
Robotics and Autonomous Systems 84 (2016) 113–128
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Incremental texture mapping for autonomous driving
Miguel Oliveira a,b,∗, Vitor Santos b, Angel D. Sappa c,d, Paulo Dias b, A. Paulo Moreira a,e

a INESC TEC - INESC Technology and Science, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
b IEETA - Institute of Electronics and Informatics Engineering of Aveiro, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro,
Portugal
c Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Electricidad y Computación, CIDIS, Campus Gustavo Galindo, Km 30.5 Vía
Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
d Computer Vision Center, Campus UAB, 08193 Bellaterra, Barcelona, Spain
e FEUP - Faculty of Engineering, University of Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

h i g h l i g h t s

• Texture mapping of Geometric Scene Representations.
• Incremental mapping of texture from continuous throughput of sensor data.
• Texture enhancement from multiple images.

a r t i c l e i n f o

Article history:
Available online 5 July 2016

Keywords:
Scene reconstruction
Autonomous driving
Texture mapping

a b s t r a c t

Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around
the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not
trivial to come upwith a single, unique representation that feeds from the data given by all these sensors.
We propose an algorithm which is capable of mapping texture collected from vision based sensors onto
a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm
uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised
sequence of operations. These enforce a partial configuration of themesh that avoids bad quality textures
and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing
fine quality textures.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Autonomous vehicles often have a very large number of sensors
mounted on-board. This is due to the need to observe the
environment all around the vehicle, but also because vehicles
must observe the scene with sensors of different nature. Mainly,
sensors are divided into two groups: range sensors and vision
based sensors. Sensors of the first group provide 3Dmeasurements
of the scene. On the other hand, vision based sensors collect
photometric information of the scene. Due to the large number
of sensors on-board these vehicles, it is not trivial to combine

∗ Corresponding author at: INESC TEC - INESC Technology and Science, R. Dr.
Roberto Frias s/n, 4200-465 Porto, Portugal.

E-mail addresses: m.riem.oliveira@gmail.com (M. Oliveira), vitor@ua.pt
(V. Santos), asappa@cvc.uab.es (A.D. Sappa), paulo.dias@ua.pt (P. Dias),
amoreira@fe.up.pt (A.P. Moreira).

http://dx.doi.org/10.1016/j.robot.2016.06.009
0921-8890/© 2016 Elsevier B.V. All rights reserved.
data from these sensors into a unique representation of the scene.
Given that these sensors provide a continuous stream of data over
time, and that they are displaced by the movement of the vehicle,
then it follows that the representation of the scene must also
be dynamic, in the sense that it must evolve to represent novel
information collected at later stages of themission. Note that, given
a continuous throughput of images, the most recent image is not
necessarily the best image to be used for texture mapping. For
example, if the vehicle is moving away from an object, a camera
on the rear side of the vehicle will produce images with decreasing
quality. Rather, what is required is an algorithm that produces a
scene representation at the early stages of a mission (because this
might be immediately required for other tasks such as navigation,
planning, etc.), but the later on is also capable of evaluating newly
acquired images to assess whether or not these images are better
than the previously used for mapping the texture. We refer to this
as incremental texture mapping.

http://dx.doi.org/10.1016/j.robot.2016.06.009
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2016.06.009&domain=pdf
mailto:m.riem.oliveira@gmail.com
mailto:vitor@ua.pt
mailto:asappa@cvc.uab.es
mailto:paulo.dias@ua.pt
mailto:amoreira@fe.up.pt
http://dx.doi.org/10.1016/j.robot.2016.06.009


114 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
Fig. 1. An example from the MIT data-set: three projections are collected over a period of time and mapped to a wall panel (GPP k = 4, in blue): (a) positions of the vehicle
at the time each projection is collected; (b) image from front camera, at location C; (c), front camera, intermediate location; (d) front camera, location D; (e) left camera,
location D. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In [1], an algorithm for creating and incrementally updating a
geometrical representation of the scenario is presented. This work
was later extended in [2]. The approach is based on Geometric
Polygonal Primitives (GPP), and is shown to be capable of providing
an accurate geometric description of the scenario. It uses data
from range sensors only, and the geometric description changes
to accommodate novel sensor data. In this paper we use the
results given by the approach described in [2]. This means that we
consider that there is, at all times, a geometric description of the
scenario which is constantly evolving.

In this paper, we focus on how the vision based sensors can be
used to enrich the description of the scenario. In other words, we
propose to use the images from the cameras on-board the vehicle
to produce texture, which may be added to the 3D description of
the environment. Note that, as in the case of the range sensors,
the vision based sensors also produce a continuous stream of
information which must be integrated in order to create a unique
photometric description of the scenario. In this paper, we propose
an approach which is capable of incrementally updating texture
mapped onto GPPs. The following lines show an example in which
the need for incremental texture mapping becomes clear.

For testing and evaluation purposes, we use a data-set from
the Massachusetts Institute of Technology (MIT) Team, taken from
their participation in the DARPA Urban Challenge [3]. A small
40 s sequence was cropped from the MIT data-set. This sequence
is referred to as the MIT sequence, and five key locations (A
through E where marked in the sequence (see [2] for details).
The approach described in [2] produces a description of the
geometric structure of the environment observed by the vehicle’s
sensors. This description is given in the formofGeometric Polygonal
Primitives (GPP), i.e., a list of polygons. Note that, as pointed out
in [2] the geometric description of the scene is dynamic, since it
may change whenever novel sensor information is collected.

An example is presented in Fig. 1where the vehicle travels from
locationC to locationD of theMIT sequence. Images are collected at
three locations: location C at mission time t0, location D at mission
time t2 and an intermediate location between those two atmission
time t1 (Fig. 1(a) shows the vehicle at each location). Consider a
camera of index l, that produces an image which may virtually be
projected to any GPP (i.e., to one of the polygons that constitute
the geometric description of the scene), at any givenmission time t .
The term projection is defined as an image captured from a camera
that can be used to map some texture to one of the polygons
contained in the geometric description of the scene, and is denoted
as C{k,l,t}. The data-set contains five color cameras (see [2,4] for
details). Without loss of generality, in this example only images
from two cameras are used: front center (l = 0) and front left
(l = 3), and only a single GPP (index k = 4) is employed, which
corresponds to the wall panel in front of the vehicle (in blue, left
side of Fig. 1(a)). Note that, under the constraints defined above,
i.e., k = {4}, l = {0, 3} and t = {t0, t1, t2}, there are a total of six
possible projections. However, two of these projections are empty,
namely C{k=4,l=3,t=t0} and C{k=4,l=3,t=t1}. This is because the left
camera (l = 3) does not see the wall panel (k = 4) in the first two
locations (t = t0 and t = t1). This can be observed in Fig. 1(a),
which shows that the vehicle turns right at location D, and only
then the left side camera is pointed in the direction of the wall
panel. The images from the remaining four projections are shown



M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128 115
in Fig. 1(b)–(e). As the vehicle approaches thewall panel, it collects
images with higher resolution and better quality of that surface.
Our goal is to study how a low resolution texture created when
the vehicle was distant from the surface may evolve to a higher
resolution texture once the vehicle comes closer to the panel. In
other words, how can the texture of a surface be incrementally
refined.

