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1. Introduction

Computing object and camera motions from 2D image se-
quences has been a central problem in computer vision for many
years (Hartley and Zisserman, 2000; Jasinschi et al., 2000; Weng
et al., 1993; Zucchelli et al., 2002). More especially, computing
the 3D velocity of either the camera or the scene is of particular
interest to a wide variety of applications in computer vision and
robotics such as calibration (Malm and Heyden, 2002), visual servo-
ing, ego-motion estimation, detecting independently moving ob-
jects, to mention a few. One of the main tasks in computer vision
is the reconstruction of the structure of a scene in a process known
as structure from motion (SFM). The classic approach to SFM, which
attracted considerable attention in the literature, is based on the
extraction and matching of image features throughout the image
sequence.

Many algorithms have been proposed for estimating the 3D rel-
ative camera motions (discrete case) (Lourakis and Argyros, 2004)
and the 3D velocity (differential case) (Baumela et al., 2000; Brooks
et al.,, 1997; Rother and Carlesson, 2002).

In (Jasinschi et al., 2000), the authors describe a method for
extracting the camera velocity. This method is a combination of
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the eight-point method in structure-from-motion with a statistical
technique to automatically select feature points in the image, irre-
spective of 3D content information. In (Kim et al.,, 1997), the
authors estimate the camera motion parameters from image se-
quences using a linear motion parameter equation and the Kalman
filtering method.

Very few non-correspondence motion estimation algorithms
have been proposed (Dellaert et al., 2000; Boughorbel et al.,
2003). One can notice that although these ones circumvent the
need for establishing direct correspondences, they still need to per-
form feature extraction in the images. In (Boughorbel et al., 2003),
the authors propose a method for estimating the relative motion of
a camera from two successive frames. The method relies on a
structure saliency measure, and does not require any previous
knowledge of point correspondences between the images. They
presented two different such metrics. The first metric was simple
and based on measuring the scattering of the structure points.
The second metric used the tensor voting approach and was more
robust. In (Baumela et al., 2000), the authors derived the continu-
ous analogue of the discrete epipolar equation, given a geometric
interpretation of it, and a practical algorithm for computing cam-
era’s motion parameters from closely spaced views. The input were
given by the optical flow field.

While the discrete case requires feature matching and tracking
across the images, the differential case requires the computation
of the optical flow field (2D velocity field) (Barron et al., 1994; Irani,
1999; Fleet et al, 2000). All these problems are generally
ill-conditioned.
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In our work, we assume that the scene is far from the camera or it
contains a dominant planar structure. The use of image derivatives
has been exploited in (Brodsky and Fermuller, 2002) to make cam-
era intrinsic calibration. In (Malm and Heyden, 2000), image deriv-
atives have been used to perform hand-eye calibration with
constrained camera motions obtained by controlling the motion of
the robot hand. The current paper has two main contributions. First,
we introduce a novel technique to the unconstrained 3D velocity
estimation using image derivatives alone, therefore feature extrac-
tion and tracking are not required. Second, we propose a robust
method that combines the Least Trimmed Square regression and
the Golden Section Search algorithm where the number of inliers
is not known a priori. Our robust method simultaneously estimates
the inlier percentage and the robust solution. On the other hand,
existing LTS regression methods (e.g., Rousseeuw and Driessen,
2002) assume that the percentage of inliers is known in advance.

The first contribution concerns the instantaneous 3D motion
estimation from image data, which can be useful for many applica-
tions in vision and robotics such as extrinsic calibration (Dornaika
and Chung, 2008), visual servoing (Horaud et al., 1998), video
indexing (Jasinschi et al., 2000), space robot localization (Johnson
et al,, 2007), and augmented reality (Lourakis and Argyros, 2004).
What differentiates our work from existing ones is the use of image
derivatives alone and not the optical flow field with a novel robust
statistics solution.

The second contribution is within the field of robust linear
regression (Maronna et al., 2006).

In our study, we deal with the estimation of the 3D velocity of
the camera or the scene from image derivatives where the motion
is not constrained. Our proposed approach lends itself nicely to
all applications in which the camera motion is not controlled
(e.g.; when using a hand-held camera in indoor environments).
The paper is organized as follows. Section 2 describes the problem
we are focusing on. Section 3 describes the proposed methods.
Experimental results on both synthetic and real image sequences
are given in Section 4.

