposes an
algorithm to also learn the optimal policy (πn). Specifically, the
Q-learning defines an evaluation function (Q) as Eq. (3) that is used
to find the best action. In this case, the πn can be defined as in the
following equation:

Q ðs; aÞ ¼ E½rðs; aÞþγVπn

δðs; aÞ�; ð3Þ

πnðsÞ ¼ argmaxaE½rðs; aÞþγVπn

δðs; aÞ� ¼ argmaxaQ ðs; aÞ: ð4Þ
The δ and τ can be deterministic or nondeterministic. δ is

deterministic when, given a state (sz) and applying an action (ah) a
new state (szþ1) is returned; if we cannot guarantee to reach
always the same new state (szþ1) the δ function is nondetermi-
nistic. The same happens with the τ function, for a given state (sz)
and action (ah) it could return different rewards (rt). When the δ
and/or τ functions are nondeterministic the environment is non-
deterministic. In the case of nondeterministic Q-learning, the
formulation of the Q evaluation is defined as follows:

Qnðsz; ahÞ⟵ð1�αnÞQn�1ðsz; ahÞþαn½rþγmax
a0

Qn�1ðszþ1; a0Þ�; ð5Þ

αn ¼ 1
1þvisitsnðsz; ahÞ

; ð6Þ

Fig. 1. Illustration of interaction between agent and the environment.
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where 0rγo1 is a discount factor for future reinforcements.
Eq. (6) is the value αn for a nondeterministic environment and
visits is the total number of times the pair (sz; ah) has been visited
including the nth iteration.

The environment can be deterministic or nondeterministic, but, in
both cases, the convergence is achieved. In a deterministic environ-
ment, the convergence is achieved when:

jQnþ1ðs; aÞ�Q ðs; aÞj ¼ γΔn; ð7Þ
is true. On the contrary, in the nondeterministic environment does
not exist an accepted formula to the convergence. The convergence
for a nondeterministic environment is assumed when a user defined
number of iterations is reached. The theorem “Convergence of
Q-learning for nondeterministic Markov decision processes” [23]
shows that a nondeterministic MDP converges when there is a
bounded reward ð8ðs; aÞ; jrðs; aÞjrc and 0oαnr1). Let nði; s; aÞ be
the number of times the learning process has been applied, where i
represents the iterations in the tuple ðsz; ahÞ. Eq. (8) is true in the ith
iteration when n⟶1 with probability 1:

∑
1

i
αnði; s; aÞ ¼1; ∑

1

i
½αnði; s; aÞ�2r1: ð8Þ

In a nondeterministic environment, the convergence process is
quite time consuming; for example, in [23] we can see that the
Tesauro's TD-GAMMON needs for training 1.5 million of backgammon
games iterations and each of them contains tens of state-action
transitions.

4. Proposed method

This paper proposes a method to learn the best descriptor for
each image. Fig. 2 shows an illustration of the proposed scheme.
In particular, Fig. 2(left) presents a classical BoF (i.e., [7,3,8,9])
while Fig. 2(right) shows the proposed RL based scheme. In fact,
we propose a new multi-table RL based strategy to select the best
descriptor for each image from a set that contains the most widely
used according to the literature (i.e., Spin, SIFT, SURF, C-SIFT and
PHOW). This section is organized as follows. First, Section 4.1
introduces the elements of the tuple. Next, the architecture used to
learn the best descriptor for each image is explained in Section 4.2.
Finally, the combination of Q-tables is given in Section 4.3.

It should be noticed that the proposed approach does not
follow classical RL schemes, where an action (ah) is applied and
results in a reward/punishment (rt) and a new state (szþ1). In the

proposed method, after applying the action only a reward is returned
(does not result in a new state); hence after applying the action and
updating the Q-table, a new image from the database is considered.
In this work, the state sz is only affected by the previous visits but not
by the future ones since the MDP is of first order [14]. Then, in this
case, the Eq. (5) is re-written as follows:

Qnðsz; ahÞ⟵ð1�αnÞQn�1ðsz; ahÞþαn½rþγ max
a0

Qn�1ðsz; a0Þ�: ð9Þ

4.1. Tuple definition

The agent of RL learns the action that maximizes the reward in
each state. In order to do this, the RL uses the 〈S;A; δ; τ〉 tuple. This
section describes the elements of the MDP tuple.