Note that we assume that an accurate localization is available
at all times. In the case of the MIT dataset, localization is provided
by an Applanix POS-LV 220 system,1 which includes a GPS, an
inertial measurement unit and a wheel encoder. This is a very
accurate system which publishes the 6 DOF pose of the vehicle at
high frequencies (100 Hz). Thus, it is possible to gather the pose
of each of the onboard cameras at any point in time. Obviously, a
less accurate ego motion estimation should influence the mapping
of texture. However, a detailed analysis of the impact of other ego
motion estimation systems is out of the scope of the current paper.

The remainder of the paper is organized as follows: related
work is presented in Section 2; the proposed approach is described
in Section 3 and, finally, results and conclusions are given in
Sections 4 and 5.

2. Related work

Texture mapping is a technique for mapping a 2D image onto
a 3D surface by transforming color data so that it conforms to
the surface plot. It allows the application of texture such as tiles
or wood grain, to a surface without performing the geometric
modeling necessary to create a surface with these features, or, in
other words, without computing the projection of every pixel in
the image onto the surface. The color data can also be any image,
such as a picture taken by a camera. Texturemapping is performed
over convex polygons, most commonly on triangles. Let X1, X2 be
the coordinates of the vertices 1 and 2 in 3D space. The coordinates
u1, u2 of the pixels that correspond to those vertices in the image
plane can be obtained using direct projection:

ui = projection(Xi), ∀i ∈ {1, 2}. (1)

Let α be a parameter 0 < α < 1, that indicates how a given
vertex is positioned along theX1X2 line segment. Texturemapping
interpolates the color value for any vertices along the line segment
as follows:

uα = (1 − α) · u0 + α · u1, (2)

which is of course a linear interpolation. When this kind of linear
interpolation is used, the texture mapping is referred to as affine
texturemapping. A linear interpolationworks finewhen the image
plane and the projection plane are parallel. However, when this
does not occur, the projection shows some artifacts that derive
from the assumption that a linear interpolation can be used. This
is a well documented problem, and is discussed in several works
[5,6]. The solution to this problem is called view dependent texture
mapping, and it consists of making texture mapping account
for the position of the vertexes in 3D space, rather than simply
interpolating a 2D triangle. This achieves the correct visual effect,
but it is slower to calculate. Instead of interpolating the texture
coordinates directly, the coordinates are divided by their depth
(relative to the viewer), and the reciprocal of the depth value is
also interpolated and used to recover the perspective corrected
coordinate. This correction operates so that in parts of the polygon
that are closer to the viewer, the difference from pixel to pixel
between texture coordinates is smaller (stretching the texture

1 http://www.applanix.com/products/land/pos-lv.html.
wider), and in parts that are farther away this difference is larger
(compressing the texture). View dependent texture mapping can
be formulated as:

uα =

(1 − α) ·
u0
w0

+ α ·
u1
w1

(1 − α) ·
1

w0
+ α ·

1
w1

. (3)

The solution proposed in Eq. (3) is capable of producing
accurate mapping for texture. View dependent texture mapping is
significantly slower when compared to affine texture mapping.

Since triangles are the atomic entities of texture mapping,
triangulation methodologies are an important part of the process.
In this scope, Data Dependent Triangulation (DDT) algorithms are
of particular interest since they can produce triangulated meshes
which are ideal for texturemapping. The goal of aDDT is, on the one
hand, to obtain the best approximation possible, and on the other
to reduce the number of triangles and in turn the memory load.
Consequently, the number of vertices should be kept as small as
possible to speed up processing and reduce memory load. The two
variables that should be tuned to achieve a good approximation
are then the position of the vertices and the connections between
them. Even if we decide to fix the number of triangles and vertices,
the possible combinations of the connections between vertices
are usually very large. Hence, an exhaustive search of all possible
combinations is not possible. Also, no assumptions should bemade
on the optimal shape or size of the triangles. One might tend
to assume long, thin triangles are not adequate but in fact that
depends on the nature of the image [7]. If the image contains high
gradient long feature such as poles or trees, such triangles could
be well suited to represent these regions. DDT algorithms can be
divided into refinement, decimation, or modification approaches.
In refinement approaches, the starting point for the algorithm is
a very coarse triangular mesh that is then refined. The mesh is
refined by inserting new vertices. Since the number of possible
positions where vertices can be inserted is very high, authors
make use of heuristics to limit the number of options. The greedy
refinement algorithm proposed in [8] works by inserting vertices
into a triangulated mesh. In every step, a new vertex is inserted
at the position of the largest distance between the approximation
and the data provided in the image. In [9], the choice of which
are the triangles to decimate is based on the high curvature of the
data, and the positions where new vertices are to be inserted are
locations with high proximity to the data. These methods have the
drawback of tending to a local optima. Decimation approaches are
the opposite of refinement meshes. The algorithms start from a
very fine mesh and try to remove vertices and collapse triangles as
they iterate. In [10] the initial triangulation is a full triangulation
where each pixel is a vertex in the mesh. The algorithm then
decimates the mesh by collapsing one of the edges of the mesh.
The edge to collapse is the one that implicates less increase in the
approximation error. Similar approacheswere proposed in [11,12].
Finally, modification strategies start from a random arbitrarymesh
and try to improve it by performingmodification operations. These
modification operations usually are edge swaps and the number of
vertices in the initial mesh remains the same. It is the case of the
algorithms proposed in [13,14]. Both propose different criteria for
the selection of which are the edges that should be swapped.

Given a triangulated mesh of a surface and an image registered
to that surface, it is possible tomap the texture from the image onto
the surface using classic texture mapping approaches. Fig. 2 shows
the triangulated meshes and textures produced using classical
texturemapping, for each of the four projections displayed in Fig. 1.
These mappings are computed independently for each location.
As expected, textures that derive from projections taken closer
to the surface (e.g., Fig. 2(c) and (d)) have better quality when
compared to projections taken far away from the surface (e.g.,
Fig. 2(a) and (b)).

http://www.applanix.com/products/land/pos-lv.html


116 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
Fig. 2. Triangulated meshes (top) and textures (bottom) created separately for each of the projections shown in the example of Fig. 1: (a) front camera, location C; (b) front
camera, intermediate location; (c) front camera, location D; (d) left camera, location D.
The question is how to create an unique triangulated mesh
and texture and how it should be updated with local triangulated
meshes from novel projections. Let us assume that there is a way
of assessing the quality of each projection and in particular of each
triangle in eachmesh, so that it is possible to rank the triangleswith
respect to their quality. At first sight, several strategies can be used
to fuse the textures, namely: (1) average the textures produced
by local meshes; (2) insert vertices from new triangles into the
existing mesh and re triangulate, provided that these triangles
yield better quality; (3) remove the triangles of the existing mesh
that overlap the triangle (of better quality) to be inserted, and then
insert the triangle.

Option (1) consists of averaging the textures provided by each
local mesh. This could be achieved by setting the alpha channel of
all local meshes so that they average out. Additionally, the average
could be weighted by the quality of the triangles, although this
was not tested in this work. The primitive would have several
layers, eachwith a given local triangulatedmesh belonging to each
projection. Fig. 3(a) shows the results obtained using this strategy.
Visually, results are not appealing. Another disadvantage concerns
the need to store all local meshes, which is highly inefficient in
terms of memory. As seen in Fig. 2, there are textures with much
better quality than others. To average good textures with bad
textures does not seem to make sense.

