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A B S T R A C T

Guided image processing techniques are widely used to extract meaningful information from a guiding image
and facilitate the enhancement of the guided one. This paper specifically addresses the challenge of guided
thermal image super-resolution, where a low-resolution thermal image is enhanced using a high-resolution
visible spectrum image. We propose a new strategy that enhances outcomes from current guided super-
resolution methods. This is achieved by transforming the initial guiding data into a representation resembling a
thermal-like image, which is more closely in sync with the intended output. Experimental results with upscale
factors of ×8 and ×16, demonstrate the outstanding performance of our approach in guided thermal image
super-resolution obtained by mapping the original guiding information to a thermal-like image representation.
1. Introduction

Over the past two decades, the usage of thermal imagery has
significantly increased due to cost reductions and improved availability
of thermal cameras [1]. However, despite the growing adoption of
thermal cameras, there are still limitations on image resolution imposed
by the technology. While higher-resolution thermal cameras exist, they
often rely on more expensive actively cooled technology, leading to
the prevalent use of uncooled thermal cameras in most applications
due to their affordability. To overcome these resolution limitations,
Super Resolution (SR) techniques, originally developed for the visual-
optical spectrum, can be adapted for the thermal domain. The goal
of SR approaches is to reconstruct a High Resolution (HR) image
from one or more Low Resolution (LR) input images. Both traditional
algorithm-based [2] and machine learning-based [3] SR methods can
be employed.

Traditional approaches typically address this challenge within a
multi-image framework, known as Multi-Frame Super Resolution
(MFSR) [4]. In contrast, some methods learn correspondences between
low- and high-resolution image patches, which are then applied to
a new LR image to recover its most probable HR version [5]. Fur-
thermore, machine learning-based approaches, also known as single-
frame super-resolution (SFSR), are known to recover the HR image
by leveraging a set of training examples, often known as example-
based single-image SR [6]. Although MFSR and SFSR approach achieve
acceptable results at ×2, ×3, and even in certain scenarios at ×4,
super-resolution beyond ×4 is limited by the scarce information in the
provided LR image. In light of these conditions, the path has been
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opened for guided super-resolution approaches, in which the process
of super-resolving the thermal image is ‘‘guided’’ by the information
provided by an image of the same scene acquired with a low-cost
camera in the visible spectrum, which may be low-cost but high-
resolution. The guidance strategy is not new in the image processing
field it has already been explored to solve different problems during
the last decades. For instance, we can find guided-based solutions
for enhancement [7], image filtering [8], super-resolution [9], just
to mention a few. Regarding the super-resolution problem, different
guidance SR techniques have been proposed to tackle depth-map SR,
infrared SR, thermal SR, hyperspectral SR, and some others; Section 2
presents details of state-of-the-art approaches proposed in the literature
for guided SR in all these contexts.

Most of the guided super-resolution approaches mentioned above
focus on developing novel architectures to efficiently extract and in-
tegrate features from the HR guiding image toward the LR-guided
image during the super-resolution process, without taking into account
whether the guiding and guided images are from the same or different
domains. On the contrary to all these approaches, the current work
is focused on this fact trying first to map the guiding image towards
the guided domain, to perform a more efficient guidance task. We
hypothesize that as more similar the domain of the input images is
as better the guidance process will be. This hypothesis is validated by
testing nine different state-of-the-art approaches using as a guidance an
HR thermal-like image, instead of the given HR visible spectrum image.
In all the tested approaches and datasets, better results are obtained
with the proposed strategy.
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The main contributions of the manuscript can be summarized as
follows:

• A novel strategy to improve state-of-the-art guided super-resolu-
tion approaches is proposed. It is based on the use of HR thermal-
like images as a guidance, this pseudo-thermal image is obtained
from an HR visible spectrum image.

• An in-depth evaluation of the proposed strategy is performed with
nine different architectures of the state-of-the-art, in challenging
scenarios (i.e., ×8 and ×16) from three different datasets.

The manuscript is organized as follows. Section 2 presents works re-
ated to guided super-resolution approaches. Section 3 presents the pro-
osed strategy. Experimental results and comparisons with different im-
lementations and datasets are given in Section 4. Finally, conclusions
re presented in Section 5.

. Related works

In recent years, deep learning-based approaches have become the
ommon way to tackle most computer vision problems. For instance,
n [10] the authors propose a novel approach for the super-resolution
f hyperspectral images related to medical imaging, terrestrial and
emote sensing. Contrary to existing methods based on observations
f multiple scenes, their framework leverages transfer learning from
atural images, using a deep convolutional neural network to learn
ow-to-high resolution mapping. Additionally, they employ collabora-
ive non-negative matrix factorization to improve performance. Also
ocused in the remote sensing field, in Qin et al. [11] the authors
ropose a method for image super-resolution using a multi-scale con-
olutional neural network called MSCNN. The proposed method takes
dvantage of multiscale image features to improve the extraction of
igh-frequency features and reconstruct high-resolution images with
ich details. The influence of image super-resolution on aerial scene
lassification has been a topic of interest in the field of remote sensing
nd computer vision. The impact of SR to improve the classification of
erial scenes is studied in [12], with special emphasis on the analysis of
ifferent state-of-the-art SR algorithms, including traditional methods
nd deep learning-based approaches.

More recently, diffusion models have been also considered for tack-
ing the super-resolution problem. In [13], the authors address the low
nference speed of diffusion-based image super-resolution methods by
ignificantly reducing the number of diffusion steps, thereby eliminat-
ng the need for post-acceleration during inference and its associated
erformance deterioration. The method constructs a Markov chain that
ransfers between the high-resolution image and the low-resolution
mage by shifting the residual between them, substantially improving
he transition efficiency. Additionally, an elaborate noise schedule is
eveloped to flexibly control the shifting speed and the noise strength
uring the diffusion process.

Following the state of the art, different CNN-based architectures
ave been proposed for the guided super-resolution problem. There-
ore, a comprehensive review of the state-of-the-art architectures de-
igned for the guided super-resolution problem is presented below,
nd recent advances in the field are described. The review highlights
he integration of deep learning architectures, attention mechanisms,
ultiscale fusion strategies, and synthesis into guided super-resolution
odels.

These advancements enable the effective utilization of guidance
nformation for improved super-resolution results. In addition to guided
hermal image super-resolution, this section also reviews approaches
hat are focused on guided super-resolution of depth maps. The follow-
ng approaches provide an overview of notable works in each of these
omains.