4.1.1. State definition
In this work a state is a representation of the image. There are

several characteristics of the images that can be used as states and
each state definition achieves different results. This section explains
the four state definitions used to deal with the visual object classifica-
tion. The first three state definitions (see Lnanbn based state definition,
Entropy based state definition and Gradient based state definition) use
the scheme proposed in Fig. 3 that consists of a vector with 13
elements. The first image (Fig. 3(a)) contributes with one value, the
second image (Fig. 3(b)) with 4 and the last image (Fig. 3(c)) with
8 elements, resulting in the vector with 13 elements. Then, the last
state definition (see Section 4.1.1) consists of a vector of 50 elements
obtained from a representation of visual words.

The steps for computing states are:

1. For each image in the training set, extract the vector of
characteristics.

2. Using the K-means algorithm build K clusters. The center of the
clusters are the states (S¼ fszg0o zoK )

Lnanbn based state definition: This state definition uses the Lnanbn

color space. This color space is obtained by converting RGB to XYZ
and then, XYZ to Lnanbn (see [25,26] for more details). Fig. 4(b) shows
a picture in Lnanbn color space while Fig. 4(a) depicts the original
image in RGB color space. The Ln represents the luminance, an

represents the difference between the red and green colors, and bn

is the difference between the yellow and blue. This state definition
results in a vector of characteristics of 39 elements. This vector is
computed using the scheme presented in Fig. 3, which corresponds

Fig. 2. Illustration of learning the best descriptor for each image using Q-learning.
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to 13 squares for every given image, actually for each square this state
computes three median values, one for each channel of Lnanbn.

Entropy based state definition: This state definition is based on
the uncertainty of the information in the image. In this case, the
vector of characteristics also has 13 elements (Fig. 3). This state
definition uses the gray level representation and, for each element
of the partition image, extracts the entropy as follows:

E¼ � ∑
N

i ¼ 1
pi log 2 ðpiÞ; ð10Þ

where pi is the histogram of image and N is the number of pixels in
the given region.

Gradient based state definition: This state definition uses the
gray level representation. The vector of characteristics has 26
elements (13 elements per each direction). For each element of
the partition image computes the gradient in x and y direction.
Then, the state vector is built with the median of gradient values
contained in each image partition (see Fig. 3). Fig. 5(b) shows the
edges extracted using the gradient in x direction and Fig. 5(c) using
the y direction.

Fig. 4. (a) Image from ETH database and (b) conversion of RGB image to Lnanbn color space. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. (a) Image from ETH database, (b) image gradient in x direction, and (c) image gradient in y direction.

Fig. 3. (a) Image from ETH database [24] (all the images from the database are resized to 128�128). (b) Image split up into four squares. (c) Image split up into sixteen
squares, note that only eight of them are used.
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Histogram of interest point based state definition: This state
definition uses all the descriptors of the set of actions to compute
the vector. This state definition extracts a vector of characteristics
containing 50 elements. The elements of this vector are obtained
according to the five actions defined in the next section. For each
action (descriptor), a dictionary of visual words is built using the
first 2 steps of the classical BoF. First, the features are extracted
and then, using these features a dictionary of ten visual words is
built. The vector results from the process of concatenating the
representations of the image using a histogram of ten visual words
for each descriptor.

4.1.2. Action definition
In this work, the actions came from a set of descriptors that the

RL technique learns during the training process; as a result the best
descriptor for each image is found. A large number of descriptors
have been proposed in the literature in recent years [27]. In this
work five frequently used descriptors were selected; they are
detailed below:

� SIFT: Scale-Invariant Features Transform is a descriptor that
finds interest points and describes them. The points are found
by using space scale of Gaussian filters and are described by
means of the gradients around it [2].

� PHOW: Pyramid Histogram Of visual Words is a descriptor
based on SIFT. This descriptor does not find interest points; on
the contrary, it uses a dense grid at different scales [9].