Option (2) proposes to address the problem by considering the
vertices of the meshes only (rather than the triangles). Each vertex
in the new mesh is added to the current mesh. This results in a
super mesh containing all the vertices of the two previous meshes
in which the triangles (the configuration of the mesh) are defined
arbitrarily. The idea is to fuse using an additive strategy. Fig. 3(b)
shows the results obtained using this approach. Again, results are
not visually appealing.

In option (3), an alternative to averaging is considered: awinner
takes all strategy. The idea is to select, for each region in the surface,
a single triangle which will provide the texture. This selection can
be done using the quality of each triangle. Note that, whenever a
triangle to be inserted overlaps some triangles in the existingmesh,
these trianglesmust first be removed so that themesh preserves its
configuration and thus the quality of the texture mapping. Results
obtained from this method are shown in Fig. 3(c). Textures are
visually appealing. Artifacts present in the average and the additive
strategies are not visible. There is one problem however: removed
triangles often overlap triangles to be inserted in just a portion
of their area (partial overlap). When deleted, these triangles leave
empty spaceswhere no texture is defined. This is visible in Fig. 3(c).

None of the strategies discussed provides textures of sufficient
quality. Thus the problem of incrementally updating the texture
is not trivial. In the following sections, an approach is presented
which is capable of generating higher quality textures.

3. Proposed approach

Fig. 4 shows a diagram which describes the functioning of the
system. The following sections will describe these components



M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128 117
Fig. 3. Textures obtained using different fusion strategies: (a) option (1), average textures from local meshes; (b) option (2), insert vertices from all local meshes; (c) option
(3), insert triangles of better quality, removing overlapping triangles.
Fig. 4. A diagram showing the main components of the proposed system.



118 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
in detail. First, a one-shot texture mapping based in DDT is
presented in Section 3.1. Here, we propose an algorithm based
on the extraction of edges in the image and the construction
of a constrained Delaunay triangulation, which is operated as a
DDT and is very efficient. Then, the incremental texture mapping
approach is presented in Section 3.2. In this case, we propose a
sequence of atomic operations to conduct the insertion of a new
triangle in a triangulated mesh, which minimizes the changes in
the configuration of the mesh.

3.1. One-shot texture mapping using data dependent triangulation

In this paper, we propose an alternative solution to view
dependent texture mapping. One reason for this is that the
objective of this work is to develop a mechanism for mapping
texture from images ontoGPP (see [2]). Those geometric primitives
consist of polygons, instead of the traditional triangles. The
mapping of photometric properties can be performed by mapping
triangles in image space to 3D space. These procedures are
executed in Graphical Processing Units (GPUs), and programmed
using OpenGL [15], Direct3D [16] or other graphics libraries. These
libraries also have the functionalities of mapping convex polygons,
but in fact these are mere high level functions that decompose
the polygons in an arbitrary way into sets of triangles and then
map texture onto those triangles. We argue that, if we control
the process of triangulation in such a way that the edges in the
images used in the projection are aligned with the edges of the
triangles in 3D space, the distortion produced by linear texture
mapping is not visible, and thus, linear texture mapping may
be used instead of view dependent triangulation, which is much
slower. In other words, if the triangles are especially defined so
that their faces represent smooth regions with constant color
then, a linear texture mapping over these could in fact provide
accurate projections. This procedure of creating a triangulated
meshwhich accommodates some input data is calledDDT [17], and
the mapping of images using this technique will be referred to as
DDT mapping as opposed to texture mapping. Unlike in standard
texture mapping approaches, where the triangulation is executed
in the 3D space, DDT triangulation operates in the image space, and
only after those 2D triangles are mapped onto the 3D space.

Although there are many approaches in the literature to the
data dependent triangulation problem, most of them are focused
on the fact that such a triangulated mesh is capable of producing
very good data compression ratios with respect to the real
image, while still maintaining low approximation errors. Real
time performance of the algorithms has seldom been debated,
with authors reporting processing times of over three seconds
for 512 × 512 images. The exception was the study conducted
in [18], where DDTwas parallelized, resulting in a significant speed
up. We propose a simple procedure similar to [12]: edges are
detected using a Hough lines detector [19] extended to obtain a
description of line segments instead of lines (e.g., see [20,21]).
The triangulation is a Delaunay triangulation [22]: let the image
be described by M line segments with starting points sm and
endpoints em, where each detected line segment is defined as
smem. The Delaunay triangulation (Delaunay) receives the starting
and endpoints as input to define the vertices of the triangulated
mesh:

t = Delaunay

{s0, e0, s1, e1, . . . , sM−1, eM−1}


, (4)

wheret is the resulting triangulatedmesh. A constrainedDelaunay
triangulation is a generalization of the Delaunay triangulation
where line segments may be imposed as belonging to the
triangulated mesh (initially proposed by [23] for 2D spaces, later
generalized to N dimensional spaces by [24]). A constrained
Delaunay triangulation (cDelaunay) requires two inputs, a list of
points and a list of line segments (also called constraints):

t = cDelaunay

{s0, e0, . . . , sM−1, eM−1},

{s0e0, . . . , sM−1eM−1}

. (5)

In brief, what we propose is a technique in which a constrained
Delaunay triangulation is executed on the image space, having
as input the line segments given by a line segment detection
algorithm based on hough lines.

3.2. Incremental texture mapping

Section 3.1 described how a constrainedDelaunay triangulation
may be used to produce a data dependent triangulated mesh that
conforms with edges previously detected in the image. Note that
this is a one-camera, one-shot approach, since it does not consider
how to map more than one image. In reality, there is always a
large set of images available to use for texturemapping, either from
multiple cameras or from a unique camera at different times. This
section addresses this problem of merging multiple projections
into a single representation. As described in Section 3.1, a DDT
triangulation is executed for each image used in a projection. Thus,
there will be a triangulatedmesh (a list of triangles) for each image
(for each projection), to which we refer as local triangulated mesh.
Local triangulated meshes for the example of Fig. 1 are shown in
Fig. 2.

Let M be the global triangulated mesh, defined in R2, so that
only one global mesh exists per each primitive. This global mesh
should be updated when new projections are collected or, in
other words, when novel local meshes are received, i.e. it should
contain the result of the fusion of the several textures. A local
triangulated mesh from projection index j = {k, l, t} (i.e., form a
given combination of k, l, t) is denoted as Tj. Local triangulated
meshes contain T j number of triangles. Individual triangles are
denoted as Tj

i, ∀i ∈ {0, 1, . . . , T {k,l,t}
}, when indicating the ith

triangle of the local mesh j, or as Tj
{v1,v2,v3}

, in the case the vertices
v1, v2 and v3 are specified. Likewise, triangles in the global mesh
are notated as Mn, ∀n ∈ {0, 1, . . . ,N}, where N is the number of
triangles in the global mesh. When the vertices of the triangles are
specified, then the notation M{V1,V2,V3} is used.

