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h i g h l i g h t s

• Monocular visual odometry based on a fused image approach.
• DWT image fusion parameters selected according to a quantitative evaluation metric.
• Experimental results with two public data sets illustrate its validity.
• Comparisons with other approaches are provided.
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a b s t r a c t

This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry
approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where
the best setup is empirically obtained by means of a mutual information based evaluation metric. The
objective is to have a flexible schemewhere fusionparameters are adapted according to the characteristics
of the given images. Visual odometry is computed from the fused monocular images using an off the
shelf approach. Experimental results using data sets obtained with two different platforms are presented.
Additionally, comparisonwith a previous approach aswell aswithmonocular-visible/infrared spectra are
also provided showing the advantages of the proposed scheme.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The usage of cross-spectral imaging has been increasing due to
the drop in price of cameras working at different spectral bands.
That increase is motivated by the possibility of developing robust
solutions that cannot be obtained if a single band were used.
These robust solutions can be found in domains such as thermal
inspection [1], video surveillance [2], face detection [3], driving
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assistance [4] and visual odometry [5], which is the focus of the
current work. Before tackling one of the problems mentioned
above, the information provided by the cameras working at
different spectral bands needs to be fused into a single and compact
representation for further processing, assuming an early fusion
scheme is followed.

Visual Odometry (VO) is the process of estimating the
egomotion of an agent (e.g., vehicle, human or a robot) using
only the input of a single or multiple cameras attached to it. This
term has been proposed by Nister [6] in 2004, which has been
chosen for its similarity towheel odometry. Inwheel odometry, the
motion of a vehicle is obtained by integrating the number of turns
of its wheels over time. Similarly, VO operates by incrementally
estimating the pose of the vehicle by analyzing the changes
induced by the motion in the images of the onboard vision system.
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State of the art VO approaches are based on monocular or
stereo vision systems; most of them working with cameras in
the visible spectrum (e.g., [7,8]). The approaches proposed in the
literature can be coarsely classified into feature based methods,
image based methods and hybrid methods. The feature based
methods rely on visual features extracted from the given images
(e.g., corners, edges) that arematched between consecutive frames
to estimate the egomotion. On the contrary to feature based
methods, the image based approaches directly estimate themotion
by minimizing the intensity error between consecutive images.
Finally, hybrid methods are based on a combination of the
approaches mentioned before to reach a more robust solution. All
the VO approaches based on visible spectrum imaging, in addition
to their own intrinsic limitations, have additional ones related
with the nature of the images (i.e., photometry). Having in mind
these limitations (i.e., noise, sensitivity to lighting changes, etc.)
monocular and stereo vision based VO approaches, using cameras
in the infrared spectrum, have been proposed (e.g., [9,10]) and
more recently cross-spectral stereo based approaches have been
also introduced (e.g., [11,5]). The current work proposes a step
further by tackling the monocular vision odometry problem with
an image resulting from the fusion of a cross-spectral imaging
device. The goal behind such an approach is to take advantage of
the strengths of each band according to the characteristics of the
scenario (e.g., daytime, nighttime, poor lighting conditions, etc.).
A difference to a previous approach published in [5] is that in the
current work fusion parameters are adapted to the characteristics
of the given images.

Image fusion is the process of combining information from
two or more images of a given scene into a single representation.
This process is intended for encoding information from source
images into a single and more informative one, which could be
suitable for further processing or visual perception. There are
two different cases where image fusion takes place; firstly, the
case of images obtained from different sensors (multisensory),
which could also work at different spectral band (multispectral).
Secondly, the case of images of the same scene but acquired
at different times (multitemporal). The current work is focused
on the first case, more specifically, fusing pair of images from
visible and infrared spectra obtained at the same time by different
sensors. It is assumed that the images to be fused are correctly
registered [12]; otherwise a process of cross-spectral feature
detection and description should be followed in order to find the
correspondences between the images (e.g., [13,14]).