One of the first guided thermal super-resolutions has been presented
2

n [14], the authors propose a novel approach where the guided SR is h
ackled as a pixel-to-pixel mapping, from the guided HR image to the
omain of the LR source image. This mapping process is parametrized
s a multi-layer perceptron, whose weights are learned by minimizing
he distance between the downsampled HR target image and the given
R source image. Also in [15] the authors propose an architecture
apable of restoring high-quality images from sequences of noisy, mis-
ligned, and low-resolution RAW bursts. This architecture introduces
he Burst Super-Resolution Transformer (BSRT), a framework that en-
ances the extraction of inter-frame information and the overall recon-
truction process. The BSRT incorporates a pyramid flow-guided de-
ormable convolution network (Pyramid FG-DCN) in conjunction with
win Transformer Blocks and Groups as the main backbone. Another
echnique to address super-resolution methods for Synthetic Aperture
adar (SAR) images with large-scale factors is proposed by [16], this
ethod utilizes co-registered HR optical images to guide SAR im-

ge reconstruction named as Optical-Guided Super-Resolution Network
OGSRN). This architecture comprises two sub-networks: SAR image
uper-Resolution U-Net (SRUN) and SAR-to-Optical Residual Trans-
ation Network (SORTN). The training process involves SAR image
econstruction using SRUN and a residual learning process based on an
ttention module with channel and spatial mechanisms and finally, a
ranslation process to obtain the optical images using SORTN. Another
uided super-resolution approach is presented in [17]; it uses a special-
zed optimization layer that adapts during the learning process. This
ayer operates on a graph representation, capturing the relationships
etween pixels in the image. By learning the potentials of this graph,
he approach incorporates contextual information from a guide image
hile ensuring faithful reconstruction of the high-resolution target from

he low-resolution source. The idea is to incorporate information from
guide image to ensure that the high-resolution output accurately

patially matches the low-resolution image. Unlike existing methods,
he authors treat the source as a constraint, resulting in sharper and
ore natural-looking images.

On the contrary to previous works, in [18], the authors address the
hallenge of limited image resolution in thermal imaging systems used
n UAVs. To overcome this limitation, the authors propose the mul-
iconditioned guidance network (MGNet), which uses high-resolution
isible images to enhance the super-resolution of thermal UAV images.
ote that HR images are rich in information such as distinct appear-
nce, semantic details, and edge features that are useful for the SR
rocess. To leverage this information, the authors introduce a multicue
uidance module MGM to effectively integrate information from visible
mages to guide the process of thermal UAV image super-resolution.

Recently, [19] introduced a novel approach called Dual-IRT-GAN,
hich is a Generative Adversarial Network (GAN), specifically de-
eloped to tackle simultaneous tasks of super-resolution and defect
etection in infrared thermography. The visibility of flawed areas in
he resulting high-resolution images is enhanced by using defect-aware
ttention maps derived from segmented defect images. To perform the
raining process the researchers use a large dataset containing gener-
ted thermal images of composite materials with defects of various
ypes, sizes, and locations to train the Dual-IRT-GAN model. Continuing
ith the literature review, in [20], the authors present the techniques
nd results obtained from a guided thermal image super-resolution
hallenge, proposed at the PBVS-CVPR 2023 Workshop. The challenge
onsists of generating a ×8 super-resolved thermal image using as
uidance the corresponding high-resolution visible spectrum image. Ac-
ording to the authors, 74 teams have been initially registered showing
he interest of the research community in this topic.

Unlike existing methods, that primarily focus on enhancing edges,
n [21] the authors propose the HTI-Net, which takes a system-level
erspective and optimizes the neural network structure for image super-
esolution reconstruction. The inspiration behind HTI-Net comes from
he inherent similarity between thermal particles and image pixels,
eading to the proposal of a heat-transfer-inspired network based on

eat transfer theory. To achieve improved feature reuse through the
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integration of multiple information, the researchers employ finite dif-
ference theory. They utilize a second-order mixed-difference equation
to redesign the residual network (ResNet). Additionally, by deriving
a pixel value flow equation from the thermal conduction differential
equation, HTI-Net effectively uncovers deep potential feature informa-
tion. Following guided approaches, [22] presents an architecture that
combines guided anisotropic diffusion with a deep convolutional net-
work. Combining the edge enhancement capabilities of diffusion with
the contextual reasoning of deep neural networks improves matching
with the source image. With this architecture, improved performance
is obtained at larger scales, such as the ×32 scale.

Focusing on guided depth map super-resolution, [23] presents an
dge-based technique, where edges from color images are used as
uidance during the SR process. The authors address the challenge
f inconsistency between color edges from the guiding images and
epth discontinuities on the LR depth maps. This problem generates
exture copy artifacts and blurring depth discontinuities in restored
epth maps. The paper proposes a robust optimization framework
or color-guided depth map restoration t0.0hat uses a robust penalty
unction to model the smoothness term of the model. The proposed
ethod is shown to be robust against the inconsistency between color

dges and depth discontinuities, even when using simple guidance
eight. On the other hand, in [24] a novel deep network named
epthSR-Net is introduced for guided depth map super-resolution. This
rchitecture is constructed based on a residual U-Net deep network
rchitecture, incorporating hierarchical features to guide the process
f residual learning. Similarly, in [25] a technique that is focused on
epth super-resolution by combining an internal smoothness prior and
n external gradient consistency constraint in the graph domain is
ntroduced. It aims to reconstruct a high-resolution depth map based on
low-resolution observation, aided by a corresponding high-resolution

olor image. The method uses a pyramid structure to extract multi-
cale features from the high-resolution color image and employs a
eep dense-residual network to enhance the intensity-guided depth
ap. Continuing with the use of RGB images, in [26] an approach for

chieving both rapid and high-quality hierarchical depth-map super-
esolution (HDS) by using an HR RGB image to guide bilateral filtering
f the depth map is presented. The authors extend the HDS model to a
lassification-based Hierarchical Depth-map Super-resolution (C-HDS)
odel, implementing a context-aware trilateral filter to mitigate the

nfluence of unreliable neighbors on the missing depth information.

. Proposed strategy

Multi-modality integration has emerged as an exciting area of re-
earch, prompting the community to explore innovative techniques that
ake advantage of the coexistence of different sources of information.
his integration can be achieved through various approaches, including

nformation fusion and guided methods. Information fusion involves
ombining inputs to create a unified representation (for example, [35,
6]), while guided approaches use one modality to guide the processing
f another (for example, filtering [33]). In the super-resolution guided
ontext [37], the guiding modality plays a crucial role in improving the
esolution and quality of the target modality.

In the current work, we introduce a new strategy designed to
mprove the performance of state-of-the-art guided super-resolution
echniques, which are based on the usage of a high-resolution im-
ge as guidance. In general, this guidance is an HR visible spectrum
mage, in our case we propose to use a representation of this HR
isible spectrum image similar to the LR image (i.e., thermal im-
ge) being super-resolved. Fig. 1(𝑏𝑜𝑡𝑡𝑜𝑚) depicts an illustration of the

proposed strategy. Our approach involves using synthetic data, par-
ticularly pseudo-thermal images, as a reference to guide the process.
The main goal is to demonstrate that these synthetic images can give
better results than those obtained when super-resolution is guided by
high-resolution images in the visible spectrum. This section begins by
3

explaining the changes proposed to our previous approach presented
in [38], where a cycled adversarial network with multiple loss functions
is used to obtain a pseudo-thermal representation. Next, the nine state-
of-the-art guided super-resolution approaches evaluated in the current
work are briefly described.