To continuously fuse local triangulated meshes from new
projections onto the global mesh, we propose a mechanism which
iterates all the triangles in the local projection mesh and decides
whether they should be inserted in the global mesh by computing
the benefit of this operation to the overall quality of the global
mesh. At iteration i, triangle Tj

i from the local projection mesh is
referred to as candidate triangle. First, the algorithm assesses if
there is overlap between (Tj

i) and any of the existing triangles in
the global mesh Mn, ∀n ∈ {0, 1, . . . ,N}. Let intr(A, B) be a function
that tests intersection between triangles A and B. The test can be
written as:

do_intersect = intr

Tj

{V1,V2,V3}
, Mn


, ∀n ∈ {0, 1, . . . ,N}, (6)

where N corresponds to the total number of triangles in the
global mesh M. The intersection of two triangles can result in
an empty set, whenever there is no intersection, in a point,
a line segment, or a polygon. There are several approaches to
triangle triangle intersection tests, that provide fast and efficient
algorithms [25–27]. Note that there is a distinction between
overlap and intersection: what must be assessed is whether or not
an insertion of the candidate triangle onto the global mesh will
change its configuration. Thus, an overlap test is not the same as an
intersection test, since there are some cases where the triangles do
intersect but themesh configuration is not altered. The overlap test



M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128 119
is based on a set of rules that analyse the return of the intersection
function (intr, implementation from [28]), between candidate
triangle Tj

i and global mesh triangle M{V1,V2,V3}. It returns yes if
the triangles overlap or no otherwise. The algorithm is detailed in
Eqs. (7)–(9):

no ⇐ intr

Tj
i, M{V1,V2,V3}


= ∅

yes ⇐ intr

Tj
i, M{V1,V2,V3}


= list of polygons

Goto (8) ⇐ intr

Tj
i, M{V1,V2,V3}


= points X

Goto (9) ⇐ intr

Tj
i, M{V1,V2,V3}


= line segment L

(7)

where X = {X0, X1, . . . , XN} and L = {S0E0, . . . , SNEN};
no ⇐ ∃Vg :Vg=Xo , ∀Vg∈{V1,V2,V3}, ∀o∈{0,1,...,N}

yes ⇐ otherwise (8)
no ⇐ ∃Vg :Vg=So ∧ ∃Vh:Vh=Eo , ∀Vg ,Vh∈{V1,V2,V3}, ∀o∈{0,1,...,N}

yes ⇐ otherwise. (9)

Fig. 5(a) shows a global primitive mesh M that contains a single
triangle (in blue), and a candidate triangle (in red). In each case, the
geometries returned by the intersection function are as follows:
an empty set (d), points (a) and (e), line segments (b) and (f), and
polygons (c). If we consider the cases where the insertion of the
candidate triangle (in red) does not change the configuration of the
already existing global mesh (in this case, the initial global mesh is
composed of a single triangle, in blue), we can say that in case (a),
(b) and (c) the mesh would be altered, and that, in cases (d), (e)
and (f) the mesh would remain unaltered. The overlap test returns
a list L of indices of triangles from the global mesh which overlap
with the candidate triangle. From this, the benefit of inserting the
candidate triangle in the global mesh is assessed. In this context,
benefit is defined as an improvement in the quality of texture and
estimated as follows:

beneficial ⇐ L is empty

otherwise

beneficial, ⇐ q(Tj
i) > α · max


q(Mg)


,

∀g ∈ L
not beneficial, ⇐ otherwise

(10)

where α ≥ 1 is a user defined cost parameter, which defines
how much better the quality of candidate triangle must be to
any other triangle it overlaps, in order for the insertion to be
considered beneficial, and q(·) is an arbitrary function that returns
the estimated quality of each triangle. In this work we define
quality as directly proportional to the resolution of the texture. An
image provides a texture of higher resolution when it is closer to
the GPP. In addition to this, the focal distance of the camera should
be taken into account. Thus, the quality of a triangle Tj={k,l,t} is
proposed as follows:

q

T{k,l,t}

=
fl

D{k,l,t}
, (11)

where fl is the focal distance of camera index l and D{k,l,t} is the
distance between the camera l and the GPP k computed at time t .

When the insertion of a candidate triangle is considered to be
beneficial, the next step is to execute the insertion in the global
mesh. The global primitive mesh is built as a constrained Delaunay
triangulation. Hence, a description of the mesh contains a set
of vertices, edges and constraints (implementation from [22] is
used). After insertion, the candidate triangle should be preserved
on the updated mesh (since it had a larger quality than any global
mesh triangle it overlapped). The configuration of all other non
overlapped global mesh triangles should also be preserved. In
order to comply with those objectives, the insertion of a candidate
triangle is composed of a set of atomic operations executed in
sequence. Fig. 6 will be used to demonstrate why the proposed
set of operations is required, by comparing it to other possibilities.
Fig. 6(a) shows the initial situation: an existing mesh in blue must
be altered by the insertion of a candidate triangle in red. The blue
triangle has all three edges constrained (blue squares, in Fig. 6(a)).
Let insert(V, M) be a function that inserts vertex V into mesh M.

M∗
= insert


V, M


, ∀ V ∈ {Va, Vb, Vc}, (12)

where M∗ is the updated mesh. Fig. 6(b) shows the updated
mesh after the insertion of the three vertices, indices 4, 5 and
6 (see vertices indices in the Fig. 6). The updated mesh does
not preserve the configuration of the candidate triangle. In other
words, there is no triangle with vertices 4, 5, 6 in the updated
mesh. The expression that asserts if the configuration of the
candidate triangle is preserved can be stated as follows:

preserve Tj
{Va,Vb,Vc }

, if

∃M∗

{Vd,Ve,Vf }
∈ M∗


: Vd = Va ∧ Ve

= Vb ∧ Vf = Vc

do not preserve Tj
{Va,Vb,Vc }

, otherwise.
(13)

One of the reasonswhy the simple insertion of the vertices does
not work is that the existing mesh had some constrained edges.
After the mesh is updated, these constraints continue to exist (see
squares on edges 1–2, 2–3, and 1–3 in Fig. 6(b)). The configuration
of the candidate triangle is not kept because no constraints over
the edges of that triangle are set. Hence, the second alternative is to
execute an additional operation on top of the insertion of vertices
Va, Vb and Vc . Let add_constraint(e, M) be a function that adds a
constraint on edge e. The operation can be expressed as follows:

M∗
= add_constraint


e, M


, ∀ e ∈ {Va–Vb, Vb–Vc, Va–Vc} (14)

where Va–Vb denotes the edge defined between vertices Va and Vb.
Fig. 6(c) shows the updated mesh after this procedure is

executed. Also in this case the configuration of the candidate
triangle is not preserved. The reason is that there are conflicting
constraints inserted in the mesh. For example, initially, the global
mesh had a constraint over edge 1–2 (see indices in Fig. 6). At
the same time the constraint Va–Vb is inserted into the mesh.
Since these two constraints intersect, a new vertex is created at
the intersection point (vertex 7). Since a vertex is created at the
intersection of the two initial constrained edges, four new edges
are created (edges 4–7, 7–8, 1–7 and 7–10). All of these edges are
constrained. From Fig. 6(c), one can see that the overall result of
this approach is that neither the candidate triangle nor the existing
mesh is preserved. The reason is that contradictory (intersecting)
constraints are inserted in the mesh. The solution is to remove
the constraints from edges in the global mesh that intersect edges
from the candidate triangle, prior to inserting the vertices and
constraints of the candidate triangle. Let E = {e0, e1, . . . , eN , }
be the list of the global mesh constrained edges that intersect any
of the candidate triangle’s edges, and remove_constraint(e, M) a
function that removes the constraint from edge e in the mesh M.
The prepared mesh M′ is obtained as follows:

M′
= remove_constraint


e, M


, ∀ e ∈ E, (15)

and after this, the operations described in Eqs. (12) and (14) are
executed. Fig. 6(d) shows the results of this approach. The mesh
preparation stage detected the following intersections (indices in
Fig. 6(a) and (d)): Va–Vb intersects with V1–V2, Va–Vb intersects
with V1–V3, Vb–Vc intersects with V1–V2 and Vb–Vc intersects with
V1–V3. As a result, the constraints of edges V1–V2 and V2–V3 are
removed. Note that in Fig. 6(d), the prepared mesh (not the initial
global mesh) is shown in blue, and those constraints no longer



120 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
Fig. 5. Triangle overlap test: (a) intersection returns points, overlap true; (b) intersection returns line segments, overlap true; (c) intersection returns polygons, overlap
true; (d) intersection returns empty, overlap false; (e) intersection returns points, overlap false; (f) intersection returns line segments, overlap false. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
appear. More important, the candidate triangle’s configuration
is preserved (triangle 4–5–6). In this particular case, the initial
configuration of the mesh is lost, since there was overlap between
the candidate triangle and the initial mesh triangle.

We now show an example of continuous update of the global
mesh: three new projections (Cj=1, Cj=2, Cj=3) are available
to update to the initial mesh M. The projections are mapped
sequentially, generating updated meshes M∗, M∗∗, etc. Each
projection contains a single triangle to map to the global
mesh. Triangles T1

{Va,Vb,Vc }
, T2

{Vd,Ve,Vf }
and T3

{Vg ,Vh,Vi}
, correspond to

projectionsCj=1,Cj=2,Cj=3, respectively. The quality of the triangles
is such that the following holds:

q

Mn


< q


T1

{Va,Vb,Vc }


< q


T2

{Vd,Ve,Vf }


< q


T3

{Vg ,Vh,Vi}





M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128 121
Fig. 6. The insertion operation: (a) candidate triangle and initial mesh; (b) insertion of candidate triangle’s vertices; (c) insertion of the candidate triangle’s vertices and
constraints; (d) preparation of the mesh followed by the insertion of the candidate triangle’s vertices and constraints. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
∀ Mn ∈ M, (16)

and the mesh update cost parameter is α = 1, which means that
there is no cost associated to the updating of the mesh (see
Eq. (10)). In other words, the insertion of all three candidate
triangles is considered beneficial. The initial mesh is shown in
Fig. 7(a), along with the three candidate triangles. Fig. 7(b) shows
the mesh after the insertion of the first candidate triangle, i.e., M∗.
Since there is no overlap, the candidate triangle is added to the
mesh M∗

{4,5,8}, and edges M∗

{4–5}, M
∗

{5–8}, and M∗

{4–8} are constrained.
Also, since there was no overlap detected, the initial configuration
of the mesh is preserved. The result of the second insertion is
shown in Fig. 7(c). In this case, there is overlap between candidate
triangle T2

{Vd,Ve,Vf }
(seen in Fig. 7(a)) and triangle M∗

{2,5,7} (seen in
Fig. 7(b)). An intersection between edges Vd–Ve and edge M∗

{5–7}
(seen in Fig. 7(b)), is detected. As a result, the constraint from edge
M∗

{5–7} is removed. The insertion results in a new triangle M∗∗

{9,10,11}.
Note also that the overlapping triangle M∗

{2,5,7} was not preserved,
i.e., it does not exist in the newmeshM∗∗. Finally, the third insertion
detects that triangle T3

{Vg ,Vh,Vi}
overlaps triangles M∗∗

{3,4,5}, M
∗∗

{4,5,8} and
M∗∗

{2,3,5}. EdgesM
∗∗

{3–4},M
∗∗

{4–5} andM
∗∗

{3–5} intersect the edges ofT
3
{Vg ,Vh,Vi}

which is why their constraints are removed (actually, in this case
they disappear after the candidate triangle is inserted).

The insertion of candidate triangles sometimes creates not only
the candidate triangle itself, but also some additional triangles
on the mesh. It is the case, for example, of triangle M∗∗

{7,9,10}. We
refer to this type of triangles as orphan triangles, meaning they
have no parent projection. These are shown in grey color in Fig. 8.
Unlike triangles with parent projections, these triangles do not
belong to any projection and thus they do not derive from the
DDT triangulation executed over an image of some projection.
Because of this, there is no guarantee that these orphan triangles
are compliant with edges in the projection images. For this reason,
we propose that orphan triangles are set to have the quality 0.
In summary, this approach for the update of a global primitive
mesh consists of a set of procedures that are capable of updating
the mesh whenever new, better quality triangles are available for
insertion, but at the same time the mechanism is capable of filling
the gaps left empty using orphan triangles.

4. Results

This section shows results both from one-shot texturemapping
using DDTs, as well as results from the algorithm proposed to
conduct incremental texture mapping.

4.1. One-shot texture mapping

Fig. 9(a) shows the detection of line segments in an image.
Fig. 9(b) displays the result of a Delaunay triangulation with
arbitrary configuration, e.g. computed by giving only the vertices as
input (greendots in Fig. 9(a)). Because the triangulatedmeshhas an



122 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
Fig. 7. The insertion operation, example 1: (a) candidate triangles and initial mesh M; (b) first insertion, mesh M∗; (c) second insertion, mesh M∗∗; (d) third insertion, mesh
M∗∗∗ .
arbitrary configuration, triangle often contain areas with multiple
textures. This would cause problems when using affine texture
mapping. Notice the large triangle that covers part of the roof of
the building, as well as a portion of the sky. This triangle contains
a significant change in color and thus its affine texture mapping
would result inaccurate. Fig. 9(c) shows the result of the proposed
DDT approach,where a constrainedDelaunay triangulation is used.
This triangulation is computed using as input the vertices as in
the previous case but also the detected line segments (red lines
in Fig. 9(a), constrained edges also shown in (c) with red lines).
In this case, the large triangle described above does not exist.
In fact, there are no triangles which contain both sky and roof.
Thus, we can argue that the proposed approach creates a mesh in
which triangles contain smooth color transitions. The next section
addresses the incremental update of these triangulation meshes.

4.2. Incremental texture mapping

To show the results of incremental texturemapping,we recover
the example of Section 1 (see Fig. 1): the vehicle approaches a
wall panel, which has the word START written on it and collects
four images in sequence (color coded black-red-orange-yellow in
Fig. 10). The global mesh is created with the first image and then
updated three times. The global triangulatedmesh at each iteration
is shown in Fig. 10 (top). Textures for each of these cases are show
in Fig. 10 (bottom). Projection C{k=4,l=1,t=t1} is used to create the
global mesh. Thus, the global mesh is composed only of triangles
with parent projection C{k=4,l=front center,t=t1} (black triangles in
Fig. 10(a)). Then, a newprojection C{k=4,l=1,t=t2} becomes available.
The global mesh is updated (Fig. 10(b)), and now contains a
majority of triangles from C{k=4,l=1,t=t2} (red triangles). Then
projection C{k=4,l=1,t=t3} is mapped. Since only a right side portion
of the primitive is seen, orange triangles can be observed on the
right side of Fig. 10(c)), while the left side retains red colored
triangles from previous projections. Orphan triangles (in blue)
are generated to fill the gaps that appear between the triangles
with parent projections. Finally, projection C{k=4,l=3,t=t4} is used.
This image views only the left portion of the wall panel. As
such, we can see yellow triangles on the left side of (Fig. 10(d)).
This example shows how the proposed mechanism is capable of
creating andmaintaining a global triangulatedmesh which is used
for enhancing the texture mapped onto the GPPs whenever new
(and better) images are collected.