2. Problem formulation

Throughout this paper we represent the coordinates of a point
in the image plane by small letters (x,y) and the object coordinates
in the camera coordinate frame by capital letters (X,Y,Z). In our
work, we use the perspective camera model as our projection mod-
el. Thus, the projection is governed by the following equation
where the coordinates are expressed in homogeneous form,

X

X fstOY
Ay |=(0o o v o], ()

1 00101

Here, f denotes the focal length in pixels, r and s the aspect ratio and
the skew and (x.,y.) the principal point. These are called the intrin-
sic parameters. In this study, we assume that the camera is cali-
brated, i.e., the intrinsic parameters are known. For the sake of
presentation simplicity, we assume that the image coordinates have
been corrected for the principal point and the aspect ratio. This
means that the camera equation can be written as in (1) with
r=1, and (x;,y.) = (0,0). Also, we assume that the skew is zero
(s =0). With these parameters the projection simply becomes

X:f)f( and y:fg 2)

Let I(x,y,t) be the intensity at pixel (x,y) in the image plane at time
t.Let u(x,y) and v(x,y) denote components of the motion field in the
x and y directions, respectively. This motion field is caused by the
translational and rotational camera velocities (V,Q) = (V,,V,,V,,

Planar scene

Camera frame

Fig. 1. The goal is to compute the 3D velocity from image derivatives.

@, Q,,9Q,) (see Fig. 1). Using the constraint that the gray-level
intensity is locally invariant to the viewing angle and distance we
obtain the well-known optical flow constraint equation:
Lu+ILv+1;=0 (3)
where u =% and v =% denote the motion field. I, = 2 and I, = £
denote the components of the spatial image gradient. They can be
computed by convolution with derivatives of a 2D Gaussian kernel.
The temporal derivative I, = % can be computed by convolution be-
tween the derivative of a 1D Gaussian and the image sequence.

We assume that the perspective camera observes a planar
scene? described in the camera coordinate system by Z = aX+
pY + .

The derivation of the motion field (optical flow field) associated
with a planar scene (Egs. (6)-(8)) has been already established in
the literature of SFM (e.g., see Kanatani, 1993). However, to the
best of our knowledge, extracting the 3D motion velocity parame-
ters from the spatio-temporal image derivatives has not been ad-
dressed (see Section 3). In the following, we sketch out the
derivation of the motion field for completeness purposes. Let
(u,v) be the 2D velocity (the instantaneous motion) of a 2D point
(x,y), this is given by the temporal derivative of x and y, thus

X= % (XZ — XZ) (4)
- (YZ-YZ 5
V=5 ) (5)
The velocity of any 3D point (X,Y,Z)" is given by

X Vy Q X

Y = Vy + Qy X Y

z v, 2, z

where x denotes the cross product. If we insert the above expres-
sions for X, Y, and Z into Eqgs. (4) and (5), and use Z = X + Y + 7
together with Eq. (2), we get the 8-parameter motion field

UX,Y) =X = a1 + GyX + azy + a7x* + agxy (6)
V(X,y) =Y = G4 + asX + gy + a7Xy + dgy? (7)
where the coefficients are given by:

a = —f(%Jr Qy)

a = (‘f—;oc+‘f—;)

as :%ﬁﬁLQz
a4 = —f(%—gx)
as = (?ac - QZ> ®)

ag = (ﬁﬂ-i'ﬁ)
a; Z%(%OCJrQy)
ag :%(%ﬁ— Qx)

2 Since we use robust statistics, the proposed framework can handle the case where
the scene contains a dominant planar structure.
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Fig. 2. The two-step approach.

One can notice that the two solutions (Vy,V,,V;,y) and
A(Vx,Vy,V,,p) yield the same motion field. This is consistent with
the scale ambiguity that occurs in the structure from motion
problems.

The case of a steady camera and a moving scene can be ob-
tained by multiplying the right hand side of Eq. (8) by —1. Our
goal is to estimate the instantaneous velocity (V,Q) as well as
the plane orientation from the image derivatives (I,I,,I;). In the
sequel, we propose a two-step approach. Fig. 2 illustrates the pro-
posed two-step approach. In the first step, the eight coefficients
are recovered using the Least Trimmed Square (LTS) regression
and the Golden Section Search algorithm. In the second step, the
3D velocity as well as the plane orientation are recovered from
Eq. (8) using a non-linear technique. We stress the fact that the
inputs to our proposed algorithm are only given by the image
derivatives.

