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Abstract

This paper presents a comparative study of two techniques for registering range images. The first one consists in

registering range images represented by means of compact adaptive triangular meshes. The second approach registers

the same range images but represented by means of their edges. In both approaches the ICP algorithm is used to

compute the registration parameters (rotation and translation). The main objective in both approaches is to register a

compact representation instead of all original data points. The proposed comparative study is performed in an

experimental way by using a set of real range images considering both structured and sculptured objects. Four different

criteria are taken into account to perform the comparison: (1) robustness with respect to initial conditions (estimated

relative positions between the range images to be registered), (2) robustness with respect to resolutions of set of points

on which the ICP method is executed, (3) robustness with respect to overlapping between view fields, and (4) number of

iterations versus registration error. By employing these criteria, triangular mesh based and edge based registrations are

tested on several range images and results are compared with respect to the ground truth. Conclusions from these

experimental results are presented.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Registration; Edge extraction; 3D modeling
e front matter r 2005 Elsevier B.V. All rights reserve

age.2005.05.010

has been carried out as part of the CAMERA

odeling of Built Environments from Range

ERA was an EC funded TMR network (ERB

127). The second author was supported by The

Program.

ng author.

sses: arestrep@laas.fr (A.R. Specht),

c.uab.es (A.D. Sappa), michel@laas.fr
1. Introduction

Registering range images consists in finding the
transformation matrix (defined by rotation and
translation parameters) which will be used to
transform one of these range images from its
associated reference frame, to the reference frame
associated with the other image. The registration
can be understood as a step of an incremental
d.
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modeling process: the first image is a local image
of a scene, expressed in the current sensor
reference frame; the other one is a partial model
which is being built, expressed in a global reference
frame.

Generally, the parameters of the transformation
matrix are found by using some minimization
technique over a set of matched data points.
Nowadays range sensors allow to obtain very large
range images—millions of data points—in a few
seconds [7]. But, as bigger is the range image, as
much CPU time will be necessary to process it.
The latter, converts the registration task in the
bottleneck of any 3D modeling system. Bearing in
mind this problem, an interesting point which
should be considered is that not all points
contained in a range image will provide the same
useful information. Therefore, a preprocessing
stage extracting interest points (e.g., points placed
in high curvature regions, points defining edges)
seems to be a good attempt to tackle the
registration problem. Hence, further processing
will be applied only over that reduced set of points.

Thus, the problem now is not only focused on
the registration algorithm itself but on the strategy
that allows to represent and handle range images
in a compact way. Several researchers dealt with
the same issue; their works have been done or are
still in progress, in order to obtain compact
representations of range images to speed up
further processing (e.g. segmentation, recognition,
object modeling) or in order to save space in
storing or speed up transmission (e.g. compression
of VRML files [24]).

Traditionally, adaptive triangular meshes are
the ‘‘de facto’’ standard representation to build
compact models from range images. Thus, several
works have been proposed to register compact
triangular meshes (e.g., [2,13,21]). Recently other
works have been done to register range images
represented by means of a set of features (e.g.,
[3,14,20]). In [14], a skeleton representation has
been used to obtain a pre-alignment, but only
scenes containing pipelines or cylindrical objects
are considered. On the contrary, a more general
approach has been proposed in [3]; an interest
point is defined with a vector describing the local
shape around it; only discriminant points are
extracted from each range image and then,
matched using a correlation measurement. In
[20], we propose another method; it consists first,
in extracting edge points from the original range
images and then in registering these sets of points.
Although it is well known that the registration

process can be applied over compact representa-
tions, improving considerably CPU time, to our
knowledge there is not any work comparing the
different registration strategies (see a first qualita-
tive comparison on the WEB site of our project
[17]). A comparison among the different techni-
ques will help to choose the best one according to
several criteria. In the current work only triangular
mesh and edge based representations are consid-
ered. In both of them the same number of points is
used to describe range images to be registered. The
classical iterative closest point algorithm (ICP) is
used in both approaches to compute the registra-
tion parameters.
Section 2 introduces the triangular mesh and

edge based representations generated for the
registration. Section 3 gives a short description of
the registration method and especially of our
implementation of the ICP algorithm. Section 4
presents the results of comparisons between
registrations of both representations according to
four criteria: (1) Robustness to initial conditions;
(2) Robustness to different resolutions of the range
images to be registered; (3) Robustness to register
range images acquired with a different overlapping
between the sensor’s field of view and (4) CPU
time versus registration error. Finally, conclusions
and further works are given in Section 5.
2. Triangular mesh and edge based representations