3.1. Thermal like synthetizing

Generative models have been extensively explored to obtain syn-
thetic representations for different computer vision applications, like
infrared image colorization (e.g., [39,40]), estimation of vegetation
indexes [41] also include the generation of synthetic face representa-
tions [42], lightweight image translations [43], medical image synthe-
sis [44], among others.

A recent proposal introduced a novel approach to generate thermal-
like representations from low-cost visible images [38] referred to as
synthesized thermal images in the current work. The main objective is
to create synthetic images that closely resemble real thermal images,
providing valuable information about the objects in the scene. These
synthetic images can contribute to the goals of other computer vision
algorithms. The generation of synthetic thermal-like representations
opens up new possibilities in thermal image processing. These syn-
thetic representations provide a cost-effective alternative to acquiring
actual thermal images, allowing for broader access to thermal-related
information. Moreover, the ability to generate thermal image-like rep-
resentations from visible images enhances the synergy between dif-
ferent imaging modalities and facilitates the integration of thermal
information into existing machine vision algorithms.

Additionally, alternative solutions can be provided to the low avail-
ability of data in this spectrum with these thermal data generators,
which is sometimes a real challenge. The generation of synthetic ther-
mal representations provides a practical solution to mitigate this limi-
tation. Researchers can use these representations to expand their data
sets and improve the robustness and generalization of computer vision
models, especially when real thermal data is scarce or expensive to
acquire.

In this work, the cyclic GAN architecture proposed in [38] is con-
sidered (see illustration in Fig. 2), which uses as an input a RGB
image converted to the HSV color space from which only the bright-
ness channel (H) is taken. This image (H channel) is transferred to a
pseudothermal image domain. These generated synthetic images are
used as a guide in all the guided SR approaches evaluated in the
current work. The cyclic GAN architecture combines multiple loss
functions to improve the stability and convergence quality of the GAN
network. A brief explanation of each of these loss functions used in the
model is given below. One of these loss functions is relativistic loss,
which is effective in generating high-dimensional data. It achieves this
by encouraging generated samples to closely resemble real samples,
avoiding model saturation and speeding up the training process. In
addition to the relativistic adversarial loss, we incorporate contrastive
and identity loss functions. These losses play a pivotal role in preserving
the structural and semantic information present in the input images.
They ensure that the generated thermal images maintain essential
features and details, safeguarding the overall image representation’s
integrity. The integration of these loss functions within the generative
cycle GAN architecture not only ensures the creation of high-quality
synthetic thermal images but also fosters a strong resemblance to real
thermal images. By harnessing the capabilities of these loss functions,
we effectively bridge the gap between different image domains, facili-
tating the generation of accurate and realistic thermal representations
from the H channel of the given image. The usage of these loss func-
tions provides an optimal framework for minimizing errors in network
predictions within the generative cycle GAN architecture. By thought-
fully considering their mathematical formulations and incorporating
them into the training process, we guide the network to prioritize
essential visual features, preserve structural and semantic information,
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Fig. 1. Guided thermal image super-resolution approaches evaluated in the current work: DAGF [27], JIIF [28], SVLRM [29], PMBANet [30], UGSR [31], PAGSR [32], DKN [33],
DKN [33], and DCTNet [34] following a: (𝑡𝑜𝑝) Classical scheme; (𝑏𝑜𝑡𝑡𝑜𝑚) Proposed strategy.
Fig. 2. Cycle GAN Architecture for Thermal Synthetized images proposed.
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nd generate thermal images that are visually compelling and virtually
ndistinguishable from real thermal images.

The relativistic loss is defined as follows:

𝑅𝐺𝐴𝑁
𝐷 = E(

𝑥𝑟 ,𝑥𝑓
)

∼(P,Q)
[

𝑓
(

𝐶
(

𝑥𝑟
)

− 𝐶
(

𝑥𝑓
))]

, (1)
𝑅𝐺𝐴𝑁
𝐺 = E(

𝑥𝑟 ,𝑥𝑓
)

∼(P,Q)
[

𝑔
(

𝐶
(

𝑥𝑓
)

− 𝐶
(

𝑥𝑟
))]

, (2)

here 𝑓 and 𝑔 are mappings that transform the confidence of the
iscriminator in classifying a sample as real or fake to a scalar value and
𝑟 and 𝑥𝑓 , represent the real and fake images, respectively. Contrastive
oss has also been incorporated to minimize the dissimilarity between
imilar pairs of data points and maximize the dissimilarity between
issimilar pairs within a given dataset. In accordance with [45], this
4

v

oss can be defined as:

contrastive(𝑌 , 𝑌 ) =
𝐿
∑

𝑙=1

𝑆𝑙
∑

𝑠=1
𝓁contr

(

�̂�𝑠𝑙 , 𝑣
𝑠
𝑙 , �̄�

𝑠
𝑙
)

, (3)

he shape of the tensor, denoted as 𝑉𝑙 ∈ R𝑆𝑙×𝐷𝑙 , is determined by the
pecific structure and characteristics of the model. Here, 𝑆𝑙 represents
he number of spatial locations of the tensor. To refer to a ground truth
nd predicted feature vector within the tensor, the notation 𝑣𝑠𝑙 ∈ R𝐷𝑙

nd �̂�𝑠𝑙 ∈ R𝐷𝑙 is used, indicating the 𝐷𝑙-dimensional feature vector
t the 𝑠th spatial location. Conversely, �̄�𝑠𝑙 ∈ R(𝑆𝑙−1)×𝐷𝑙 refers to the
ollection of feature vectors at all other spatial locations apart from 𝑠.

Building upon the principles proposed in [38], an additional loss
nown as identity loss is incorporated into the model. This loss is
ery important to assess the disparity between the features extracted
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from the real and generated images. By minimizing the intensity loss,
the generator network is motivated to generate outputs that not only
possess a visually realistic appearance but also exhibit similar features
and structures as the real images. The use of identity loss serves as
a valuable tool in training the generator network to comprehend the
underlying characteristics of the real images and replicate them in
the generated outputs. This loss function encourages the generator to
learn and preserve the essential attributes, textures, and details that
are present in real thermal images. Consequently, the generated syn-
thetic thermal images demonstrate a higher fidelity and maintain the
structural integrity of the original images. By incorporating identity loss
into the training process, the model becomes proficient in capturing the
distinctive features and nuances of real thermal images. This ensures
that the generated outputs possess not only a realistic appearance but
also exhibit similar patterns, structures, and semantic content to their
corresponding real counterparts. The identity loss acts as a guiding
force, enabling the generator network to generate synthetic thermal
images that not only visually resemble the real images but also retain
their corresponding pixel and semantic information. This loss is defined
as follows:
identity (𝐺, 𝐹 ) = E𝑐∼𝑃data (𝑐) [‖𝐹 (𝑐) − 𝑐‖]