4.3. Projection of a single camera onto the ground plane

This section shows three examples of how the global primitive
mesh evolveswhenusing a single camera tomap a single primitive.
We consider a similar scene to the one presented in Fig. 1.
Throughout the three time instants t = t1, t = t2 and t = t3,
the vehicle is moving forward. From t1 to t2 the vehicle drives
straight, and from t2 to t3 the vehicle turns slightly to the right.



M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128 123
4

3.5

3

2.5

2

1.5

1

1 1.5 2 2.5 3 3.5 4 4.5 5

4

3.5

3

2.5

2

1.5

1

1 1.5 2 2.5 3 3.5 4 4.5 5

4

3.5

3

2.5

2

1.5

1

1 1.5 2 2.5 3 3.5 4 4.5 5

4

3.5

3

2.5

2

1.5

1

1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 8. The projection parent status of each triangle (same example as in Fig. 7): (a) candidate triangles and initial mesh M; (b) first insertion, mesh M∗; (c) second insertion,
mesh M∗∗; (d) third insertion, mesh M∗∗∗ .
Fig. 9. One-shot texture mapping: (a) image with line segments detected (red lines); (b) arbitrary Delaunay triangulation; (c) proposed approach, using a constrained
Delaunay triangulation. Constrained edges marked in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
In this case the primitive that represents the ground plane is used
for texture mapping (k = 0). As a consequence, there is always a
portion of the images from the projections that view the ground. In
otherwords, at all instants any of the cameras view a portion of the
ground, since they are pointed downwards. Wewill consider three
different cases, each generating a unique scene representation:
In the first case only the front center camera (l = 1) is used for
projection. Hence there will be three projections: C{k=0,l=1,t=t1},
C{k=0,l=1,t=t2} and C{k=0,l=1,t=t3}; In the second case only the rear
center camera (l = 4) is used for projection. Hence there will be
three projections: C{k=0,l=4,t=t1}, C{k=0,l=4,t=t2} and C{k=0,l=4,t=t3};
In the third case only the front left camera (l = 3) is used for
projection. Hence there will be three projections: C{k=0,l=3,t=t1},
C{k=0,l=3,t=t2} and C{k=0,l=3,t=t3}.

The final global primitive meshes (those obtained after
inserting projections at times t1, t2 and t3) for each case are
displayed in Fig. 11 (left column). Fig. 11 (right column) shows the
percentage of triangles of the global mesh that belong to each
projection, as a function of the mission time. Note that the final
position of the vehicle (which is the same for all cases) is depicted
in the images, and bear in mind that, during this sequence, the
vehicle moves forward from the right to the left. The triangles of
the global primitive mesh are shown in colors, where each color
corresponds to a particular projection.



124 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
Fig. 10. The evolution of the global primitive mesh (top) as well as the texture (bottom): (a) time t = t1; (b) time t = t2; (c) time t = t3 , insertion of front center camera;
(d) time t = t3 , insertion of front left camera. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11 (first row, left) shows the distribution of triangles
according to the parent projection. In this case, the images are
provided by the front center camera. As the vehiclemoves forward,
the ground in front of the vehicle that has been previously mapped
by previous projections is now visible in images at a closer range.
This leads to the effect that more recent projections tend to
override older projections, i.e., red color (t2) overrides black color
(t1), and yellow color (t3) overrides the other two. Fig. 11 (first row,
right) shows that at time t1, only triangles from the first projection
(black) and orphan triangles (blue) exist. Then, at time t2, the
triangles from the second projection (red) are added to the global
mesh. As a consequence, the percentage of triangles from the first
projection (black) decreases. At time t3, the third projection again
takes themajor slice of percentagewith respect to the previous two
projections. In front facing cameras, when the vehicle is moving
forward, more recent projections tend to contribute with a larger
portion of the total triangles in the global mesh.

The second case is shown in 11 (second row, left). Here, since the
camera is facing the rear side of the vehicle, the opposite phenom-
ena occurs: the vehicle is moving away from the ground behind
it, and thus older projections were taken at closer distances to the
ground. As a consequence, the red color (projection at t2) overrides
the yellow color (projection at t3), and the black color (projection at
t1, the oldest one) overrides all others. This is observable in Fig. 11
(second row, right), where the first projection (black) is, at all times,
the one with the largest percentage of the triangles.

Fig. 11 (third row, left) shows the third case. Here, since the
camera is facing the left side of the vehicle, a hybrid phenomena
takes place. For each projection, there is always a portion of the
triangles, i.e., those that map the ground directly in front of the
camera for that particular instant, that have a higher projection
quality when compared to others. Fig. 11 (third row, right) also
shows this tendency: the percentage of projections tends to be the
same for all projections, which is why the second projection (red)
when first mapped at time t2 achieves approximately the same
percentage of triangles as the first projection (black). They continue
to have similar percentages also at time t3. At time t3, the third
projection (yellow) obtained a higher value of percentage because
the vehicle as turned slightly to the right and the left camera faced
an area of the ground that was not previously mapped by any of
the previous projections.

4.4. Projection of multiple cameras onto the ground plane

The examples given in Section 4.3 have shown that the
proposed algorithm is capable of handling multiple projections,
correctly determining which are the best quality projections to
map onto the global mesh. Nonetheless, those examples were
simplified since only one camera was considered to provide
projections in each case. In this section, the five cameras onboard
the Talos are used to provide projection to be mapped onto the
ground plane. The same sequence is used: the vehicle is moving
forward and three time instants are used to generate projections.
Each time instant t1, t2 and t3 generates five projections, one for
each camera. Fig. 12(a) shows the state of the global mesh after



M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128 125
Fig. 11. Mapping of a single camera to the ground plane: (first row) front center camera; (second row) rear center camera; (third row) front left camera; (left column) global
primitive meshes; (right column) contribution of each projection to the total number of triangles in the global mesh. Colors denote each of the projections, i.e., black is time
t1 , red is time t2 and yellow is time t3 . Blue triangles are orphan triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
time t1. Five projections are contained in the mesh. At time t2,
the global mesh incorporates many of the projections that are
computed at this time (Fig. 12(b)). The same occurs at time t3
(Fig. 12(c)). Note that these images are not exactly the same as
those in Fig. 11, because in that case only the final global projection
mesh was shown for three different examples. Here, we show the
state of a single global projection mesh at times t1, t2 and t3. Thus,
in this case it is possible to see how the mesh evolved as more
projections became available. The resulting mesh is an intricate
mosaic of triangles coming from several projections. At time t1, the
area of projection from the rear center camera was not connected
to the areas of projection of the other cameras. Note that the red
triangles in Fig. 12(a) are not connected to any triangle with a
parent projection, only to orphan triangles. This unmapped region
corresponds to the ground that was below the vehicle at time t1.
Obviously, there is no coverage from the cameras for that area,
so the system handles this by defining orphan triangles (blue) to
cover that area. At time t2, the vehicle has moved forward, and the
uncovered ground is now visible from the rear camera. Hence, the
areas mapped by the rear cameras connect to the areas mapped by



126 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
Fig. 12. Distribution of triangles according to projection, for an example with five cameras. Three time instants (15 projections in total) are considered; (a) t1; (b) t2; (c)
t3; (d) percentage of triangles by parent projection. Projections are colored with a black to yellow color coding, denoting oldest to newest projections. Blue color denotes
orphan triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the other cameras, as seen in Fig. 12(b). At time t3, since the vehicle
has turned to the right, the rear camera now views a different
portion of the ground that had not been captured by any other
camera. Note, in Fig. 12(c), how the triangles of the rear camera
(the brightest yellow at the bottom right side) map a region that
was not seen before and was previously covered only by orphan
(blue) triangles.