This section describes the techniques used to
compute adaptive triangular meshes and edge
based representations. They will be used through
this work to deal with the registration of range
images.

2.1. Triangular mesh representation

During the last decade several algorithms have
been proposed in order to generate adaptive
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Fig. 1. A single view of a sculptured object represented by triangular meshes at different resolutions.

Fig. 2. A single view of a structured object represented by

triangular meshes at different resolutions.
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triangular meshes from range images. These
approaches can be classified in two different
groups: fine-to-coarse and coarse-to-fine. Fine-to-
coarse algorithms (e.g., [6,12,22] to mention a few)
start with a dense triangulation of all points of the
given range image. Then, an iterative algorithm
proceeds by either joining adjacent triangles or
removing successive vertices; the decimation goes
on either while the maximum approximation error
between the current triangular mesh and the
original range image is within a user defined
tolerance, or while the number of preserved
triangles or vertices, is higher than a user defined
number. The proposed methods differ on the
heuristics applied at each iteration to decide which
triangles are joined or which points are removed,
and on how the mesh is re-triangulated.

On the contrary, coarse-to-fine algorithms
(pioneering work in [5], other examples in [9,19])
start with a coarse triangulation of a reduced set of
points chosen from all points of the given range
image. Then, an iterative algorithm proceeds by
adding more points and updating the triangulation
until the maximum approximation error between
the current triangular mesh and the original range
image is below or equal to a required tolerance.

In the current work a public surface refinement
algorithm has been used (GTS open source [11]).
This fine-to-coarse algorithm is applied over a
dense triangular mesh built from the given range
image. The initial triangulation is trivially com-
puted by joining all range image points horizon-
tally and vertically and then dividing each
quadrilateral cells into two triangles. For every
range image a set of triangular meshes at different
resolutions is generated. The resolution of these
triangular meshes is set by their corresponding
edge based representations (Section 2.2). Hence,
an initial dense triangular mesh is decimated until
its number of vertices is the same than the
corresponding edge based representation. Figs. 1
and 2 show examples of two objects represented by
triangular meshes at different resolutions.
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2.2. Edge based representation

An edge based representation is a compact way
to describe the geometry of objects present in a
given range image. These representations are easy
to obtain and they consist in extracting character-
istic points where either a depth discontinuity
(jump edge) or a surface orientation discontinuity
(crease edge) appear. Several approaches have
been proposed in the literature in order to extract
edge points from range images (e.g., [8,10,16]).
Through this section a brief summary of the edge
extraction technique is given (see [18] for a
complete description). This technique works
with range images provided by 3D sensors like
stereovision or laser range finder—where range
data are structured in an array. The algorithm
consists in computing a binary edge map R,
represented as a two dimensional array, where
every element Rðr; cÞ is a binary value indicating
whether that point is an edge point or not. In the
current work a scan line processing algorithm has
been used (only rows and columns were considered
as scan lines).