+ E𝑛∼𝑃data (𝑛) [‖𝐺(𝑛) − 𝑛‖] ,
(4)

where 𝐺 and 𝐹 correspond to mapping functions that generate the
synthetic images 𝐹 (𝐺(𝑥)) and 𝐺(𝑌 (𝑧)) respectively and 𝑐 and 𝑛 corre-
pond to a real image from the source and target domains respectively.
dditionally, in the current work, a cycle consistency loss is introduced

o further enhance the translation results. This loss plays a crucial role
n ensuring that the mapping between the domains remains consistent
nd bijective. In other words, when an image is translated from domain
to domain B and then back to domain A, the resulting image should

e identical to the original image from domain A. It is defined as:

𝑐𝑦𝑐𝑙𝑒(𝐺, 𝐹 ) = E𝑥∼𝑝 data(𝑥)[‖𝐹 (𝐺(𝑥)) − 𝑥‖1] (5)
+ E𝑦 ∼𝑝 data(𝑦)[‖𝐺(𝐹 (𝑦)) − 𝑦‖1],

where 𝐺 and 𝐹 correspond to mapping functions that generate the
reconstructed images 𝐹 (𝐺(𝑥)) and 𝐺(𝑌 (𝑧)) respectively. Also, 𝑥 and

correspond to real images. The cycle consistency loss encourages
(𝐺(𝑥)) ≈ 𝑥 real and 𝐺(𝑌 (𝑧)) ≈ 𝑦 real. This loss allows for generating
igh-quality images that are both realistic and semantically meaningful.
inally, the multiple loss functions implemented in our model can be
efined as:

final = 𝜆1RGAN(𝐺,𝐷,𝑋, 𝑌 ) + 𝜆2cont (𝐺,𝐻,𝑋) (6)
+𝜆3cont(𝐺,𝐻, 𝑌 ) + 𝜆4ident(𝐺,𝐹 ) + 𝜆5cycle(𝐺,𝐹 ),

where 𝜆𝑖 are empirically defined. Finally, in the current work, another
change is proposed to enhance the efficiency of the thermal-like image
generator model presented in [38]. We propose changing the default
value of the beta1 parameter in the Adam optimizer from 0.9 to 0.72.
This modification is aimed at enhancing the importance of current
gradient information and achieving a balance between stability and
efficiency during image generation. The change in the beta1 parameter
leads to a reduction in the weight of historical gradient information,
which improves the performance of the Adam optimizer. By making
this modification, the model achieves an optimal hyper-parameter com-
bination for effective convergence and high-quality thermal-like image
generation.

3.2. Guided super-resolution models

This section briefly details the nine guided SR approaches evaluated
in the current work. Note that some of the approaches have been
originally proposed for guiding SR of depth maps, while others are for
thermal images. To evaluate all of them in a common framework just
thermal images are considered as input, despite the fact some of them
5

were proposed for thermal or depth map images. All the approaches
from the state-of-the-art included in this section have the corresponding
code provided by the authors. All these approaches are used in the
experimental results section of this work.

Through this section, the notation given by the reviewed paper will
be used to avoid misunderstandings with the original papers, but note
that different terms have been used for the same content (i.e., source,
guide, guidance, target, input image, guided).

Deep Attentional Guided Filtering — DAGF: One of the ap-
proaches in the current work is the one presented in [27]. In this work,
the authors affirm that in the realm of image filtering, most existing
methods focus on constructing filter kernels solely from the guidance
itself, neglecting the interdependence between the guidance and the
target. Those methods often lead to the presence of undesirable arti-
facts, as there are typically significant variations in edges between two
images. Recognizing this challenge, the authors propose a framework
called deep attentional-guided image filtering. This framework see
Fig. 3, aims to fully leverage the complementary information present
in both the guidance and target images.

The proposed method incorporates an attentional kernel learning
module that generates two sets of filter kernels: one from the guidance
image and the other from the target image. These dual sets of filter
kernels are then intelligently combined by capturing the pixel-wise
dependency between the two images. This adaptive integration process
allows for a more precise and accurate transfer of structural information
from the guidance to the target. With this multi-scale guided image
filtering module is possible to progressively generate the filtering result
with the constructed kernels in a coarse-to-fine manner. Additionally,
a multi-scale fusion strategy is introduced to reuse the intermediate
results in the coarse-to-fine process. This module progressively gener-
ates the filtering result using the constructed kernels in a coarse-to-fine
manner. It enables a comprehensive analysis of the image at different
scales, ensuring that the filtering process captures both global and local
details. To maximize efficiency and enhance overall performance, a
multi-scale fusion strategy is employed to reuse intermediate results
obtained during the coarse-to-fine process.

Joint Implicit Image Function for Guided Depth Super-Resol-
ution — JIIF: According to the authors, the existing methods for guided
super-resolution often face limitations in terms of model capability or
interpretability. To overcome these challenges, the authors propose
an approach [28] to formulate a guided super-resolution as a neural
implicit image interpolation problem, adopting a general image inter-
polation framework. Fig. 4 depicts the proposed network architecture.
They introduce a Joint Implicit Image Function (JIIF) representation,
which enables the simultaneous learning of both interpolation weights
and values. The JIIF representation characterizes the target image
domain by using spatially distributed local latent codes extracted from
both the input (guided) image and the guide image. The concept
of implicit neural representation revolves around the use of a deep
implicit function (DIF) to map continuous coordinates to signals within
a specific domain. To facilitate knowledge sharing across different input
observations, an encoder is employed to extract latent codes from the
input, thereby enabling the conditioning of the DIF to the current
observation. Consequently, a scene or image can be represented by a
collection of local latent codes distributed across the input domain’s
coordinates, providing valuable information for various downstream
tasks such as semantic segmentation and super-resolution.

Additionally, the authors propose to learn the interpolation weights
concurrently. In the neural implicit interpolation part, they consider
the interpolation at each query pixel as a graph problem. To create a
smooth output, DIF uses a weighted average of the predictions from
nearby points. This can be thought of as a neural network perform-
ing implicit interpolation. The weights and values of the average are
learned using a deep implicit function. This function is able to learn

the relationships between the latent codes and the pixel values, and it
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Fig. 3. DAGF architecture.
Source: Illustration
from [27].
Fig. 4. JIIF architecture.
Source: Illustration
from [28].
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llows the decoder to produce high-quality images even when the LR
nput image is very low-resolution.

Finally, the proposed architecture offers a method that combines the
dvantages of implicit neural representation and image interpolation,
aving the way for improved guided super-resolution with enhanced in-
erpretability and model capability. These Graph Convolution Networks
GCNs) have emerged as a powerful approach for addressing problems
ssociated with graph-structured data.