3. Proposed tools and methods

We assume that the image contains N pixels for which the
spatio-temporal derivatives (I, I,,I;) have been computed. In
practice, N is very large. In order to reduce this number, one
can either drop pixels having small gradient components or
adopt a low-resolution representation of the images. In the se-
quel, we do not distinguish between the two cases, ie., N is
either the original size or the reduced one. By inserting Egs.
(6) and (7) into Eq. (3) we get

Ixay + Lxay + Lyas + 1,a4 + I,xas + Iyag + (I,(x2 +Iyxy)a;

+ (Lexy + Iyyz)as =1 9)
By concatenating the above equation for all pixels, we get the fol-
lowing over-constrained linear system:

Ga=e (10)

where a denotes the column vector (a1, d,, ds, da, ds, ag, a7, ag)T.
The N x 8 matrix G is given by:The N-vector e is given by:

€= *(.It)i

It is well known that the Maximum Likelihood solution to the above
linear system is given by a = G'e where G' = (G'G)"'G’ is the pseu-
do-inverse of the N x 8 matrix G. This solution is known as the Least
Squares solution (LS). In practice, the system of linear equations
may contain outliers that can be caused by local planar excursions
and derivatives errors. Therefore, our idea is to estimate the eight
coefficients using robust statistics (Rousseeuw and Leroy, 1987).
Statisticians have developed various kinds of robust estimators
such as the Least Median of Squares (LMS) and the RANdom SAm-
ple Consensus (RANSAC). Some recent advances can be found in
(Rodehorst and Hellwich, 2006; Subbarao and Meer, 2006).

3.1. The Least Trimmed Square regression

The LTS regression has been proposed by Rousseeuw and Leroy
(1987) as an alternative to the classical robust schemes such as the
Least Median of Squares (LMS) and the RANdom SAmple Consen-
sus (RANSAC). The LTS regression has smoother objective function.
Its objective is to compute the unknown parameters (in our case,
these parameters are the components of the vector a) by minimiz-
ing a trimmed sum of squares 31", (r2),y where (1), < -+ (P)yn
are the ordered squared residuals obtained for the linear system
(e.g., Eq. (10)) associated with any value for the parameters. h is
known and corresponds to the percentage of inliers. This is equiv-
alent to finding the h-subset with the smallest least squares error.
The LTS estimate is then the least squares solution to this h-subset.

3.1.1. Rousseeuw’s implementation

In (Rousseeuw and Driessen, 2002), an efficient implementation
of the LTS has been proposed when h is known in advance. The pro-
posed algorithm combines random sampling and an iterative C-
step (Concentration step). The basic idea of the C-step is to start
from an initial solution and update it iteratively by a Least Square
estimator performed on another subset of constraints having the h
smallest residuals.

Thus given the number h (derived from the percentage of in-
liers) and an initial solution, O a C-step can be described as
follows.

1. Compute the residuals r,4(i) for i=1,...,N. N represents the
total number of equations.

2. Sort the absolute values of these residuals, which yields a
permutation 7 for the h-subset for which |r,u(m(1))] <
roia(10(2))] < -+ - |raua((h))] - -+ < [rowa(TT(N))].

3. Compute a new solution ®,,, as the Least Square solution asso-
ciated with this new h-subset, that is, the new solution is com-
puted by discarding the N — h constraints corresponding to the
N — h largest residual errors.

Repeating the above C-step yields an iterative process which
converges to a constant objective error. In practice, the number
of iterations is below 10. Obviously, applying several C-steps is
not enough for getting the global minimum of the LTS objective
function.

G= | (L); (x); () ) x); (Ly); (x*+1Lxy),  (Lxy +1Ly?);
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1. Random sampling: Repeat the following three steps K times

1. Draw a random subsample of p different equations/pixels (p > 8).

2. For this subsample, indexed by k, compute the eight coefficients, i.e., the vector ay,

from the corresponding p equations using a linear system similar to (10).

. For this solution ay, determine the squared residuals with respect to the whole set

of N equations. We have N residuals corresponding to the linear system (10). Sort
these residuals and compute the trimmed sum e, = Zf\]:/f (r?);.n. Here we assume
that the percentage of inliers is greater than or equal to 50%. Note that this sum

can be carried out using another number such as the a priori percentage of inliers.

11. Golden Section Search and Least Trimmed Square regression:

1. Select the initial solution aj+ such that

Ic*zalrgrrlkirle;€7 k=1,... K

. Select an initial bracketing interval [e,, €;].

. Split the bracketing interval into three segments €, €1, €2, €,

e =6 +w(ep—¢), and ea = ¢ — w (6 — €,)

where the fraction w = (3 — v/5)/2 = 0.38197 (see [20]).