Every row and column (hereinafter called scan
lines) is approximated by a set of oriented
quadratic functions. Quadratic functions have
been selected due to the fact that they allow to
generate a more generic edge based representation
than if only straight lines were considered; more-
over, quadratic approximations of edges allow to
reduce the number of points to be considered
during the registration stage. The algorithm
Fig. 3. (left) Original range image (rendered). (middle) Illustration of

Edge based representation.
consists of two steps. First, jump edge points are
detected using a threshold adapted according to
the local image resolution; these points are used to
cut the original scan line into a set of sections (set
of consecutive points) and to define the starting
and ending points of each one of them. Second, a
classical recursive splitting algorithm [4] approx-
imates each section separately, by means of
oriented quadratic functions represented by the
following equation:

y ¼ ax2 þ bx þ c. (1)

Such a function is approximated by using only the
first, middle and last points of the considered scan
line’s section. Let us note (Pf ðx;yÞ, Pmðx;yÞ, Plðx;yÞ),
the first, middle and last points, respectively. Then,
before obtaining the parameters of function (1),
the set of points contained into the section, are
rotated around the first point until the following
configuration is reached: Pf ðyÞ ¼ PlðyÞ4PmðyÞ (see
illustration of Fig. 3(middle)).
The parameters of function (1) are then

obtained analytically by using those three points.
The approximation error between the obtained
quadratic function and every rotated point is
computed. If this error is greater than a given
threshold maxerror, the set of points is split into two
sections at that position where the biggest error
appears. Then, the splitting algorithm is applied
recursively to these two sections until all approx-
imation errors are lower than maxerror.
The result of this recursive algorithm is a set of

quadratic curves approximating the considered
a scan line approximated by two quadratic expressions. (right)
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scan line’s section. Once this section is approxi-
mated, the recursive algorithm is carried out over
the next section of the given scan line. From each
quadratic curve, the positions of the first and last
points used to compute the parameters of function
(1), are marked in the binary map R.

Once a given scan line has been approximated,
the algorithm starts again over the next new scan
line, thus all scan lines—rows and columns—are
processed, the obtained binary edge map is the
final result and the next stage is applied. Fig.
3(right) shows the binary edge map (edge based
representation) obtained after processing the range
image shown in Fig. 3(left). This image has been
acquired on a polyhedral object; points close to
object edges have been marked, but due to the
sensor noise, some other points on faces have been
detected also as discontinuity points. As the same
as in the triangular mesh approach, several edge
based representations with different resolutions,
can be computed by setting different approxima-
tion errors maxerror. A high approximation error
gives a representation with few points and on the
contrary, a low approximation error gives a
representation with many points. Fig. 4 shows
the edge representations corresponding to the
triangular meshes presented in Figs. 1 and 2; each
representation is defined by a similar amount of
points as the corresponding triangular mesh (i.e.
Fig. 1(left), Fig. 2(left)).
Fig. 4. Edge points corresponding to the imag
3. Registration technique: the ICP algorithm

Range images represented as triangular meshes
or by means of their edges are registered by using
the well known ICP algorithm. Let us note Ci and
Cj, two compact clouds of points, expressed in two
different reference frames. These clouds of points
could be either the vertices defining two triangular
meshes or the points from two edge based
representations. Even if it is possible to use
attributes associated with these vertices or with
these edge points, in both cases only the point
positions are considered by our registration algo-
rithm. Experimental results [3] have shown that
ICP considering additional information to char-
acterize the points converges in fewer iterations
than ICP considering only the point positions.
However, there is an extra overhead involved in
working in a higher dimensional space (3þ n

space, n being the dimension of the attribute space)
thus on an average, the CPU time is equal or worse
than ICP working only in a 3D space.
The registration objective is to obtain the

parameters of a matrix T—denoting a rotation
Y, and a translation G—which allows us to express
the points contained in Cj in the reference frame
of Ci.
The parameters of the matrix T are computed

by means of the following iterative process. This
process is applied while the registration error is
es presented in Fig. 1(left) and 2(right).
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higher than a given threshold max�. First, an initial
transformation matrix T0—with parameters Y0

and G0—is estimated. Each point Pj from Cj is
transformed with this matrix, and then, matched
with the closest point Pi from Ci, using a 3D
structure in buckets in order to limit the complex-
ity. The list of matched points are filtered by using
two methods: a consistency test based on a unicity
criterion (two points from Cj cannot be matched
with the same Pi from Ci) and a statistical filtering
technique [26]. This filtering method tries to obtain
a consistent set of point matches, i.e. to keep only
the paired points between the clouds that have
consistent euclidean point-to-point distances. Con-
sistent distances are defined as follows. At first, a
statistical analysis of the point distances gives the
mean distance and the standard deviation s; then,
matches with a distance higher than a given
threshold (typically 3s, then 2s . . .) are removed,
and the method is iterated until all matches are
consistent.