Spatially Variant Linear Representation Models for Joint Fil-
ering — SVLRM: In contrast to existing methods that rely on locally
inear models or hand-designed objective functions, in [29] the authors
resent a novel joint filtering algorithm based on a spatially variant
inear representation model (SVLRM). Contrary to traditional tech-
iques that directly predict the target image using a deep convolutional
eural network, the proposed method employs a deep CNN to estimate
he spatially variant linear representation coefficients. These coeffi-
ients effectively capture the structural information present in both the
uidance and input images, and are subsequently utilized to generate
he desired target image. Fig. 5 depicts the efficacy of the architec-
ure in a diverse range of applications, including depth/RGB image
6

psampling and restoration, flash/no-flash image deblurring, natural
mage denoising, and scale-aware filtering. Also, the proposed method
ubstantially enhances the clarity of a flash/no-flash image deblurring
cenario. The introduction of the SVLRM for joint filtering provides
powerful approach for representing the target image. This method

ffers increased flexibility and adaptability in capturing the core struc-
ural characteristics of the images. Additionally, the researchers have
eveloped an efficient optimization technique that leverages a deep
onvolutional neural network constrained by the SVLRM. This enables
recise estimation of the spatially variant linear representation coeffi-
ients, which effectively capture the intricate structural details present
n both the input image and the guidance image. As a result, the
lgorithm can accurately determine whether specific structures should
e transferred to the target image. The proposed algorithm has under-
one extensive evaluations, demonstrating its exceptional performance
n various applications such as depth/RGB image upsampling and
estoration, flash/no-flash image deblurring, natural image denoising,
nd scale-aware filtering.

PMBANet: Progressive multi-branch aggregation network for
cene depth super-resolution — PMBANet: In the context of depth

map super-resolution, there are significant challenges due to the ill-

posed nature of the inverse problem. Reconstructing depth boundaries
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Fig. 5. SVLRM architecture.
Source: According to [29].
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accurately, especially at high magnification factors, is particularly dif-
ficult. Additionally, downsampling degradation often leads to severe
destruction of depth regions on fine structures and small objects in
the scene. To address these challenges, a novel approach called the
progressive multi-branch aggregation network (PMBANet) is proposed
in [30]. The PMBANet is built upon stacked progressive multi-branch
aggregation (MBA) blocks, as depicted in Fig. 6, it aims to comprehen-
sively tackle the aforementioned difficulties and progressively restore
the degraded depth map. Each MBA block consists of multiple parallel
branches, each serving a specific purpose.

The first branch called the reconstruction branch (RB), is introduced
as prior knowledge to assist in recovering depth details. This branch
uses attention-based error feed-forward/back modules. It iteratively
addresses the downsampling errors and refines the depth map by
employing the attention mechanism in the feed-forward/-back process.
This mechanism progressively highlights informative features at depth
boundaries, leading to improved depth map quality. The second branch,
known as the guidance branch (GB), is divided into a multi-scale branch
and a color branch. The multi-scale branch learns a representation that
focuses on objects of different scales, enabling better feature extraction.
On the other hand, the color branch uses auxiliary color information
to regularize the depth map. By leveraging the internal structural
correlation between depth and color, the color branch contributes to
enhancing the accuracy of depth reconstruction. To fuse and select the
most discriminative features from all the branches, a fusion block is
introduced. This block adaptively combines the information obtained
from each branch, allowing the network to effectively leverage the
diverse features learned in parallel.

Toward Unaligned Guided Thermal Super-Resolution — UGSR:
The UGSR-Base CNN model proposed by Gupta et al. [31], has been
designed for unaligned guided super-resolution, and incorporates two
approaches to effectively mitigate the misalignment present in the input
images. These methods are known as unaligned guided super-resolution
with feature-space alignment (UGSR-FA) and unaligned guided super-
resolution with misalignment estimation (UGSR-ME). The first un-
aligned guided super-resolution algorithm, UGSR-FA, introduces a fea-
ture-space alignment loss that maximizes the spatial correlation be-
tween feature maps from the low-resolution thermal and high-resolution
visible images. This loss encourages spatial alignment and acts as a
regularizer to ensure that the network compensates for the misalign-
ment between the feature maps. The second algorithm, UGSR-ME,
approximates the misalignment between the input and guide images
by jointly performing alignment correction and super-resolution in an
end-to-end manner. It incorporates a misalignment estimation block
7

t

that takes the thermal image and a stack of warped guides as inputs
and computes an optimal translation map by formulating the task
as a classification problem. The proposed network aims to enable
guided super-resolution from unaligned low-resolution thermal images,
eliminating the need for pixel-to-pixel alignment between the thermal
and guide images. The base network incorporates dense blocks and self-
attention modules to enhance the merging of cross-domain features at
a global level (see Fig. 7).

The models are trained with 𝐿1 loss and an edge loss term that en-
courages sharpness in the reconstructed images. Furthermore, UGSR-FA
incorporates a feature-alignment loss, labeled as LFA, while UGSR-
ME employs the 𝐿0 norm on the depth map. The UGSR-FA method
addresses the blurriness and edge ambiguity issues that arise when
fusing features from misaligned thermal images and guiding images to
reconstruct the high-resolution image. Simply using a pixel-wise loss
like 𝐿1 does not effectively reduce blurriness since the misalignment
ccurs in the feature space, and the back-propagated gradients may
ot perceive the spatial shift as the cause of blurriness. To overcome
his, additional constraints are imposed on the network to accom-
odate the misalignment. The alignment of features in the feature

pace is achieved by introducing a loss function that enhances the
ross-correlation between features. UGSR-ME addresses the problem
hrough the estimation and correction of misalignment before perform-
ng guided super-resolution. However, explicitly estimating a dense
isalignment map can be highly challenging and is not necessary for

uided super-resolution. To avoid the additional complexity, a model
s proposed that incorporates alignment correction as part of the super-
esolution process by estimating the misalignment in an end-to-end
anner and applying the estimated misalignment to the guide image.

Pyramidal Edge-Maps and Attention-based Guided Thermal
uper-Resolution — PAGSR: The approach presented in [32] focuses
n guided super-resolution of thermal images using visible images
s guidance. The method utilizes pyramidal edge maps to mitigate
rtifacts in the enhanced images. These edge maps are obtained from
ultiple hierarchical levels, which are derived by merging previously

xtracted edge features. These extracted edge features, called gedges,
ontain high-frequency orientation information. The spatial resolu-
ion edges obtained are then compared to that of the low-resolution
hermal image using an average pooling layer. Attention mechanisms
re employed to integrate these edge maps into the super-resolution
etwork. All the spatial information is integrated into attention blocks,
hich are responsible for fusing the orientation information with the
hermal super-resolution network. For each edge map, a set of merging
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Fig. 6. PMBANet architecture.
Source: Illustration from [30].
Fig. 7. UGSR architecture.
Source: Illustration
from [31].
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subblocks is created, which establishes the connections in the thermal
super-resolution network.