. For each percentage, perform several C-steps starting from the best solution found

so far. This provides ¢(e,), d(€1), ¢(e2), and ¢(e).

. Compare ¢(€;) and ¢(e2), and update accordingly: i) the best solution, and ii) the

bracketing interval such the new bracketing interval becomes either [e,, €3] or [e1, €].

. Generate a new percentage and form a new set of three segments.

. Evaluate ¢ at the new generated percentage, e (perform several C-steps). If the

size of the current interval is less then a predefined threshold (e.g., 0.01) then stop

otherwise go to step 5.

Fig. 3. Estimating the 8 coefficients using the LTS regression and the Golden Section Search algorithm.

Rousseeuw proposed an algorithm that attempts to reach the
global minimum. In brief, the algorithm can be summarized as
follows.

e Draw random samples where each sample is composed of p
equations where p < h < N.

e For each random sample compute the corresponding solution
and then refine it using several C-steps (see above).

e Report the solution that provides the smallest objective
function.

3.2. The proposed approach and the eight coefficients

As we have mentioned earlier, the algorithm proposed by Rous-
seeuw assumes that the size of the subset, h, is known in advance.
In our case, however, h is not known. We propose an algorithm that
simultaneously provides the LTS solution and the percentage of in-
liers. Our problem consists in solving the 8-vector a using the over-
constrained linear system (10). When the inlier percentage
€ =1 €[0,1] is unknown, we compute it by minimizing the follow-
ing objective function

(e =% (11)

where / is a predefined parameter (in all our tests described in the
sequel, we used 4 = 6). The above objective function ¢(€) minimizes

Fig. 4. A computer generated image of a 3D plane that is rotated about 60° about an
axis perpendicular to the optical axis.
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Fig. 5. Average errors obtained with a Gaussian noise and 10% of outliers.

the trimmed error e(€) while trying to use as many equations/pixels
as possible. The use of the denominator has the effect that cost
function ¢(€) will have a unique minimum. Indeed, the function
¢(€) is the product of two functions: % and e(¢). The former one is
a monotically decreasing function and the latter one is a monotical-
ly increasing function. Recall that the error e(€) is the trimmed sum
of squared residuals whose plot versus the inlier percentage will be
very similar to an exponential function whenever data contains
outliers.

Note that 4 can slightly affect the location of the minimum, that
is, the optimum inlier percentage.

The minimization procedure is given a search interval [€,, €p]. It
assumes that in this interval the function has a single minimum
and locates the minimum by iterative bracketing with the Golden
Section Search algorithm (Press et al., 1992). Fig. 3 summarizes the
proposed approach that estimates the vector a by combining the
LTS principles and the Golden Section Search algorithm.

By default, the minimum of ¢ is searched in the interval
[0.5,1.0] assuming that the inlier percentage is at least 50%. Spec-
ifying the interval more strictly improves the computational effi-
ciency of the method. In our case, for an initial bracketing of 10%,
about six iterations are sufficient to locate the minimum of ¢(¢€)
with an acceptable precision of 0.01, i.e., the interval becomes less
the 1%. Note that even though the inlier percentage is not known in
advance the bracketing interval can be known in advance.

3.3. The 3D velocity and the plane orientation

Once the vector a = (a;,a»,ds, s, ds, dg, A7, ag)T is recovered, the
3D velocity and the plane parameters, i.e..%, Y. "7 Q, Q, Q,, o
and B, can be recovered by solving the eight non-linear Eq. (8). This
is carried out using the Levenberg-Marquardt technique (Press
et al.,, 1992). Note that the translational velocity is recovered up
to a scale, which is consistent with the scale ambiguity of the gen-
eral structure from motion problem.

In order to get an initial solution one can adopt assumptions for
which Eq. (8) can be solved in a linear fashion. Alternatively, when
tracking a video sequence the estimated velocity at the previous
frame can be used as an initial solution for the current frame.

In practice, one of the following two assumptions can be used
for making Eq. (8) linear: (i) a negligible translational velocity
along the optical axis, i.e., V, = 0, and (ii) a pure translation veloc-
ity, i.e.,, @ = 0. The obtained rough solution is then handed over to
the Levenberg-Marquardt technique. Notice that even the initiali-
zation assumes a particular 3D motion for the camera, the Leven-
berg-Marquardt technique estimates the six degrees of freedom

Fig. 6. The current image for which the camera motion parameters are computed.
The temporal derivatives are computed using nine subsequent images.

associated with the general camera motion up to a translational
scale.