During the last decades, the image fusion problem has
been largely studied, mainly for remote sensing applications
(e.g., [15,16]). Most of these methods have been proposed to
produce a high-resolution multispectral representation from a
low-resolution multispectral image fused with high-resolution
panchromatic one. The difference in image resolution is gener-
ally tackled bymeans ofmulti-scale image decomposition schemes
that preserve spectral characteristics but represented at a high spa-
tial resolution. Among the different proposals, wavelet based ap-
proaches have shown some of the best performance by producing
better results than standard methods such as intensity–hue–
saturation (IHS) transform technique or principal component anal-
ysis (PCA) [17]. Wavelet based image fusion consists of two stages.
Firstly, the given images are decomposed into two components
(more details are given in Section 2.1.1); secondly, the components
from the given images are fused in order to generate the final rep-
resentation. Hence, the main challenge with wavelet based fusion
schemes lies on finding the best setup for both the image decompo-
sition approach (i.e., number of levels, wavelet family and its con-
figurations) and the fusion strategy to merge the information from
decomposed images into a single representation (e.g., min, max,
mean, rand, etc., from the two approximations and details obtained
from the given images at element-wise by taking, respectively, the
minimum, the maximum, the mean value, or a random element).
The selection of the right setup for fusing the given images will de-
pend on theway the performance is evaluated. Hence a special care
should be paid to the quantitative metric used to evaluate the ob-
tained result, avoiding psychophysical experiments that will result
in qualitative values [18].

The current paper addresses the problem of cross-spectral
fused image visual odometry by using the algorithm proposed
by Geiger et al. in [19], which is referred to as LibVISO2. The
main novelty of the current approach is to take advantage of
information obtained at different spectral bands when visual
odometry is estimated. In this way, robust solutions are obtained
independently of the scenario’s characteristics (e.g., daytime).
Fused images are obtained by a Wavelet based scheme. Different
fusion schemes are quantitatively evaluated looking for the best
one, evaluations are performed bymeans of a quality metric based
on Mutual Information. Once the best configuration is found, the
fused image based visual odometry is computed and compared
with a previous cross-spectral based approach [5] and classical
visible/infrared based approaches.

The manuscript is organized as follows. Section 2 presents
the proposed approach detailing the discrete wavelet transform
based image fusion and its setups together with the off the shelf
monocular visual odometry algorithm used to compute the vehicle
odometry. Experimental results and comparisons are presented in
Section 3. Finally, conclusions are given in Section 4.

2. Proposed approach

This section presents the Discrete Wavelet Transform image
fusion scheme, the evaluation metric used to find the best setup
and the monocular visual odometry approach used in the current
work.

2.1. Wavelet based image fusion

Wavelet theory has been largely studied in digital signal pro-
cessing and applied to several subjects (from noise reduction [20]
to texture classification [21], jut to mention a couple). At this sec-
tion, the basic concepts and elements of Discrete Wavelet Trans-
form (DWT) in the context of image fusion are introduced. Let IVS
and IIR be the original images, ofm×n pixels, in the visible (VS) and
LongWavelength Infrared (LWIR) spectra, respectively.We assume
the given pair of images are already registered. Let IF be the im-
age, also ofm×n pixels, resulting from their fusion. In the wavelet
based image fusion, the given images are decomposed at their cor-
responding approximation (A) and detail (D) components, which
correspond to the low pass and high pass filtering for each decom-
position level. These decompositions can be represented through
sub-images. The detail representations correspond to the vertical
details (VD), horizontal details (HD) and diagonal details (DD), re-
spectively (see Fig. 3). Fig. 1(right) depicts illustrations of one level
DWT decompositions obtained from the original images Fig. 1(left)
(different approaches used to decompose the given images are in-
troduced in Section 2.1.1).