Finally, the preserved couples of matched points
(Pi, Pj) are used to compute the registration error:

�0 ¼
1

n
:
X

n

k~Pi � ~Pjk, (2)

where n is the number of matched points. If �0 is
below or equal to max�, matrix T0 is the final
solution and parameters (Y0,G0) are used to
express the points Pj in the reference frame of
the image Ci. On the contrary, if �0 is higher than
max�, couples (Pi, Pj) are used to compute a new
set of parameters by minimizing the next expres-
sion [1]: f ¼

P
n ðPi � ðY1Pj þ G1ÞÞ

2.
With this new set of parameters (Y1,G1), a new

transformation matrix T1 is computed, and the
process starts again from the beginning (now
considering the obtained matrix T1). This iterative
process is executed until the convergence—the
error �t is lower than max�—or the nonconver-
gence—a maximum number of iterations maxt—is
reached.

Our implementation of the ICP algorithm has
the following characteristics:
�
 we do not use an explicit threshold max�,
but a test on the gradient of the error. The
convergence is reached at the iteration t if
d�t=�t ¼ ð�t � �t�1Þ=�to0:05.
�
 during the first iterations only the statistical
filter is applied assuming that the convergence
is faster as the number of matched points
increase.
�
 then, when a convergence is reached, the
unicity criterion is verified in order to remove
more outliers before applying the statistical
filter. The unicity criterion is applied once
d�t=�to0:1.

4. Comparison of the mesh and edge registrations

The registration process depends on several
factors. Therefore, in order to carry out a
comparison between mesh and edge based regis-
trations we propose a study based on factors such
as: type of surfaces perceived in the considered
range images (e.g. sculptured surfaces, polygonal
surfaces), initial conditions, resolution of the
clouds of points to be registered, overlapping
between views, to mention a few. They will be
presented through this section.
The contribution of this paper is a systematic

evaluation using some well known sets of range
images containing polyhedral and sculptured
surfaces. Sets of range images were obtained either
from the Stanford 3D scanning repository [23], or
from the OSU (MSU/WSU) data base [15]. Each
range image contains a single object scanned from
different view points. For some sequences, the
sensor or the object displacements are known with
a good accuracy, so that we can compare the ICP
results with that exact positions, considered as the
ground truth.
The results presented along this section are

obtained by using image sequences acquired on the
following objects:
�
 nonstructured objects: Bunny (12 images),
Dragon (6 images, Fig. 1), HappyBuddha (6
images) and Dough (8 images).
�
 structured objects: Block2 (5 images)—only
polyhedral faces, Curvblock (5 images,
Fig. 2)—a polyhedra with a cylindrical face,
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Wye (2 images)—only cylindrical faces and
Valve (8 images)—a complex object.

In this work we are not interested in an
incremental fusion, where the registration is done
between an image and the current object model
provided by the fusion of the previous analyzed
images: see [20] where such a fusion is illustrated
using the Bunny sequence. In this paper, only
image-to-image registrations are done to compare
the ICP algorithm using either mesh vertices or
edge points.

Below, the methodology proposed to do the
comparison is introduced. Next, the evaluation of
the proposed criteria is presented by using some
range images to illustrate them. Finally, these
criteria are evaluated over more than one hundred
registration tests, considering eight different sets of
range images; statistical results are presented at the
end of this section.

4.1. Comparison methodology

As aforementioned, the comparison of the two
approaches has been carried out taking into
account four criteria. The first three robustness
criteria are studied separately. The last criterion
(CPU time versus registration error) consists in
studying the registration robustness when two of
the previous criteria are considered together (i.e.,
range images at different resolutions with different
initial positions).