The main challenge addressed by this approach is to effectively
extract high-frequency details from the guide image and adaptively
integrate them with the thermal image to produce a visually pleasing
and artifact-free reconstructed image. By applying this method, the
texture of objects in the guided super-resolution images is enhanced.
The architecture, as shown in Fig. 8, illustrates the low-resolution ther-

al image and the edges used as inputs to the process. The proposed
ethod uses a guide image that has a higher resolution compared

o the input thermal image. The guide image contains valuable high-
requency details that can improve the super-resolution process. To
ffectively integrate these details, an adaptive blending module is
mployed, which takes advantage of edge maps extracted from the
isible image at different pyramidal levels.

Deformable Kernel Networks for Joint Image Filtering — DKN:
n [33], the authors introduce a new approach to joint image filtering
y revisiting the guided weighted average framework. They argue that
urrent CNN-based methods, which employ spatially-invariant kernels,
ave limitations in encoding structural details that vary with image
ocation in both the guidance and target images. To overcome this
imitation, the authors propose a data-driven approach that explicitly
tilizes spatially-variant kernels, similar to classical approaches using
he weighted average. This network consists of two parts: the first one
s in charge of learning spatially varying kernel weights and the second
8

ne is the spatial sampling that is compensated with the normal grid. u
eatures are extracted from individual targeting and target images. A
wo-stream CNN network is used where each subnet is in charge of
ne of two images, with different feature maps used to estimate the
orresponding kernel weights and offsets. After, a weighted average
s calculated using the learned kernel weights and the sample loca-
ions calculated from the offsets to obtain a residual image. The dual
onitoring information for the weights and offsets in this model learns

hese parameters by directly minimizing the discrepancy between the
etwork output and a reference image. In particular, the constraints
n the regression of weight and offset, mean and sigmoid subtraction
ayers, specify how kernel weights and offsets behave and guide the
earning process avoiding loss resolution. For the weight regression, it is
pplied a sigmoid layer that makes all elements greater than 0 and less
han 1. The filtering result is obtained by combining the residuals with
he target image. The key innovation is the use of a deformable kernel
etwork (DKN), a CNN architecture designed to learn the sampling
ocations of neighboring pixels and their corresponding kernel weights
or each pixel. This approach to image restoration uses spatially-variant
ernels, which are learned in a data-driven way, which allows for an
daptive and sparse neighborhood system for each pixel. This can be
ore effective than a hand-designed kernel, as it can better adapt to

he specific needs of the pixel being restored. The top of Fig. 9 shows
he DKN architecture of the guided filtering. The model is fully convo-
utional and learned end-to-end, using element-wise multiplication and
ot product operations. Reshaping and residual connections are also
sed. Additionally, the authors propose a more efficient alternative to



Neurocomputing 573 (2024) 127197P.L. Suárez et al.

t
o
l
f
t
i
t
t
o
f
d
c
u
t
w

S
c
s
a
s
(
s

Fig. 8. Pyramidal edge-maps and attention-based architecture for guiding thermal image super-resolution.
Source: Illustration from [32].
Fig. 9. (top) DKN architecture, (bottom) FDKN architecture.
Source: Illustrations from [33].
he deformable kernel network, called FDKN as shown at the bottom
f Fig. 9. This lightweight model is obtained by removing DownConv
ayers while maintaining the same receptive field size as DKN. The
iltering output can be obtained in a single forward pass by splitting
he input images into 𝑛 subsampled and shifted parts, stacking them
nto new target and guidance images, and then using the target image
o filter the guidance image. The target image has n channels, while
he guidance image has 𝑛𝐶 channels, where 𝐶 represents the number
f channels in the guidance image. FDKN achieves a comparable ef-
ective receptive field to DKN, but with significantly fewer parameters
ue to the reduced input image resolution and shared weights across
hannels. The individual channels are then combined to create the final
psampled image. Even though FDKN has more network parameters
han DKN, it still demonstrates a 17 times speedup compared to DKN
hile maintaining competitive performance.

Discrete Cosine Transform Network for Guided Depth Map
uper-Resolution — DCTNet: In [34], the authors propose a dis-
rete cosine transform network (DCTNet), to perform guided depth
uper-resolution, which is inspired by coupled dictionary learning
nd physically-based modeling. DCTNet comprises four components:
emi-coupled feature extraction (SCFE), guided edge spatial attention
GESA), a discrete cosine transform (DCT) module, and a depth recon-
9

truction (DR) module, (see Fig. 10). The SCFE leverages the correlation
between intensity edges in RGB images and depth discontinuities while
preserving unique properties in both modalities. The depth reconstruc-
tion module in this schema has the task of generating a high-resolution
depth map by using a feature map, which is obtained from the DCT
module. The purpose is to predict the detailed depth information based
on the extracted features. The DCT module enhances explainability by
utilizing DCT to solve an optimization model and acquire depth map
features guided by RGB features. This module utilizes DCT to solve a
well-designed optimization model for GDSR and integrates it into the
deep learning model as a module. It acquires high-resolution depth map
features driven by RGB features in the multichannel feature domain.
Notably, this is the first known usage of DCT to restore degraded depth
maps, and the fitting parameters in the DCT module are made learnable
to enhance the flexibility of the model.

The proposed model introduces semi-coupled residual blocks to
exploit the correlation between the intensity edge in RGB images
and the depth discontinuities in the depth map images. These blocks
combine the information from both images to produce a more accurate
restoration. These blocks aim to preserve unique properties such as
detailed texture and segment smoothness in both modalities. Each
convolutional layer within these blocks is divided into two parts. One
part focuses on extracting depth-shared information from RGB images,

while the other part extracts unique information from the depth and
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Fig. 10. Guided depth super-resolution architecture.
Source: Illustration from [34].

Fig. 11. Results on Thermal Stereo testing set when RGB guidance and synthesized thermal guidance are considered with ×8 super-resolution factor.



Neurocomputing 573 (2024) 127197P.L. Suárez et al.
Fig. 12. Results on M3FD testing set when RGB guidance and synthesized thermal guidance are considered with ×8 super-resolution factor.
RGB images separately. The parameters in the private kernel are not
shared, allowing the feature extractor with semi-coupled blocks to ef-
fectively extract feature information for guided depth super-resolution
from input image pairs.

To address the issue of over-transferred texture details in RGB im-
ages, the GESA module employs RFANet’s Enhanced Spatial Attention
block. This block highlights the edges in RGB images that are relevant
for guided depth super-resolution. Activating intensity edges associated
with depth discontinuities facilitates the adaptive transfer of texture
structure in guided imagery.