Once the coefficients (approximations and details) from each
decomposition level are obtained, a fusion scheme is applied to
catch the most relevant information from each representation.
The most widely used fusion schemes proposed in the literature
to merge the information are reviewed in Section 2.1.2. Finally,
the inverse DWT is applied to the result in order to obtain the
sought fused image (IF ), which is used in the current work as a
monocular image to compute the visual odometry. Fig. 2 presents
a classical DWT based image fusion pipeline. In order to cope
with misalignments, extensions to this basic pipeline have been
also proposed in the literature, such as for instance the dual-tree
complex wavelet transform [22]. In the current work just DWT is
considered since images to be fused are correctly registered.
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Fig. 1. (left) Pair of images (VS-LWIR) to be fused. (right) DWTdecompositions (one
level) of the input images.

Fig. 2. Illustration of a DWT based image fusion scheme.

2.1.1. Discrete Wavelet Transform (DWT)
At this section, basic concepts of discrete wavelet transform

are introduced. The DWT can be represented as a bank of filters,
where at each level of decomposition the given signal is split
up into high frequency and low frequency components. The
low frequency components can be further decomposed until the
desired resolution is reached. If multiple levels of decomposition
are applied, it is referred to as multiresolution decomposition.
Although there is no rule, in general, in the image fusion problem
just one level of decomposition is considered. In the current work,
the optimum number for the level of decomposition is found by
evaluating different configurations.

Several wavelet families have been proposed in the literature,
each family has a wavelet function and a scaling function. These
two functions can be represented by means of a high pass filter
(the wavelet function) and a low pass filter (the scaling function).
A wavelet family is normally represented by only its wavelet
function [23]. Within each of these families some subclasses
exist that depend on the number of vanishing moments in
the wavelet function. This is just a mathematical property that
can directly relate to the number of coefficients. Each of these
wavelet functions and their subclasses represent a different way
of decomposing a signal. In the current work, looking for the
best visual odometry result under different scenarios (daytime),
different wavelet families have been evaluated (see Table 1).
Details about the evaluation metric approach are presented in
Section 2.2.

2.1.2. Fusion strategies
Once the given images are split up into the corresponding

approximation images and detail images (i.e., horizontal details,
vertical details and diagonal details) the fused image (IF ) is
obtained by using a merging scheme that takes into account the
approximation and detail information from both images—a correct
Fig. 3. Two dimensional wavelet decomposition scheme (l: low pass filter; h: high
pass filter; dec: decimation).

registration is assumed. Some of the most used merging schemes
are summarized below [24]:

Substitutive wavelet fusion: in this scheme, the information
from one image is completely replaced with information from the
other image. In other words, the approximation from one image is
merged with the detail of the other image. Once the information is
merged the inverse transform is computed to obtain IF .

Additive wavelet fusion: as indicated by the name, at this
scheme the approximations from one image are added to the
other one. The same happens for the detail information. If multiple
decompositions were applied, the details at each resolution
level are added. Finally, after merging the information the
inverse transform is performed resulting in the sough IF . In our
implementation, this scheme is implemented by considering the
mean value, instead of just the result from the addition.

Weighted models: at this scheme a user tuned merging
strategy is applied. Depending on the application and the kind of
input images approximations and details are combined according
to some statistic values (µ, σ ) or according to some other relevant
criteria. This scheme is not considered in the current work because
input images are of the same resolution, and the performance of
fusion based on DWT of infrared and visible images in a general
way is evaluated.

Other schemes have been proposed in the literature, which
somehow can be considered as combinations of the ones presented
above; for instance in this work a strategy that considers the
minimumvalue fromeach image (approximation or detail images),
the maximum value or a random selection was also considered.

From the three approaches presented above, in the current
work four different options have been considered as fusion
strategies: mean (mean value between approximation coefficients
andmean value between detail coefficients); max (the coefficients
with maximum value are selected, in both cases approximation
and details); min (the coefficients with minimum values are
selected); rand (coefficients of approximation and details are
randomly selected).