Hereinafter every time that the paper mentions a
registration test, it refers to the two registration
approaches (by using triangular meshes and by
using edge based representations) both of them
carried out over the same conditions—resolution
and relative position between the representations
to be registered. A data base defined by a set of
couples (two triangular meshes at different resolu-
tions; and two edge based representations at the
same resolution than the corresponding triangular
mesh) was generated to evaluate the comparison
criteria.

The evaluation is based on several measure-
ments: (1) the convergence, and if ICP converges,
the number of iterations and the convergence
regularity (how monotonic is the decrease of the
ICP error), (2) the final ICP error (mean distances
between the matched points), (3) the final 3D error
with respect to the ground truth when this
measurement is available, and finally, (4) the
CPU time for the global procedure, from the
control point extraction to the final results.

4.2. Evaluation of the criteria

4.2.1. Robustness to initial conditions (rotation and

translation)

Range image registration can be studied as an
optimization problem. In other words, based on
the assumption that an estimated transformation
between two views is known beforehand, a cost
function could be defined. This cost function will
measure the quality of the alignment between the
partially overlapped surfaces contained into each
view. Hence, by minimizing this cost function the
range images will be registered. However, as in
every optimization problem, the success in reach-
ing the minimum value is highly dependent on the
initial conditions (i.e., how precise is the initial
transformation matrix T0, Section 3). In most of
the cases there is no kind of information about
that value and the solution becomes experimental.
After testing all examples with a user selected

initial condition, the edge based registration
technique has succeeded in 76% of the cases while
the adaptive triangular mesh registration has
succeeded in 92% of the cases when sculptured
objects were considered. On the contrary, when
structured objects were considered, the success in
the edge based registration technique rises up to
95% and in the adaptive triangular mesh falls up
to 85%. Those cases in which neither the edge
based representation nor the adaptive triangular
mesh did not succeed in finding the correct
registration parameter, were considered as non-
valid and they were not considered in the statistics.
As it was expected, for this comparison criterion
the edge based registration gives better results for
the structured or polyhedral objects.

4.2.2. Robustness to register range images

represented at different resolutions

This comparison has been performed by regis-
tering triangular meshes which were decimated at
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different values [25] and edge based representa-
tions obtained by considering different approx-
imation errors. The initial conditions in both cases
were the same and they were selected from the
previous comparison (initial conditions in which
both techniques converge). As the same as in the
previous comparison, when at least one of the used
techniques succeeds in finding the registration
parameters, that representation’s resolution is
considered as a valid one and it is taken into
account for the statistical result.

The representations to be registered are ob-
tained in the following way. First edge based
representations at different resolutions (approx-
imation error: see Section 2.2) were computed.
Then the corresponding triangular meshes are
obtained by decimating the original dense range
image according to the amount of points con-
tained into the edge based representations.

At first, the ICP method using either the mesh
vertices or the edge points, has been applied to
representations generated on the Dragon object
(see in Fig. 5 the higher and the lower resolutions
for the mesh representation). When the resolutions
of the two images to be registered are almost the
same, all results are summarized in Table 1. For
the different resolutions on the Dragon object, the
ICP method using the mesh vertices always
converges faster, and succeeds in matching more
points. It is the reason why the ICP error is lower
than for the ICP method using the edge points.
Fig. 5. Evaluation of the ICP methods according to the image reso

resolution; (right) a very low resolution. The same evaluation, usin

performed.
Even at convergence, the ICP error for the edge
registration, is generally higher.
This result will be confirmed by our final

statistical analysis: the mesh representation is
better for the nonstructured objects. Nevertheless,
a good point for the two methods, is that ICP can
succeed in registering clouds of points with low
resolution (about 350 points in our test), and if
needed by the application, such a coarse registra-
tion could provide a good initial condition for a
fine registration using a higher resolution. Follow-
ing this strategy, we have evaluated several range
images and noticed that the CPU time needed to
register two range images using only the higher
resolution, is approx. 500% larger (!!!) than the
CPU time of a two-steps procedure: at first, a
coarse registration using a lower resolution, and
then a refinement using the higher one.
Different from Table 1, where range images of