4. Experimental results

Our experiments have been carried out on synthetic and real
images.

4.1. Synthetic images

A synthetic planar scene was built. Its texture is described by
g(Xo,Yo) ox cos(6X,)(sin(1.5X,) + sin(1.5Y,))

where X, and Y, are the 3D coordinates expressed in the plane coor-
dinate system, see Fig. 4. The resolution of the synthesized images
was 160 x 160 pixels. The 3D plane was placed at 100 cm from
the camera whose focal length is set to 1000 pixels. A synthesized
image sequence of the above planar scene was generated according
to a nominal camera velocity (V,,Q,). A reference image for which
we like to compute the camera velocity was then fixed. The
associated image derivatives can be computed or set to their theo-
retical values. Since we use synthetic data, the ground-truth values
for the image derivatives as well as for the camera velocity are
known. The nominal velocity (V,(cm/s),Qn(rad/s)) was set to
(10,10,1,0.1,0.15,0.1)". The corresponding linear system (10) was
then corrupted by adding Gaussian noise and outliers to the spa-
tio-temporal derivatives associated with each pixel. Our approach
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Table 1
Camera motion associated with the frame of Fig. 6 using the RANSAC method (first row) and the LTS (second row). The first column depicts the estimated translation axis (a unit
vector), the second column depicts the estimated rotation axis (a unit vector), and the third column depicts the obtained number of inliers.

Translation axis Rotation axis Inlier percentage (%)
RANSAC (—0.0100,0.0800,0.9900) (0.0700,0.0000, —0.9900) 88.2
LTS (0.0200,-0.00815,0.9997) (—0.0202,-0.0137,—0.9996) 96.6
Ground-truth motion (0.0,0.0,1.0) (0.0,0.0,—-1.0)

Frame 5 Frame 104

Translational velocity direction Rotational velocity

T T T 0.06

0.05¢

0.04}

0.03f

Rad/s

0.02}

0.01}

0 50 100 150 200 250 0 50 100 150 200 250
Frames Frames

Inlier percentage

0.91

0.8f

0.7

0 50 100 150 200 250
Frames

Fig. 7. Top: Two frames from the used video sequence (frames 5 and 104). Middle: The estimated translational and rotational velocities as a function of the frame number.
Bottom: The estimated inlier percentage.
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was then invoked to estimate the camera velocity. The discrepancies
between the estimated parameters and their ground truth were then
computed. In our case, the camera velocity was given by two vec-
tors: (i) the scaled translational velocity, and (ii) the rotational veloc-
ity. Thus, the accuracy of the estimated parameters can be
summarized by the angle between the direction of the estimated
vector and its ground truth direction.

Fig. 5 illustrates the obtained average errors associated with the
camera velocity as a function of the Gaussian noise standard devi-
ation. Here the grey-level of the images has 256 values. The solid
curve corresponds to a RANSAC-like approach adopting a robust

and automatic threshold (Rousseeuw and Leroy, 1987) (Eq. (10)),
and the dashed curve to our proposed robust solution (Sections
3.2 and 3.3). Each average error was computed with 50 random tri-
als. In this experiment the percentage of outliers was set to 10%.
The location of these outliers in the image plane was chosen using
a uniform distribution. The values were set as a function of the
derivatives maximum.

As can be seen, unlike the RANSAC technique, our proposed
method has provided more accurate 3D camera velocity. Since
the translational and rotational 3D velocities are inferred from
the 8 parameters (the 8-parameter motion field) using the same

Frame 10

Translational velocity direction

60 80 100 120 140 160 180
Frames

Frame 180

Rotational velocity

0.08
0.07f
0.06}
0.05}
0.04}
0.03f :
0.02f ‘\

0.01}

Rad/s

60 80 100 120 140 160 180
Frames

0
0 20 40

Inlier percentage

0,91

0,81

0,71

0,6

0 20 40 60 80 100 120 140 160 180

Frames

Fig. 8. Top: Two frames from the used video sequence (frames 5 and 104). Middle: The estimated translational and rotational velocities as a function of the frame number.

Bottom: The estimated inlier percentage.



542 F. Dornaika, A. Sappa/Pattern Recognition Letters 30 (2009) 535-543

non-linear algorithm, it follows that the 8-parameter motion field
estimated by the proposed algorithm (Section 3.2) is more accurate
than the one estimated by a RANSAC-like technique. Moreover, we
stress the fact that it is extremely challenging to manually select
the threshold for the RANSAC technique since the residual errors
are not measured in a metric space such as the Euclidean space
or the image plane, instead the residual error depicts temporal
derivative of the grey-levels. Thus, an adaptive threshold is better
suited for the RANSAC technique.