2.2. Performance evaluation

The main challenge with wavelet based fusion schemes lies
on finding the best setup for both, the image decomposition
approach (Section 2.1.1) (i.e., number of levels, wavelet family
and its configurations) and the fusion strategy (Section 2.1.2) used
to merge the information from decomposed images into a single
representation. Trying all the possible combinations presented
above (combinations from Table 1 plus fusion strategies from
2.1.2), 2600 different configurations can be obtained. Since there
is not a clear indication in the literature as to which should be the
best configuration, all the possibilities are quantitatively evaluated
looking for the best one. In the current work, before computing
the visual odometry, a set of pairs of images are first selected and
evaluated to find the best DWT based fusion configuration. It is
expected that a different setup would be required at each daytime
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Table 1
Wavelet families evaluated in the current work.

Wavelet name Comments Setups

Haar (haar) Orthogonal wavelet linear phase. haar
Daubechies (dbN) Daubechies’ external phase wavelets. N refers to the number of

vanishing moments.
db1, db2, . . . , db8.

Symlets (symN) Daubechies’ least asymmetric wavelets. N refers to the number of
vanishing moments.

sym2, sym3,. . . , sym8.

Coiflets (coifN) In this family, N is the number of vanishing moments for both the
wavelet and scaling function.

coif1, coif2, . . . , coif5.

Biorthogonal (biorNr.Nd) Biorthogonal wavelets with linear phase. Feature pair of scaling
functions (with associated wavelet filters), one for decompositions
and one for reconstruction, which can have different number of
vanishing moments. Nr and Nd represent the number of vanishing
moments.

bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6,
bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9,
bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8

Reverse Biorthogonal (rbioNr.Nd) Reverse of the Biorthogonal wavelet explained above. rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6,
rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9,
rbio4.4, rbio5.5, rbio6.8

Discrete meyer approximation (dmey) Approximation of meyer wavelets leading to FIR filters that can be
used in DWT.

dmey
or weather condition. Once this set up is obtained, all the images
from the data set are fused and the visual odometry estimated.

Quantitative evaluation of fused images has been an active re-
search topic in recent years (e.g., [25,26]). Proposed approaches
can be classified into two categories depending on the existence
or not of a reference image [25]. In the case a reference image is
available, it can be used as a ground truth to evaluate results by
means of quality metrics such as Root Mean Square Error (RMSE),
Peak Signal to Noise Ratio (PSNR), Structural Similarity IndexMea-
sure (SSIM), Mutual Information (MI) among others (e.g., [27,26]).
On the other hand, when there is no reference image, the quality
of the results is indirectly measured through some metrics such
as Entropy (a high entropy value indicates the fused image as rich
in information content), Standard Deviation (high values indicate
high contrast) and FusionMutual Information (the larger the value
the better quality fused images) (e.g., [28,29]).

Although there is no reference image, in the current work an
adaptation of a quality metric based on the Mutual Information
(MI) approach recently presented in [28] is considered. This
implementation is a fast version of the original one [29]. It
evaluates the performance of the fusion algorithm by measuring
the amount of information carried from the source images to
the fused image by means of mutual information. Our adaptation
consists in computing this metric twice, once assuming the visible
image as a reference and once with the infrared image as a
reference. Then, the average value is considered:
FMIVS−IR = (MIF ,VS/(HF + HVS) + MIF ,IR/(HF + HIR))/2, (1)
where MI is the mutual information value and Hk, with k =

{VS, IR, F}, are the histogram based entropies of the visible,
infrared and fused images, respectively, as presented in [29].

2.3. Monocular visual odometry

The fused images obtained with the best configuration as
mentioned above are used in the monocular version of the well-
known algorithm proposed by Geiger et al. in [19], which is
referred to as LibVISO2. The algorithm is briefly presented below,
for more details see [19].

Generally, results from monocular systems are up to a scale
factor; in other words they lack of a real 3Dmeasure. This problem
affects most of monocular odometry approaches. In order to
overcome this limitation, LibVISO2 assumes a fixed transformation
from the ground plane to the camera (parameters given by the
camera height and the camera pitch). These values are updated at
each iteration by estimating the ground plane. Hence, features on
the ground as well as features above the ground plane are needed
for a good odometry estimation. Roughly speaking, the algorithm
consists of the following steps:
• Compute the fundamental matrix (F) from point correspon-
dences using the 8-point algorithm.