similar resolution are registered, the registration of
range images represented at different resolutions is
compared with registration of the same resolu-
tions. Fig 6(top) presents an illustration when
range images at different resolutions were con-
sidered. In this case another sculptured object has
been evaluated (HappyBuddha). Fig. 6(bottom)
presents the evolution of ICP’s error along the
iterations, when the ICP is applied over both edge
and mesh based representations. In both cases
high resolutions (H-H)—almost 5000 points,
low resolutions (L-L)—almost 2000 points, and
lution: (left) registration using the mesh vertices with a high

g the edge points, with the same number of points, has been
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Table 1

Comparison of the two methods when range images of similar resolution are registered

Image1 resol. 3365 3265 1835 1774 720 695 509 331

Image2 resol. 3851 3723 1903 1836 894 857 668 427

Edge registration

Nb. iter. at conv. 50 60 47 56 66 58 100 39

% matched pts 37% 41% 38% 27% 39% 38% 22% 30%

ICP err. at mesh convergence 0.00010 0.00010 0.00036 0.00025 0.00012 0.00031 0.00091 0.00077

ICP err. at conv. 0.000046 0.00010 0.00033 0.000044 0.00010 0.00031 0.00047 0.00078

Mesh registration

Nb. iter. at conv. 31 53 27 19 55 49 35 35

% matched pts 36% 60% 56% 32% 60% 56% 41% 37%

ICP err. at conv. 0.00017 0.000073 0.00019 0.00019 0.000070 0.00018 0.00055 0.00071

Comparison

Nb. iterations mesh mesh mesh mesh mesh mesh mesh mesh

Accuracy edge mesh mesh mesh mesh mesh edge mesh

ICP error at mesh convergence shows the ICP error of the edge registration at the final iteration of the corresponding mesh registration,

which has ended before in all cases.

A.R. Specht et al. / Signal Processing: Image Communication 20 (2005) 853–868 861
different resolutions (H-L) were used. Both
methods showed a good performance under this
evaluation. In principle, they would have to
converge faster when one of the representations
to be registered has less points; in fact, for the
mesh registration, the three curves are very close
and the iteration numbers are equal; for the edge
registration, the convergence is faster with high
resolution, because more matchings are found. At
the convergence, the ICP’s errors are almost
equivalent, even if the edge registration is slightly
better for this object with a complex relief.

4.2.3. Robustness with respect to the overlapping

between the views

The evaluation of the robustness with respect to
the overlapping rate between the two views to be
registered has been done using two objects: the
Dough object and the Valve object. In Fig. 7,
the image superpositions are shown, using a
textured representation for one view, and a mesh
for the other. In both examples, a large number of
range images, from different points of views, were
considered.

For the two objects, we have tried to register
a reference view acquired for an angle of 0�,
with other views acquired at every 10� from
that reference position (10�, 20�, 30�; . . . until the
nonconvergence is reached due to the lack of
overlap—this event occurs for the two representa-
tions at: 80� for the Valve sequence and 100� for
the Dough sequence). Table 2 summarizes all
results for the Valve example, in this case as a
summary we can say that the edge representation
is better taken into account the accuracy point of
view, even if the mesh registration converges faster
and finds more matchings.

4.2.4. Number of iterations versus registration error

In this section, two of the previous criteria were
considered together, representations at different
resolutions with different initial conditions. Then,
by using the values computed in the previous
sections, an algorithm selects in a random way a
combination of initial conditions and resolution
for the representations which will be registered
(these values are considered twice, first for the
triangular mesh registration and second for the
edge based registration).
The graphics shown in Fig. 8, represent the

evolution of the 3D error along the ICP iterations:
(top) registration of two Dragon images with two
resolutions using either edge points or mesh
vertices, (bottom) the same for two Curvblock

images. The representations to be registered
contain the same amount of points and their
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Fig. 6. Evaluation of the ICP methods with different resolutions: (top left) mesh registrations, (top right) edge registrations, (bottom)

ICP errors decreases.
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original positions have been the same in all
examples. The error evolution is more regular for
the Curvblock images; some local minimums
appear (more often for the Curvblock images),
when the unicity criterion is tested in order to
discard more outliers.