� C-SIFT: Color-SIFT is a descriptor based on SIFT that incorpo-
rates the color of the image [28].

� SURF: Speed Up Robust Feature is a descriptor based on the
sum of 2D Haar wavelet. This descriptor is efficiently computed
using integral images [8].

� Spin: This descriptor makes a histogram of the intensity values
of the pixels [29].

4.1.3. δ function
The classical RL involves the δ function as follows:

δ : S� A-S ð11Þ
where, given a state (sz) and applying an action (ah) results in a
new state (szþ1). In this framework, given an image (Isz ) and
applying an action (ah), the δ function does not return a new state,
instead, after applying an action to an image the output is a new
image description (Isz0 ). The new image description is obtained
using the descriptors mentioned above. The features described are
intrinsic for each image, hence, two images with the same state
and applying the same action could result in different image
descriptions (see Fig. 6).

As mentioned before, the δ function is deterministic when,
given a state (sz) and applying an action (ah) always returns the
same new state (szþ1). Even knowing that in this work δ behaves
different from the classical it is still non-deterministic.

4.1.4. τ function
In this work the τ function is also a nondeterministic function.

During the process we cannot ensure that two images at the same
state (sz) and doing the same action (ah) lead to the same τðsz; ahÞ
[23]. For instance, in Fig. 6(a)–(c) applying the action SIFT over the
three images we obtain the same reward. In all of them, the
classification matches with the ground truth. However, if we
change the action the rewards could be different; for instance,
if SURF is applied to the same set of images, Fig. 6(a) differs from
the ground truth and returns ‘tomato’. Fig. 6(b) matches with the

Fig. 6. (top) Illustration of three images from the ETH database, assume that all of them are in the same state. (bottom) The image patches obtained after applying the same
action: SIFT.
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class, and finally, Fig. 6(c) does not match with the ground truth;
in this case the process of classification returns ’apple’. Therefore,
applying SURF, to the second image (Fig. 6(b)) gives a reward, but
applying it in to the other two images (Fig. 6(a) and (c)) results in a
punishment.

4.2. Training to learn the best descriptor

This section presents the architecture proposed for selecting
the best descriptor. Our VOC scheme aims at using the minimum
information and improving the classification rate. The proposed
architecture learns the best descriptor for each image. The

proposed method is based on BoF and, in concrete, this method
is focussed on the first step of the BoF.

In order to train and test our approach, the database is split up
into three sets: BoF training set (BoFTS), Q-table training set
(QTTS) and testing set. The learning process has two steps: The
first training step is performed using the BoFTS where, for each
descriptor from the set of actions a kd-tree (Tah ) is built and a SVM
is used to classify the objects [30].

The second training step is depicted in Fig. 2. First of all, the
Q-table is initialized with a “0” in all the cells and then the process
starts. Given an image from the QTTS extracts the characteristics to
find the state (sz). The agent extracts the action (ah) using the

Fig. 8. (a) Image from ETH database, (b) image split up into four equally sized squared blocks, (c) corners detected in the image and (d) blobs detected in the image.

Fig. 9. Some of the objects contained in the nine classes of ETH database.

Fig. 7. Multi-table combination.
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exploration/exploitation trade-off. It applies the action (ah) to the
image (sz) and the system obtains the features of this image using
the selected descriptor. Then, these features are used to compute
the histogram of this image according to the tree trained above
ðTah ; ahÞ. Finally, a SVM is used to classify the histogram by
returning a label (the classification of the image). The agent
compares the label of the image with the ground truth and obtains
a reward/punishment (rt). Finally, the Q-table is updated using
Eq. (9) and the process starts again with a new image from the QTTS.

4.3. Combination of Q-tables

After explaining the learning process in Section 4.2, it should be
noticed that in Section 4.1.1 four different states definition have
been proposed; hence, the next question is how to select the right
state definition. A brute-force idea could be to concatenate all the
state definitions; however, as will be shown in Section 5 this
strategy does not always reach the best performance.