• Compute the essential matrix (E) using the camera calibration
parameters.

• Estimate the 3D coordinates and [R|t].
• Estimate the ground plane from the 3D points.
• Scale the [R|t] using the values of camera height and pitch

obtained in previous step.

3. Experimental results

This section presents experimental results and comparisons
with classical approaches based on visible spectrumor infrared im-
ages. Additionally, comparisons with the results presented in [5]
are provided showing the improvements when a better setup is
considered for the fusion algorithm. In all the cases GPS informa-
tion is used as ground truth data to evaluate the performance of
evaluated approaches. Below, the acquisition platforms are intro-
duced and then experimental results are depicted.

3.1. Acquisition platforms

The proposed approach has been evaluated using images
obtained from two different platforms. Fig. 4(left) shows the
electric car with the cross-spectral stereo head used in [5]. The
stereo head consists of a pair of cameras arranged in a non verged
geometry. One of the cameraworks in the infrared spectrum,more
precisely Long Wavelength Infrared (LWIR), detecting radiations
in the range of 8–14 µm. The other camera, which is referred
to as Visible Spectrum (VS) responds to wavelengths from about
390 to 750 nm (visible spectrum). Both cameras are synchronized
using an external hardware trigger. The images provided by the
cross-spectral stereo head are calibrated and rectified using [12]; a
process similar to the one presented in [30] is followed. It consists
of a reflective metal plate with an overlain chessboard pattern.
This chessboard can be visualized in both spectrums making
possible the cameras’ calibration and image rectification.With this
acquisition platform three video sequences have been obtained
(see [5] for more details about them) and used in the current work.
They will be referred to as CVC − VidNN1

Fig. 4(right) depicts an illustration of the acquisition cross-
spectral system from [29]. In this case, also LWIR and VS images
are obtained, but the cameras are arranged differently. In this case

1 Data set available at: https://ngunsu.github.io/cvc_vod/.

https://ngunsu.github.io/cvc_vod/
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Fig. 4. Acquisition systems (cross-spectral imaging on the top): (left) Electric vehicle from the Computer Vision Center (Barcelona, Spain) [5] (CVC video sequences); (right)
Car from the Korea Advanced Institute of Science and Technology (Seoul, Korea) [29] (KAIST video sequences).
Fig. 5. Estimated trajectories for the CVC-Vid00 video sequence: (a) Visible spectrum; (b) Infrared spectrum; (c) DWT fused images from [5]; and (d) DWT fused images,
proposed approach.
a beam splitter (made of Zinc coated Silicon wafer) is used, so
that both cameras capture images from the same point of view.
Like in the previous case, both cameras are synchronized using
an external hardware trigger. A calibration process similar to the
one presented above is applied (in this case using squares milled
onto a thin cooper board—a printed circuit board). Images are
also calibrated and rectified using the toolkit from [12]. With this
platform, a data set containing video sequences obtained at six
different times of the day has been generated. In the current work,
the following three videosequences have been used: (i) 5 AM;
(ii) 12 AM; (iii) 10 PM just to evaluate results from scenes that
contain different light (from early morning till dark night). These
video sequences will be referred to as KAIST − VidNNN .

The CVC video sequences were all obtained at day light time
(about midday), hence it is difficult to appreciate the advantages
of the proposed cross-spectral visual odometry approach. In other
words, in the CVC video sequences just a visible spectrum based
approach would be enough to compute visual odometry. In order
to appreciate the advantages of using the proposed cross-spectral
based approach three video sequences from KAIST [29] have been
evaluated. These video sequences correspond to different times of
day (from early morning till late evening). More precisely, they
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Fig. 6. Estimated trajectories for CVC-Vid01 sequence: (a) Visible spectrum; (b) Infrared spectrum; (c) DWT based fused image, result from [5]; and (d) DWT based fused
image, proposed approach.
were obtained at 5 AM, 10 AM and 10 PM. In the three sequences,
the car has traveled about 300 m at an average speed of 35 km/h.
Results with these two data sets are presented below.