3.3. Dataset

The proposed strategy has been assessed using three cross-spectral
datasets. The first dataset, referred to as M3FD, was recently introduced
for image fusion in Liu et al. [46]. This dataset was used to train the
thermal image-like image generator described in Section 3.1. The M3FD
dataset consists of a substantial collection of 4500 pairs of aligned
visible and infrared images captured using a binocular optical and
infrared sensor. These images possess a resolution of 1024 × 768 pixels
11
and exhibit diverse scenes encompassing various environments such as
roads, campuses, streets, forests, and more. Furthermore, the dataset
covers different lighting conditions including daytime, nighttime, and
overcast scenarios, providing a comprehensive representation of real-
world scenarios. In the experiments, a subset of 3000 image pairs
from the M3FD dataset was used for training the proposed thermal
image generator, while 890 pairs were set aside for validation purposes.
The remaining images in the dataset were exclusively reserved for
model testing, ensuring an unbiased evaluation of performance. By
employing this dataset, the proposed approach was trained to generate
thermal image-like representations from the visible images, facilitating
subsequent super-resolution processes.

In addition to the M3FD dataset, the Flir ADAS V2 [47] and the
Thermal Stereo datasets [20] have been also used to evaluate the gener-
alization capabilities of the proposed strategy. The Flir ADAS V2 dataset
is a set of annotated images that are used for training autonomous
driving systems. The dataset was acquired via a thermal and visible
camera pair mounted on a vehicle. Thermal images were acquired with
a Teledyne FLIR Tau 2 13 mm f/1.0. Visible images were captured with
a Teledyne FLIR BlackFly S BFS-U3-51S5C (IMX250) camera. Time-

synced capture was executed by Teledyne FLIR’s Guardian software;
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Fig. 13. Results on Flir ADAS V2 testing set when RGB guidance and synthesized thermal guidance are considered with ×8 super-resolution factor.
o

the dataset consists of 9233 pairs of RGB-Thermal images. On the other
hand, the Thermal Stereo dataset was acquired using Basler and TAU2
cameras and consists of 200 pairs of images, comprising both visible
and their corresponding thermal images. To ensure accurate alignment
between the two modalities, the images were registered using the
Elastix method [48], resulting in well-aligned pairs with a resolution of
640 × 480 pixels. This unique dataset provided a valuable opportunity
to assess the strategy’s performance on a different set of cross-spectral
images, enabling a comprehensive evaluation of its effectiveness in
various scenarios.

4. Experimental results

This section presents a comprehensive evaluation of the state-of-
the-art guided super-resolution approaches introduced in Section 3.2.
Our evaluation encompasses two distinct strategies: (𝑖) using given
igh-resolution RGB images as guidance during the training; and (𝑖𝑖)

considering HR thermal image-like counterparts. To conduct quanti-
tative and qualitative evaluations, we employed the Thermal Stereo,
M3FD and Flir ADAS V2 datasets. Before evaluation, all images were
12

u

pre-processed by resizing them to a resolution of 640 × 480 pixels.
For the generation of low-resolution thermal images, we applied a
downsampling using bicubic interpolation on the HR thermal images.
To train the guided super-resolution methods, we divided the Thermal
Stereo dataset into three subsets: 160 image pairs for training, 30 image
pairs for validation, and 10 image pairs for testing.

Our evaluation focused on the nine state-of-the-art guided super-
resolution methods presented in Section 3.2. These methods were
evaluated using the proposed strategy, which involves training on both
visible and synthesized thermal images, with a scale factor of ×8 and
×16. To assess the performance of these methods, we employed SSIM
(Structural Similarity Index) and PSNR (Peak Signal-to-Noise Ratio).

Tables 1, 2 and 3 present the results obtained through the evaluation
f each guided super-resolution approach using a scale factor of ×8

for Thermal Stereo, M3FD and Flir ADAS V2 datasets respectively.
Similarly, Tables 4, 5 and 6 show the results obtained with a scale
factor of ×16 for Thermal Stereo, M3FD and Flir ADAS V2 datasets—in
the ×16 scale factor case just seven approaches are evaluated since the
code provided for PAGSR [32] and UGSR [31] does not include the ×16
psampling. All tables highlight the improvements achieved in terms
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Fig. 14. Results on Thermal Stereo testing set when RGB guidance and synthesized thermal guidance are considered with × 16 super-resolution factor.
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Table 1
Results of the guided super-resolution approaches evaluated in the current work with
Thermal Stereo Dataset, a ×8 scale factor is considered.

Methods RGB guidance Synt. guidance Improvement on

PSNR SSIM PSNR SSIM PSNR SSIM

SVLRM [29] 27.05 0.7840 27.46 0.8202 1.5% 4.6%
PAGSR [32] 26.47 0.8008 26.47 0.8008 0.0% 0.0%
PMBA [30] 27.38 0.8242 27.86 0.8374 1.7% 1.6%
JIIF [28] 26.56 0.7879 26.77 0.8109 0.8% 2.9%
DKN [33] 29.11 0.8254 29.32 0.8313 0.7% 0.7%
FDKN [33] 29.05 0.8215 29.20 0.8276 0.5% 0.7%
UGSR [31] 26.83 0.8099 27.20 0.8241 1.4% 1.8%
DCTNet [34] 23.57 0.6729 28.34 0.8037 20.3% 19.4%
DAGF [27] 29.22 0.8268 29.51 0.8354 1.0% 1.0%

of quantitative metrics when employing synthesized thermal images as
guidance. To facilitate analysis and provide a clearer understanding
of the results, the last column of the tables presents the percentage
improvement achieved when using synthetic thermal imaging as a
guide compared to using visible spectrum imaging. It is important to
13

×

mention that the training of the guided super-resolution model with
synthetic images has been carried out with the Thermal Stereo data
set, however, to validate the proposed strategy, the analysis has been
expanded by testing two additional data sets, the M3FD and Flir ADAS
V2. The obtained results demonstrate that the model trained using the
Thermal Stereo data set is robust and generalizable. Since better results
can be seen even when validated with other data sets such as M3FD
and Flir ADAS V2. Qualitatively, the proposed strategy exhibits superior
performance in terms of contour details compared with the approaches
guided by visible spectrum images. To provide a visual representation
of the evaluation results, Figs. 11–13 present results obtained from a
ample of images in the testing set. Each super-resolution method’s
erformance is shown based on both guiding strategies, using a scale
actor of ×8.

Figs. 14–16 present comparisons for a sample of images in the
esting set, using a scale factor of ×16. In this figures we can appre-
iate the enhanced reconstruction of structural details when employing
ynthesized thermal images as guidance.

The results obtained in the experiments for a scale factor of ×8 and

16, allow us to demonstrate that the model trained with the synthetic
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Fig. 15. Results on M3FD testing set when RGB guidance and synthesized thermal guidance are considered with ×16 super-resolution factor.
Table 2
Results of the guided super-resolution approaches evaluated in the current work with
M3FD Dataset, a ×8 scale factor is considered.