Fig. 12(d) shows the percentage of triangles of each projection
as a function of the mission time. As each time instant, only newly
acquired projections are used to update themesh. Hence, triangles
from previous iterations, if removed, will not be retested for
insertion. That means each triangles is tested for insertion a single
time. If a triangle is removed, it will never again be reinserted.
This can be observed in the Figure, since none of the projections
increases the percentage of triangles it contains. Fig. 13 shows the
fifteen images used to compute these representations.

As the vehicle moves and turns around, more and more of
the ground that had not been viewed before is covered by
new projections. This is a clear example of why integrating
several projections over time is advantageous. A composite
photometric description of the environment can be obtained that
was impossible to compute without the capability of integrating
multiple projections over time in an incremental fashion.

The incremental texture mapping of an entire scenario can
be observed in https://youtu.be/UG8WMCDxx8A. The scenario is
composed of the entire (MIT) sequence. All five cameras onboard
the Talos vehicle are used as input to the texture mapping.
Geometric primitives are represented in the environment by the
blue–green polygons. A blue to green colormap is used to color the
primitives according to their index, themore recently detected the
primitive, the closer to green it is. Photometry is represented by
the texture mapped onto the primitives. Note that at each of the
time instants new projections will update the global meshes of the
detected polygonal primitives. Hence the scenario representation
will evolve photometrically over time. Furthermore, also the
geometric representationwill evolve over time (see [2] for details).
For a better visualization, the primitive that represents the ground
plane is not textured in the video.

5. Conclusions

This paper addressed the problem of how to create and update
a triangulated mesh. These meshes are used for texture mapping
surfaces in 3D, and the input are images collected from cameras
mounted on-board a vehicle. The geometric structure onto which
texture is mapped is described in detail in [2] and given as a list
of polygons. Because the atomic entities of the 3D structure are
defined as polygons (rather than triangles), it is possible to perform
a triangulation of the convex hull of that polygon, as opposed to
having an arbitrary triangulation. This triangulation is computed
in the image space, and is defined as a constrained Delaunay
triangulation. This makes it possible to impose line segments as
constrained edges in the triangulation, which creates triangles
with smooth color transitions. This, in turn, makes it possible to
use affine texture mapping.

Incremental texture mapping is done by creating and updating
a global triangulated mesh per geometric primitive. The update of
this mesh is done using meshes created from projections. In this
paper, we have proposed a sequence of operations which are used

https://youtu.be/UG8WMCDxx8A


M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128 127
Fig. 13. Images and local triangulated meshes for all projections shown in Fig. 12: First row front center teleobjective camera; Second row front center camera; Third row,
front right camera; Fourth row, front left camera; Fifth row, rear center camera; Left column: time t1 , (Fig. 11(a)); Middle column: time t2 , (Fig. 11(b)); Right column: time
t3 , (Fig. 11(c)).
for inserting triangles from the projection mesh into the global tri-
angulation mesh. This procedure ensures that the inserted trian-
gles maintain their configuration as well as the existing triangles
which do not overlap the inserted triangles. Furthermore, the pro-
posed algorithm fills the gaps in the mesh where there are to tri-
angles with parent projections with orphan triangles. Using this
mechanism, the holes that could exist between textures of differ-
ent projections are replaced by orphan triangles where texture is
interpolated, resulting in a better overall quality of the texture.

To the best of our knowledge, this is the first approach in this
field capable of fusing images continuously and in an incremental
fashion in order to generate a single texture of good quality.

Acknowledgments

This work has been supported by the Portuguese Founda-
tion for Science and Technology ‘‘Fundação para a Ciência e
Tecnologia’’ (FTC), under grant agreements SFRH/BD/43203/2008
and SFRH/BPD/109651/2015 and projects POCI-01-0145-FEDER-
006961 and UID/CEC/00127/2013. This work was also financed
by the ERDF European Regional Development Fund through the
Operational Programme for Competitiveness and Internationali-
sation - COMPETE 2020. A. Sappa has been partially supported
by the Spanish Government under Project TIN2014-56919-C3-2-
R and the PROMETEO Project of the ‘‘Secretaría Nacional de Edu-
cación Superior, Ciencia, Tecnología e Innovación de la República
del Ecuador’’, reference CEB-02502014.

References

[1] M. Oliveira, V. Santos, A.D. Sappa, P. Dias, Scene representations for
autonomous driving: An approach based on polygonal primitives, in: Robot
2015: Second Iberian Robotics Conference: Advances in Robotics, Volume 1,
Springer International Publishing, Cham, 2016, pp. 503–515. (Chapter).

[2] M. Oliveira, V. Santos, A. Sappa, P. Dias, A.P. Moreira, Incremental scenario
representations for autonomous driving using geometric polygonal primitives,
Robot. Auton. Syst. (2016) http://dx.doi.org/10.1016/j.robot.2016.05.011, in
press.

[3] A.S. Huang, M. Antone, E. Olson, L. Fletcher, D. Moore, S. Teller, J. Leonard,
A High-rate, Heterogeneous data set from the DARPA urban challenge, Int. J.
Robot. Res. 29 (13) (2011) 1595–1601.

[4] A. Huang, E. Olson, D. Moore, LCM: Lightweight communications and
marshalling, in: 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, 2010, pp. 4057–4062.

[5] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, P. Haeberli, Fast shadows
and lighting effects using texture mapping, SIGGRAPH Comput. Graph. 26 (2)
(1992) 249–252.

http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref1
http://dx.doi.org/10.1016/j.robot.2016.05.011
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref3
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref5


128 M. Oliveira et al. / Robotics and Autonomous Systems 84 (2016) 113–128
[6] P. Debevec, Y. Yu, G. Boshokov, Efficient view-dependent image-based
rendering with projective texture-mapping, Tech. Rep., 1998.

[7] S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM J.
Numer. Anal. 29 (1) (1992) 257–270.

[8] M. Garland, P.S. Heckbert, Fast polygonal approximation of terrains and height
fields, Tech. Rep. CMU-CS-95-181, 1995.

[9] R. Schätzl, H. Hagen, J.C. Barnes, B. Hamann, K.I. Joy, Data-dependent
triangulation in the plane with adaptive knot placement, in: Geometric
Modelling, 2001, pp. 309–321.

[10] H. Hoppe, Progressive meshes, in: Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, 1996,
pp. 99–108.

[11] L. Demaret, N. Dyn, A. Iske, Image compression by linear splines over adaptive
triangulations, Signal Process. 86 (7) (2006) 1604–1616.

[12] A.D. Sappa, M.A. García, Coarse-to-fine approximation of range images with
bounded error adaptive triangular meshes, J. Electron. Imaging 16 (2) (2007)
23010.