3.2. Visual odometry results

In this section, experimental results and comparisons, with the
video sequences from the two platforms introduced above, are
presented. In order to have a fair comparison, the user defined
parameters for the VO algorithm (LibVISO2) have been tuned
accordingly to the image nature (visible, infrared, fused) and
characteristics of the video sequence. These parameters were
empirically obtained looking for the best performance in every
image domain. In all the cases, ground truth data fromGPS are used
for comparisons. Additionally, the average number of matches and
percentage of inliers per video sequence evaluated are provided as
complementary information; there is no correlation between these
values and the final position error.

3.2.1. CVC-Vid00 video sequence
It consists of a large curve in a urban scenario. The car travels

more than 200 m at an average speed of about 17 km/h. The VO
algorithm (LibVISO2) has been tuned as presented in [5]. Fig. 5
depicts the plots corresponding to the four different cases (visible,
infrared, fused [5] and fused (proposed approach)) when they are
compared with ground truth data (GPS information). Quantitative
results corresponding to these four trajectories are presented in
Table 2. VO computed with the visible spectrum video sequence
gets the best result since the sequence has been obtained at
day light; it can be appreciated that the DWT tuned with the
proposed approach (selecting the best configuration using the FMI
Table 2
VO results in the CVC-Vid00 video sequence using images from different spectrum
and fusion approaches (VS: visible spectrum; LWIR: Long Wavelength Infrared
spectrum; DWT [5]: fusion using Discrete Wavelet Transform; DWT [Prop. App]:
fusion using Discrete Wavelet Transform selecting the best setup).

Results VS LWIR DWT [5] DWT [Prop. App.]

Total traveled distance (m)
(GPS traveled dist.: 235 m)

234.88 241.27 245 240.3

Final position error (m) 2.9 18 5.4 5.1
Average number of
matches

2053 3588 4513 2123

Percentage of inliers 71.5 61.94 60 65.1

metric) gets better results than the one presented in [5]. The visual
odometry computed with the infrared spectrum video sequence
gets the worst results; this is mainly due to the lack of texture in
the images.

3.2.2. CVC-Vid01 video sequence
It is a simple straight line trajectory on a urban scenario

consisting of about 350 m; the car travels at an average speed
of about 25 km/h. The (LibVISO2) algorithm has been tuned as
presented in [5]. Fig. 6 depicts the plots of the visual odometry
computed over each of the four representations (VS, LWIR, DWT
based fused images [5] and DWT based fused images with the
best setup) together with the corresponding GPS data. Like in the
previous case, the visual odometry computed with the infrared
video sequence gets theworst result, as can be easily appreciated in
Fig. 6 and confirmed by the final position error value presented in
Table 3. The results obtained with the other three representations
(visible spectrum, DWT based image fusion [5] and proposed
approach) are similar both qualitatively and quantitatively. Once
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Fig. 7. Estimated trajectories for CVC-Vid02 sequence: (a) Visible spectrum; (b) Infrared spectrum; (c) DWT based fused image, result from [5]; and (d) DWT based fused
image, proposed approach.
Table 3
VO results in the CVC-Vid01 video sequence using images from different spectrum
and fusion approaches (VS: visible spectrum; LWIR: Long Wavelength Infrared
spectrum; DWT [5]: fusion using Discrete Wavelet Transform; DWT [Prop. App]:
fusion using Discrete Wavelet Transform selecting the best setup).

Results VS LWIR DWT [5] DWT [Prop. App.]