Methods RGB guidance Synt. guidance Improvement on

PSNR SSIM PSNR SSIM PSNR SSIM

SVLRM [29] 25.65 0.7579 25.67 0.7898 0.1% 4.2%
PAGSR [32] 24.89 0.7736 24.89 0.7736 0.0% 0.0%
PMBA [30] 26.08 0.7961 26.31 0.8011 0.9% 0.6%
JIIF [28] 26.03 0.7646 26.38 0.7672 1.3% 0.3%
DKN [33] 28.13 0.8038 28.48 0.8119 1.2% 1.0%
FDKN [33] 28.02 0.7992 28.22 0.8049 0.7% 0.7%
UGSR [31] 24.70 0.7596 25.07 0.7706 1.5% 1.4%
DCTNet [34] 20.92 0.5636 25.19 0.7569 20.4% 34.3%
DAGF [27] 28.04 0.8006 28.56 0.8128 1.9% 1.5%

images of the thermal stereo dataset has been able to generalize the pro-
cess of restoring the quality of the images so effectively that the same
model has been used to evaluate the super-resolution of the images
from M3FD and Flir ADAS V2 datasets. These findings highlight the
14
Table 3
Results of the guided super-resolution approaches evaluated in the current work with
Flir ADAS V2 Dataset, a ×8 scale factor is considered.

Methods RGB guidance Synt. guidance Improvement on

PSNR SSIM PSNR SSIM PSNR SSIM

SVLRM [29] 27.25 0.6550 27.32 0.6565 0.3% 0.2%
PAGSR [32] 26.56 0.6610 26.56 0.6610 0.0% 0.0%
PMBA [30] 27.20 0.6608 27.82 0.6758 2.3% 2.3%
JIIF [28] 27.03 0.6723 27.39 0.6786 1.3% 0.9%
DKN [33] 28.98 0.6702 29.01 0.6713 0.1% 0.2%
FDKN [33] 29.00 0.6703 29.01 0.6706 0.0% 0.0%
UGSR [31] 26.85 0.6582 27.34 0.6672 1.8% 1.4%
DCTNet [34] 28.45 0.6591 28.92 0.6702 1.7% 1.7%
DAGF [27] 28.88 0.6679 29.09 0.6733 0.8% 0.8%

efficacy of the proposed strategy in enhancing guided super-resolution

outcomes.
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Fig. 16. Results on Flir ADAS V2 testing set when RGB guidance and synthesized thermal guidance are considered with ×16 super-resolution factor.
Table 4
Results of the guided super-resolution approaches evaluated in the current work with
Thermal Stereo Dataset, a ×16 scale factor is considered.

Methods RGB guidance Synt. guidance Improvement on

PSNR SSIM PSNR SSIM PSNR SSIM

SVLRM [29] 22.71 0.6429 25.37 0.7489 7.3% 16.5%
PMBA [30] 23.14 0.6966 24.87 0.7685 7.5% 10.3%
JIIF [28] 23.75 0.7248 24.69 0.7592 4.0% 4.7%
DKN [33] 25.33 0.7273 26.11 0.7674 3.1% 5.5%
FDKN [33] 25.35 0.7296 26.07 0.7641 2.8% 4.7%
DCTNet [34] 23.21 0.6498 25.18 0.7330 8.5% 12.8%
DAGF [27] 26.11 0.7581 26.58 0.7778 1.8% 2.6%

Table 7 presents the details of each of the super-resolution models
valuated in the current work (number of parameters, inference time,
15

raining time, and memory usage).
Table 5
Results of the guided super-resolution approaches evaluated in the current work with
M3FD Dataset, a ×16 scale factor is considered.

Methods RGB guidance Synt. guidance Improvement on

PSNR SSIM PSNR SSIM PSNR SSIM

SVLRM [29] 21.46 0.6282 22.27 0.7102 3.8% 13.1%
PMBA [30] 21.76 0.6866 22.60 0.7264 3.8% 5.8%
JIIF [28] 22.66 0.6743 23.50 0.7037 3.7% 4.4%
DKN [33] 24.28 0.7116 24.73 0.7336 1.8% 3.1%
FDKN [33] 24.15 0.7067 24.58 0.7311 1.8% 3.5%
DCTNet [34] 21.16 0.5842 23.19 0.6947 9.6% 18.9%
DAGF [27] 24.48 0.7228 25.15 0.7445 2.7% 3.0%

5. Conclusions

The present study provides empirical evidence that guided image
processing techniques, specifically in the context of guided thermal
image super-resolution, can be enhanced by incorporating guiding
information that overlaps with the guided domain. This observation
emphasizes the importance of aligning the guiding information with the



Neurocomputing 573 (2024) 127197P.L. Suárez et al.

S
S

D

t
A
O

D

Table 6
Results of the guided super-resolution approaches evaluated in the current work with
Flir ADAS V2 Dataset, a ×16 scale factor is considered.

Methods RGB guidance Synt. guidance Improvement on

PSNR SSIM PSNR SSIM PSNR SSIM

SVLRM [29] 24.72 0.6102 25.15 0.6181 1.7% 1.3%
PMBA [30] 24.88 0.6207 25.64 0.6344 3.1% 2.2%
JIIF [28] 23.74 0.6126 24.48 0.6307 3.1% 2.9%
DKN [33] 26.80 0.6280 26.83 0.6282 0.1% 0.0%
FDKN [33] 26.70 0.6256 26.78 0.6269 0.3% 0.2%
DCTNet [34] 25.72 0.6005 26.43 0.6164 2.8% 2.7%
DAGF [27] 26.60 0.6238 26.91 0.6301 1.1% 1.0%

Table 7
Information about the training process for each guided super-resolution approach
evaluated in the current work.

Methods # Param. Training Time Inf. Time Inf. Memory
(M) (h) (s) (MiB)

SVLRM [29] 0.37 5.038 0.0732 10 239
PAGSR [32] 0.18 1.983 0.4673 6605
PMBA [30] 46.04 3.366 0.2019 4819
JIIF [28] 10.83 4.283 0.8929 7629
DKN [33] 1.16 2.950 0.4587 15 595
FDKN [33] 0.69 0.514 0.3571 3444
UGSR [31] 2.17 1.455 0.7246 7533
DCTNet [34] 0.48 1.656 0.3322 3325
DAGF [27] 2.44 1.383 0.2564 7605

target domain to achieve superior results. The experiments conducted
in this work focus on generating synthesized thermal images that
closely resemble real thermal images. These synthesized images serve
as effective guidance in the image processing pipeline, facilitating the
super-resolution process. By using synthesized images as guidance, the
evaluated models are able to acquire the necessary information for
super-resolution tasks with ease. As a future research endeavor, the
scope of this study will be extended to explore guided depth super-
resolution and guided denoising image processing. By expanding the
investigation to these areas, additional insights can be gained into
the potential benefits and limitations of guided image processing ap-
proaches. This expanded exploration will contribute to advancing the
field of image enhancement and provide a deeper understanding of the
capabilities of guided techniques in various image-processing tasks.
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