[13] N. Dyn, D. Levin, S. Rippa, Boundary correction for piecewise linear
interpolation defined over data-dependent triangulations, J. Comput. Appl.
Math. 39 (2) (1992) 179–192.

[14] L.L. Schumaker, Computing optimal triangulations using simulated annealing,
Comput. Aided Geom. Design 10 (3–4) (1993) 329–345.

[15] Opengl, D. Shreiner, M. Woo, J. Neider, T. Davis, OpenGL(R) Programming
Guide: The Official Guide to Learning OpenGL(R), Version 2, fifth ed., Addison-
Wesley Professional, 2005.

[16] D. Blythe, The direct3d 10 system, ACM Trans. Graph. 25 (3) (2006) 724–734.
[17] B. Lehner, G. Umlauf, B. Hamann, Survey of techniques for data-dependent

triangulations, in: H. Hagen, M. Hering-Bertram, C. Garth (Eds.), GI Lecture
Notes in Informatics, Visualization of Large and Unstructured Data Sets, 2007,
pp. 178–187.

[18] M. Cervenansksy, Z. Toth, J. Starinsky, A. Ferko, M. Sramek, Parallel gpu-based
data-dependent triangulations, Comput. Graph. 34 (2) (2010) 125–135.

[19] I. Svalbe, Natural representations for straight lines and the hough transformon
discrete arrays, IEEE Trans. Pattern Anal. Mach. Intell. 11 (9) (1989) 941–950.

[20] V. Kamat, S. Ganesan, A robust hough transform technique for description
of multiple line segments in an image, in: 1998 International Conference on
Image Processing, 1998. ICIP 98. Proceedings. Vol. 1, 1998, vol. 1, pp. 216 –220.

[21] R. Guerreiro, P. Aguiar, Incremental local hough transform for line segment
extraction, in: 2011 18th IEEE International Conference on Image Processing,
ICIP, 2011, pp. 2841–2844.

[22] M. Yvinec, 2D triangulations, in: CGAL User and ReferenceManual, 4.0 Edition,
CGAL Editorial Board, 2012.

[23] L.P. Chew, Constrained delaunay triangulations, in: Proceedings of the Third
Annual Symposium on Computational Geometry, SCG ’87, 1987, pp. 215–222.

[24] J.R. Shewchuk, General-dimensional constrained delaunay and constrained
regular triangulations i: Combinatorial properties, Discrete Comput. Geom. 39
(1) (2008) 580–637.

[25] T. Moller, A fast triangle-triangle intersection test, J. Graph. Tools 2 (1997)
25–30.

[26] J.-W. Chang, M.-S. Kim, Efficient triangle–triangle intersection test for OBB-
based collision detection, Comput. Graph. 33 (3) (2009) 235–240.

[27] A.D. Sappa, M.A. García, Incremental multiview integration of range images,
in: ICPR, 2000, pp. 1546–1549.

[28] E. Fogel, R. Wein, B. Zukerman, D. Halperin, 2D regularized Boolean set-
operations, in: CGAL User and Reference Manual, 4.0 Edition, CGAL Editorial
Board, 2012.

Miguel Oliveira received the Mechanical Engineering
and M.Sc. in Mechanical Engineering degrees from the
University of Aveiro, Portugal, in 2004 and 2007, where
later in 2013 he obtained the Ph.D. in Mechanical
Engineering specialization in Robotics, on the topic of
autonomous driving systems. Currently he is a researcher
at the Institute of Electronics and Telematics Engineering
of Aveiro, Portugal, where he works on visual object
recognition in open-ended domains. His research interests
include multimodal sensor fusion, computer vision and
robotics.
Vítor Santos obtained a 5 year degree in Electronics
Engineering and Telecommunications in 1989, at the
University of Aveiro, Portugal, where he later obtained a
Ph.D. in Electrical Engineering in 1995. He was awarded
fellowships to pursue research in mobile robotics during
1990 1994 at the Joint Research Center, Italy. He is
currently Associate Professor at the University of Aveiro
and lectures courses related to advanced perception and
robotics, and has managed research activity on mobile
robotics, advanced perception and humanoid robotics,
with the supervision or cosupervision of more than

100 graduate and undergraduate students, and more that 120 publications in
conferences, books and journals. At the University of Aveiro he has coordinated
the ATLAS project for mobile robot competition that achieved 6 first prizes in the
annual Autonomous Driving competition and has coordinated the development of
ATLASCAR, the first real car with autonomous navigation capabilities in Portugal.
He is one of the founders of Portuguese Robotics Open in 2001 where he has kept
active participation ever since. He is also cofounder of the Portuguese Society of
Robotics, and participated several times in its management since its foundation
in 2006. His current interests extend to humanoid robotics and the application of
techniques from perception and mobile robotics to autonomy and safety in ADAS
contexts.

Angel Domingo Sappa (S’1994–M’00–SM’12) received
the Electromechanical Engineering degree from National
University of La Pampa, General Pico, Argentina, in 1995,
and the Ph.D. degree in Industrial Engineering from the
Polytechnic University of Catalonia, Barcelona, Spain, in
1999. In 2003, after holding research positions in France,
the UK, and Greece, he joined the Computer Vision Center,
Barcelona, where he is currently a Senior Researcher. He
is a member of the Advanced Driver Assistance Systems
Group. His research interests span a broad spectrum
within the 2D and 3D image processing. His current

research focuses on stereoimage processing and analysis, 3D modelling, and dense
optical flow estimation.

Paulo Dias graduated from the University of Aveiro Por-
tugal in 1998 and started working in 3D reconstruc-
tion at the European Joint research Centre in Italy. In
September 2003, he concluded his Ph.D. with the the-
sis ‘‘3D Reconstruction of real World Scenes Using Laser
and Intensity Data’’. He is currently an assistant profes-
sor within the Department of Electronics Telecommuni-
cations and Informatics (DETI) and is involved in several
works and projects within the Institute of Electronics and
Informatics Engineering of Aveiro (IEETA) related to 3D
Reconstruction, Virtual Reality, Computer Vision, Com-

puter Graphics, Visualization and Combination and Fusion of data from multiple
sensors.

António Paulo Moreira graduated with a degree in elec-
trical engineering at the University of Oporto, in 1986. He
then pursued graduate studies at University of Porto, ob-
taining a M.Sc. degree in electrical engineering—systems
in 1991 and a Ph.D. degree in electrical engineering in
1998. Presently, he is an Associate Professor at the Faculty
of Engineering of the University of Porto and researcher
and manager of the Robotics and Intelligent Systems Cen-
tre at INESC TEC. His main research interests are process
control and robotics.

http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref6
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref7
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref8
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref9
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref11
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref12
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref13
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref14
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref15
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref16
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref17
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref18
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref19
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref22
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref24
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref25
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref26
http://refhub.elsevier.com/S0921-8890(16)30081-1/sbref28

	Incremental texture mapping for autonomous driving
	Introduction
	Related work
	Proposed approach
	One-shot texture mapping using data dependent triangulation
	Incremental texture mapping

	Results
	One-shot texture mapping
	Incremental texture mapping
	Projection of a single camera onto the ground plane
	Projection of multiple cameras onto the ground plane

	Conclusions
	Acknowledgments
	References