Total traveled distance (m)
(GPS traveled dist.: 365 m)

371.8 424 386 379

Final position error (m) 32.6 84.7 44 38.2
Average number of matches 1965 1974 2137 2071
Percentage of inliers 72.6 67.8 61.5 66.3

again, like in the previous case, results from the proposed approach
are considerably better than the ones obtained from [5], which
suggests the need for selecting the best configuration of the
fusion’s parameters.

3.2.3. CVC-Vid02 video sequence
It is a ‘‘L’’ like shape trajectory on a sub-urban scenario. It is the

longest trajectory (370 m) and the car has traveled faster than in
the previous cases (about 30 km/h). The (LibVISO2) algorithm has
been tuned as presented in [5]. In this particular video sequence,
the visible spectrum and both fused based approaches get similar
results (see Fig. 7 and Table 4). Although the DWT based approach
from [5] gets the smallest final position error, the difference with
respect to the results obtained in the visible spectrum and the
proposed approach is smaller than one meter. On the contrary, it
can be appreciated that the traveled distance in [5] is considerably
higher, in other words, although [5] gets the smallest final position
Table 4
VO results in the CVC-Vid02 video sequence using images from different spectrum
and fusion approaches (VS: visible spectrum; LWIR: Long Wavelength Infrared
spectrum; DWT [5]: fusion using Discrete Wavelet Transform; DWT [Prop. App]:
fusion using Discrete Wavelet Transform selecting the best setup).

Results VS LWIR DWT [5] DWT [Prop. App.]

Total traveled distance (m)
(GPS traveled dist.: 370 m)

325.6 336.9 354.4 334.7

Final position error (m) 37.7 48.7 37.2 38.0
Average number of matches 1890 1028 1952 1719
Percentage of inliers 70 65.8 61 64.1

error, both, the visible spectrum and the proposed approach result
in trajectories quite similar to the one obtained with the GPS.

As a conclusion from the CVC-video sequences, it can be
appreciated that, although they correspond to day light sequences,
the usage of fused images results in quite stable solutions. The best
setup of the DWT based image fusion corresponds to Reverse of the
Biorthogonalwavelet familywith vanishingmoments (Nr = 2 and
Nd = 8) for the DWT (rbio2.8 in Table 1); and (mean, max) for the
fusion strategy (see Section 2.1.2). The same setup for the fusion
configuration has been used in the three video sequences. This
setup has been empirically obtained by evaluating quantitatively a
set of frames of CVC video sequence using the FMImetric presented
in Section 2.2.

3.2.4. KAIST-5AM video sequence
This is the first video sequence where the advantages of

cross-spectral based approaches can be easily appreciated. At this
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Fig. 8. Estimated trajectories for KAIST-5AM video sequence: (a) Visible spectrum; (b) Infrared spectrum; (c) DWT based fused image, result using [5]; and (d) Fused with
the proposed DWT based approach, by selecting the best setup.
daytime, although there is already a little bit of light, results
from visible spectrum are the worst. On the contrary, the visual
odometry computed with the infrared video sequence gets better
results. Finally, the best VO results are obtained with the images
fusedwith the proposed approach (selecting the best configuration
of fusion’s parameters). It should be noticed that the results (final
position error) obtainedwith the proposed approach are two times
better than the one from visible spectrum and almost 50% better
than infrared spectrum (see quantitative values in Table 5). The
estimated trajectories can be found in Fig. 8; it can be appreciated
how the results from the proposed approach keep almost attached
to the GPS trajectory. Regarding the fusion strategy, the best
configuration corresponds to Biorthogonal wavelet family with
vanishing moments (Nr = 3 and Nd = 5) for the DWT (bio3.5 in
Table 1); and (max, min) for the fusion strategy (see Section 2.1.2).