This section proposes a method to learn the best descriptor
from only one state definition for each image (e.g., states Lnanbn

based state definition, Entropy based state definition, Gradient based
state definition and Histogram of interest point based state defini-
tion). Therefore, the process proposed above is repeated four times
(one for each state definition) and it finishes with a Q-table for
each state definition. Now the objective is to decide the action for
each image using the information from the Q-tables. In this work,
we propose a simple voting strategy for combining the four
Q-tables. The strategy consists in selecting the best action
proposed by the Q-tables for each image. The best action from
the Q-tables is the action that maximizes the reward (Fig. 7
illustrates this multi-table scheme).

5. Experimental results

The proposed method has been evaluated using two different
databases (ETH and COIL). The evaluation framework compares
the results using:

� A unique descriptor for the whole database.
� All the descriptors concatenated in a single one.
� The RL-based approach presented in [11].
� The RL-based approach with different state definitions.
� All the states concatenated.
� The information provided by the Q-tables combined (Fig. 7).

These experiments have been performed with the first database
(ETH database) and then repeated with the second one to
validate them.

In [11] a single Q-table is considered and a state definition
using image content statistics is proposed. This state definition is
based on the use of the gray scale image information together with
additional image detectors as presented below. The resulting state
(vector) contains 17 elements obtained from the following four
groups.

1. Mean, standard deviation and the median gray values for each
image (Fig. 8(a)) (this contributes with three elements to the
vector).

2. Mean, standard deviation and the median gray values for each of
the four equally sized squared blocks (as depicted in Fig. 8(b))
(resulting in 12 elements in the vector).

3. The number of corners (Fig. 8(c)) obtained from Harris corner
detector [5] (it contributes just with 1 element to the vector).

4. The number of blobs (Fig. 8(d)) obtained converting gray scale
to black and white using OTSU threshold [31], and then, a

labeling algorithm (bwlabel) with a connectivity of 8 neighbors
[32] (this is the last element in the vector).

The first experiments were performed using the ETH database.
Fig. 9 shows the nine classes of the database (i.e., apple, car, cow,
cow-cup, cup, dog, horse, pear and tomato). In order to do the
experiments, we randomly select 45 images from each class. As
mentioned above, the database was split up into three sets: 15

Fig. 10. Classification performance of a single descriptor and a combination of all
descriptors for ETH database.
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Fig. 11. Classification performance using BoF with RL and different state definitions
from the ETH database. S1: state definition from [11]. S2: Lnanbn . S3: Entropy. S4:
Gradient. S5: Histogram of interest point.
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Fig. 12. Comparison of different methods to select the descriptors from the images
of the ETH database. D1: PHOW descriptor. D2: All descriptors concatenated in a
single vector. D3: The best descriptor selected by RL with Lnanbn as state. D4: The
best descriptor selected by RL with a concatenation of states: S2, S3, S4 and S5. D5:
The proposed multi-table approach. D6: Oracle.
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images for training the BoF, 15 images for training the Q-table and
finally, and 15 images for testing. The value of γ is 0.9 and the
process uses a ε-greedy strategy of exploration–exploitation trade-
off (ε¼ 0:2).

In order to compare the results obtained using the proposed
approach, first of all, the performance for each descriptor and the
combination of all them are computed (see Fig. 10). It can be
appreciated that the best single descriptor is PHOW with a
performance of 74.81% of correctly recognized objects and, using
the combination of all the descriptors, this ratio is increased up to
76.3% of classification. In this work, the oracle means the best
performance that can be reached only if each image were
described by its best descriptor. In this particular database, the
oracle improves the results in 19% reaching 95.6% of performance.

Fig. 11 shows the performance using the proposed RL based
scheme with the different state definitions. The best performance
is obtained using the Lnanbn state reaching 82.2% of classification

Fig. 14. Illustration from COIL database, one object per class is depicted.

Fig. 15. Classification performance of BoF using a single descriptor for COIL database.
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Fig. 16. Classification performance using BoF with RL and different state definitions
for COIL database. S1: State definition from [11]. S2: Lnanbn . S3: Entropy. S4:
Gradient. S5: Histogram of interest point.