In Fig. 9(bottom), the same graphic is shown for
the registrations of one front view of the Bunny

object with one top view and with a back view. In
these examples, the edge based registration tech-
nique is better due to the fact that the points over
the edges represent better the shape of the surfaces
contained in the given range images. For the
registrations of the front and back views, the error
evolution, for both methods, is slower due to the
weaker overlapping rate between the views. Notice
as the final 3D error for the mesh registration of
the front and top views is very high.
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Fig. 7. Evaluation of the ICP methods according to the overlapping between the images (left) a sculptured object: Dough (40�

difference between the two viewpoints); (right) a structured object: Valve (60� difference between the two viewpoints).

Table 2

Comparison of the two methods with respect to the overlapping rate

Registered images 0–10 0–20 0–30 0–40 0–50 0–60 0–70

Edge registration

Nb. iter. at conv. 31 42 12 84 29 52 150

Nb. matched points 906 874 801 518 478 433 256

% matched points 67% 65% 59% 39% 35% 32% 19%

ICP err. at mesh conv. 0.0467 0.0456 — 0.1792 — 0.1645 —

ICP err. at conv. 0.0465 0.0463 0.0655 0.1074 0.1534 0.1613 0.4755

Mesh registration

Nb. iter. at conv. 23 18 33 66 149 43 150

Nb. matched points 954 915 848 722 537 498 314

% matched points 70% 68% 63% 53% 40% 37% 23%

ICP err. at edge conv. — — 0.0688 — 0.1795 — —

ICP err. at conv. 0.0488 0.0552 0.0690 0.1034 0.1808 0.1910 0.5295

Comparison

Nb. iterations mesh mesh edge mesh edge!! mesh ¼

Accuracy edge edge edge mesh edge edge edge

ICP err. at edge conv. and ICP err. at mesh conv. show, if applicable, the ICP error of each registration at the final iteration of the

corresponding opposite registration.
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4.3. Global evaluation

Finally, at this stage the CPU time versus the
registration error, when the previous criteria are
considered together (e.g., different resolutions,
initial conditions), is studied over both representa-
tions: meshes and edges.
In addition to the examples presented in the

previous sections, other sets of range images were
considered (4 sets of sculptured objects and 4 sets
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Fig. 8. Reference frame error evolution along the iterations:

(top) a sculptured object (Dragon); (bottom) a structured object

(Curvblock).
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of polygonal objects). More than one hundred ICP
results have been compared, using images from
different objects, with different resolutions or
different initial conditions. The global statistical
results for each set of range images are shown in
Table 3.

We could conclude that the ICP convergence is
easier with edge points than mesh vertices when
structured objects are considered (e.g., Block2).
Otherwise, mesh vertices are the best choice if
sculptured objects need to be registered (e.g.,
HappyBuddha). The same conclusion is also valid
for the final 3D error (comparison with the ground
truth, when it is available). In other words, the
final result is closer to the ground truth with edge
points than mesh vertices when structured objects
are considered. On the contrary, mesh vertices give
the best result for sculptured objects.
The aforementioned conclusion can be easily

explained by the following statement. Low con-
vergence ratio, when structured objects are regis-
tered by using mesh vertices, is originated by
vertices placed inside the objects’ faces. These
vertices, left by the decimation algorithm, are not
located at the same position in the different views;
so the matchings with these points are either
discarded by the statistical filter (and, for some
images, ICP cannot converge, or converge with
more iterations), or are preserved, but make less
accurate the final ICP result.
On the contrary, for nonstructured shapes like