3.2.5. KAIST-10AM video sequence
On the contrary to the previous case, here the results are similar

to the ones obtained with the CVC video sequences. It makes
sense since the sequence has been obtained at day light time
(10 AM). In other words, visible spectrum and cross-spectral based
approaches reach to similar results. This can be quantitatively
appreciated looking at Fig. 9. Quantitative values are provided in
Table 6. As expected, infrared based visual odometry gets theworst
results. Like in the CVC video sequence, in this case the best setup
Table 5
VO results for the 5AMvideo sequence using different images (VS: visible spectrum;
LWIR: Long Wavelength Infrared spectrum; DWT [5]: fused images using Discrete
Wavelet Transform; DWT [Prop. App]: fused images using Discrete Wavelet
Transform selecting the best setup).

Results VS LWIR DWT [5] DWT [Prop. App.]

Total traveled distance (m)
(GPS traveled dist.: 287.9 m)

278.7 279.5 278.9 274.6

Final position error (m) 58.4 32.1 25.1 24.1
Average number of matches 3197 2659 2555 2584
Percentage of inliers 51.7 64.1 53.6 54.1

of the DWT based image fusion corresponds to Reverse of the
Biorthogonalwavelet familywith vanishingmoments (Nr = 2 and
Nd = 8) for the DWT (rbio2.8 in Table 1); and (mean, min) for the
fusion strategy (see Section 2.1.2).

3.2.6. KAIST-10PM video sequence
Finally, this last sequence corresponds to a quite dark night,

which is a challenging scenario for visible spectrum video
sequence. Like in the KAIST-5AM video sequence, the worst result
is obtained using visible spectrum images. This worst result is
due to the lack of light in the scenario, just car’s light is present.
Visual odometry computed with infrared video sequence gets
quite acceptable results. The best VO result was obtained with
images fused with the proposed approach (by selecting the best
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Fig. 9. Estimated trajectories for KAIST-10AM video sequence: (a) Visible spectrum; (b) Infrared spectrum; (c) DWT based fused image, result using [5]; and (d) Fused with
the proposed DWT based approach, by selecting the best setup.
Table 6
VO results for the 10AM video sequence using different images (VS: visible
spectrum; LWIR: Long Wavelength Infrared spectrum; DWT [5]: fused images
using Discrete Wavelet Transform; DWT [Prop. App]: fused images using Discrete
Wavelet Transform selecting the best setup).

Results VS LWIR DWT [5] DWT [Prop. App.]

Total traveled distance (m)
(GPS traveled dist.: 351.6 m)

348.2 330.2 347.8 347.3

Final position error (m) 10.1 53.9 12.6 11.8
Average number of matches 12696 4278 11078 11119
Percentage of inliers 93.8 69.7 90.6 89.9

configuration for the fusion’s parameters); in this case, VO from
fused images, the final position error (see Table 7) is two times
smaller than the obtained with infrared images and more than
three times when compared with the result from visible spectrum
video sequence. The resulting trajectories can be appreciated in
Fig. 10.

4. Conclusion

The manuscript evaluates the performance of a classical
monocular visual odometry when cross-spectral fused images are
used. The best fusion strategy is selected by using a novel mutual
information based metric. The obtained visual odometry results
are compared with a previous approach as well as with classical
Table 7
VO results for the 10PM video sequence using different images (VS: visible
spectrum; LWIR: Long Wavelength Infrared spectrum; DWT [5]: fused images
using Discrete Wavelet Transform; DWT [Prop. App]: fused images using Discrete
Wavelet Transform selecting the best setup).

Results VS LWIR DWT [5] DWT [Prop. App.]

Total traveled distance (m)
(GPS traveled dist.: 222.3 m)

281.90 218.07 226.15 222.79

Final position error (m) 42.20 24.99 15.2 12.62
Average number of matches 271 2308 1065 2301
Percentage of inliers 44.89 61.71 52.29 61.73

ones (based on visible and infrared spectrum, respectively). While
at day light time the performance of classical visible spectrum
based approach is quite similar to the one obtained with proposed
approach, results show that the proposed approach is the best
option to tackle challenging scenarios, in particular thosewith dark
or poor lighting conditions. As a future work, other challenging
scenarios, including different weather conditions (fog and rain),
will be evaluated.
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