We applied the proposed approach on the synthesized nine
frame sequence depicted in Fig. 6 (only frame 5 is shown). The se-
quence was retrieved from the department of computer and elec-
trical engineering, at Heriot-Watt University, UK.> The obtained
results are summarized in Table 1. We have used the RANSAC tech-
nique (first row) and the proposed approach (second row). The
third row illustrates the ground-truth camera velocity which is a
rotation about the optical axis combined with a translation about
the same axis. The first column depicts the estimated translation
axis (a unit vector), the second column depicts the estimated rota-
tion axis (a unit vector), and the third column depicts the obtained
number of inliers. As can be seen, both approaches succeeded to
estimate the camera velocity with our approach being more
accurate.

The CPU time associated with an image of 1400 pixels was
about 3 s. As can be seen, the proposed method is slower than most
of classical LS techniques. This is due to the use of the Golden Sec-
tion optimization in which a complete Least Trimmed Square pro-
cess is invoked.

4.2. Real images

The spatial derivatives associated with an input image are cal-
culated by convolution with derivatives of 2D Gaussian kernels.
The temporal derivatives associated with the current image are
calculated using difference approximation involving a temporal
window centered on the current image. The weights of the images
are taken from the derivatives of a 1D Gaussian kernel.

The following two experiments used the monocular images of a
commercial stereo vision system (Bumblebee from Point Grey.?)

The first experiment was conducted on a 300-frame video se-
quence of a moving newspaper captured by a steady-camera, see
Fig. 7. The resolution is 160 x 120 pixels. We used 9 consecutive
images to compute the temporal derivatives. The upper part shows
two different frames. The middle-left and middle-right show the
estimated 3D translational velocity direction (a unit vector) and
the rotational velocity |||, respectively. The lower part depicts
the estimated inlier percentage. Although, the ground-truth is
not known, we have found that the estimated 3D motion was very
consistent with the 3D motion captured by the video. Notice that
the estimated inlier percentage was high (about 90%) whenever
the newspaper was the dominant object in the image. For example,
its value was 90% for frame 5 and 80% for frame 104 (see Fig. 7).

The second experiment was conducted on another video se-
quence acquired with an on-board camera, see Fig. 8. The resolu-
tion is 320 x 240 pixels. For every image, only the lower part
corresponding to one third of the image height is used. We used
9 consecutive images to compute the temporal derivatives. The
upper part of Fig. 8 shows two different frames. The middle-left
and middle-right show the estimated 3D translational velocity
direction (a unit vector) and the rotational velocity |||, respec-
tively. The lower part depicts the estimated inlier percentage. As
can be seen, the instantaneous camera motion is essentially along

3 http://www.cee.hw.ac.uk/~mtc/sofa.
4 www.ptgrey.com.

the optical axis for most of the frames. At the end of the sequence
(from frame 160 to frame 192), the camera motion is coupled since
the translational motion is no more along the optical axis alone and
since there is a slight pitching. This is due to some deceleration in
the car motion.

5. Conclusion

This paper presented an approach to the 3D velocity estimation
from spatio-temporal image derivatives alone. What differentiates
the presented work from existing ones is the use of image deriva-
tives alone and not the optical flow field with a novel robust statis-
tics solution. Despite the fact that the developed approach does not
rely on the computation of the optical flow, the latter one is a by-
product of the approach. This paper had two main contributions.
First, we introduced a novel technique to the unconstrained 3D
velocity estimation using image derivatives only, therefore feature
extraction and tracking are not required. Second, we propose a ro-
bust method that combines the Least Trimmed Square regression
and the Golden Section Search algorithm where the number of in-
liers is not known a priori. Our robust method simultaneously esti-
mates the inlier percentage and the robust solution. On the other
hand, existing LTS regression methods (e.g., Rousseeuw and Dries-
sen, 2002) assume that the percentage of inliers is known in ad-
vance. As can be seen, the first contribution concerns the
instantaneous 3D motion estimation from image data. The second
contribution is within the field of robust statistics (robust lin-
ear regression). It is worth noting that motion estimation from
visual data and robust statistics are two sub-fields of pattern
recognition.

The conducted experiments tend to confirm that the proposed
approach is more accurate than a RANSAC-like approach.
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