sculptured objects, the vertices are located on
curvature discontinuities, and their positions are
stable enough between different views, so that ICP
converges faster with mesh vertices than with edge
points.
Finally, regarding the CPU time comparisons,

we have noticed that, as an average, edge registra-
tion (including edge point extraction) is almost one
hundred times faster than mesh registration (in-
cluding mesh generation). We conclude that it is the
most important advantage for the edge registration,
whatever the nature of the scenes to be registered
and whatever the image configurations.
Another advantage of the edge based representa-

tions, comes from the labeling of the edge points.
Without using like in [3], an attribute vector to
describe the local shape around the edge point, the
ICP result can be improved using the nature of the
discontinuity: depth (jump edge), orientation (crease)
or visibility (image boundaries or occluding lines):
�
 according to our experiments, for nonpolyhe-
dral objects, it is better to remove jump edges
before the execution of an edge registration.
For instance, Fig. 10(left) shows two images
(Wye object) registered only using crease edges.
On the contrary, Fig. 10(right) shows the result
of the same registration, when all edges have
been considered. In this example (we can
generalize for all scenes containing nonpolyhe-
dral objects like cylindrical surfaces for exam-
ple) the convergence is faster and more accurate
only using crease edges. It is because jump edges
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Fig. 9. Evaluation of the ICP methods on several Bunny images: (top left) mesh registrations, (top right) edge registrations, (bottom)

ICP errors decreases.
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on a cylindrical object belong to the surface
boundaries defined only from that point of
view, but they are not really jump edges
(discontinuity on the surfaces).
�
 such a filtering is not possible for the mesh
vertices, even if the mesh registration succeeds
also for these two images (Fig. 11(left)).
�
 for polyhedral objects, jump edges are
kept for the registration, because they
could match with crease edges in other
views. Fig. 11(right) shows Block2 images
registered by using all edge points, even
the points that correspond to the image
boundaries.
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Table 3

Global results on all objects

Object Curvblock Block2 Valve Wye Bunny Happy Dragon Dough

Number of tests 23 10 7 2 8 20 28 7

Number of resolutions 2 2 1 1 1 2 8 1

Nonconvergence with mesh vertices 1 4 1 0 0 1 3 1

Nonconvergence with edge points 1 0 1 0 0 7 7 1

Mean errors for edge points 0.2104 0.1738 na na 0.3809 0.4721 0.5991 na

Mean errors for mesh points 0.4336 2.7862 na na 0.3657 0.4136 0.3793 na

CPU time for edge registration

including the edge extraction [seg]

0.559 0.536 0.573 0.513 1.145 2.634 1.37 0.500

CPU time for mesh registration

including the mesh generation [seg]

27.75 39.87 30.16 58.99 101.31 181.32 90.06 21.07

Fig. 10. Evaluation of the ICP methods on the Wye cylindrical object: (left) by using only the crease edges; (right) by using jump and

crease edges.

Fig. 11. Evaluation of the ICP methods: (left) two Wye images registered using mesh vertices; (right) two Block2 images registered

using edge points.
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5. Conclusion

This paper presents an experimental comparison
of two registration strategies. After testing several
sequences of range images acquired from different
type of objects, it is difficult to say which one of
them is the best; it depends on the shapes
contained in the given range images. However,
we conclude the following: (a) edge based registra-
tion some times is less accurate than triangular
mesh registration for the nonstructured scenes, but
considering all tests, it is slightly better (less
iterations, more monotonic decrease of the error);
(b) the robustness to register representations at
different resolutions is the same in both cases; (c)
the most important point that deserve to be
highlighted, is that the edge based registration is
considerably faster than triangular mesh registra-
tion (in average we can say 100 times faster),
counting up from the generation of each repre-
sentation.

A future work includes to merge both ap-
proaches, thus in a first stage an edge registration
approach will be applied, then as soon as the
representations are near to the final position (it
could be detected by studying the error gradient)
the edge registration algorithm will be switched to
another strategy which considers more points
(vertices of an adaptive triangular mesh or, if it
is possible, all data points contained in the given
range images).
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