Fig. 13. Different confusion matrices for ETH database: (a) Using only the PHOW descriptor (74.81%), (b) using Lnanbn state definition (82.2%) and (c) using the proposed
approach (83.7%).
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Fig. 17. Comparison of different methods to select the descriptors from the COIL
database. D1: PHOW descriptor. D2: All descriptors concatenated in a single vector.
D3: The best descriptor selected by RL with Gradient as state. D4: Multi-table
approach. D5: Oracle.
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rate. Fig. 12 summarizes the proposed evaluation. The first two
bins are simple BoFs, the first bin corresponds to the result
obtained if the best single descriptor (PHOW 74.81%) is consid-
ered; the second one corresponds to the performance using the
concatenation of all descriptors in a single vector; it reaches 76.3%
of classification rate. Next, the result from the best single state
definition, in this case the Lnanbn, is presented. Then, the next two
bins correspond to the results obtained concatenating all the states
presented in Section 4.1.1 and the results obtained combining the
states using the strategy presented in Section 4.3. In the case of
state concatenation an 82.2% of classification rate is obtained while
with the proposed approach an 83.7% is reached. Finally, the last
bin corresponds to the result from the oracle in this database.
Fig. 13 depicts the performance D1, D3 and D5 of Fig. 12 as
confusion matrix. The first confusion matrix is obtained using
the PHOW descriptor (Fig. 13(a)). Fig. 13(b) shows the performance
using BoF with RL and Lnanbn state definition. Fig. 13(c) shows the
results obtained when the proposed combination of Q-tables
is used.

In order to validate the proposed approach, the experiments
are repeated with a second database. This database is COIL [33].
The COIL database contains 100 classes. Fig. 14 shows one image
per class. Each class contains 45 images and was split up into three
sets: 15 images for training the BoF, 15 images for training the
Q-table and 15 images for testing.

The performance of BoF using a single descriptor is depicted in
Fig. 15 where the best option is PHOW with 98.3% of classification
rate. Fig. 16 shows the performance for each of the state definition
described above (Section 4.1.1) and Fig. 17 summarizes the pro-
posed evaluation. It can be appreciated that in this case the best
state definition corresponds to the gradient, which reaches a 98.8%
of classification rate. It can be seen that the combination of
Q-tables reaches 99.0% of classification rate (see Fig. 17).

Fig. 18 shows the confusion matrices with the best results.
Fig. 18(a) shows the confusion matrix of PHOW as a descriptor
(98.3% of classification rate). The second confusion matrix uses BoF
with RL and gradient as a state definition, in this case the
classification rate is 98.8%. Finally, Fig. 18(c) shows the confusion
matrix for the proposed approach that combines multiple
Q-tables.

In this second experiment the behavior of the approaches is
similar, because all state definitions improve the classification rate
with respect to the single descriptor case. Also, the combination of
all descriptors reaches the same classification rate as the combina-
tion of Q-tables, but we work with less information from the
image, thus, we use less computer resources (space and time). The
scenes classified by our approach (D2) can be different from those
correctly classified in D4. Note that although there is still space for

improving, the obtained result is quite near to the best result,
which is only reached by the oracle (99.7% of classification rate).

6. Conclusions and future work

This paper presents a novel framework for visual object
classification. In particular, it is focussed on the selection of the
best image feature descriptor. It is based on the combined use of a
bag of features scheme together with a reinforcement learning
technique, implemented trough the Q-learning approach. Note
that any visual classification method (based on image descriptors)
can substitute the BoF in this approach.

The proposed method combines different state definitions in a
multi-table strategy that guarantees the selection of the best
action (image descriptor). Experimental results using two public
databases and comparisons with state of the art are provided
showing the performance of the proposed approach. Note that, the
presented approach uses only the best descriptor, thus, it signifi-
cantly reduces the computational resources (space and time).

The future work will be focused on the combination of image
descriptors and a modification to the framework in order to
incorporate a human feedback to the learning step. There are
scenes that cannot be recognized using only one descriptor. Our
current architecture is not able to cope with these cases. However,
the architecture can be modified in order to learn a combination of
descriptors for each image. Exploring supervised reinforcement
learning is another field of interest. The apprenticeship in reinfor-
cement learning interacts with a human in order to reach a better
learning step (e.g., faster learning, improved performance).
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