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Abstract—This paper presents an efficient technique for gener-
ating adaptive triangular meshes from range images. The algo-
rithm consists of two stages. First, a user-defined number of points
is adaptively sampled from the given range image. Those points
are chosen by taking into account the surface shapes represented
in the range image in such a way that points tend to group in areas
of high curvature and to disperse in low-variation regions. This
selection process is done through a noniterative, inherently par-
allel algorithm in order to gain efficiency. Once the image has been
subsampled, the second stage applies a two and one half-dimen-
sional Delaunay triangulation to obtain an initial triangular mesh.
To favor the preservation of surface and orientation discontinuities
(jump and crease edges) present in the original range image, the
aforementioned triangular mesh is iteratively modified by applying
an efficient edge flipping technique. Results with real range images
show accurate triangular approximations of the given range im-
ages with low processing times.

Index Terms—Adaptive triangular meshes, discontinuity-pre-
serving triangulation, range images, three-dimensional (3-D)
shape representation and recovery.

I. INTRODUCTION

COMPUTER vision has traditionally relied on intensity
image processing for obtaining three-dimensional (3-D)

shapes. Different techniques have been proposed for that
purpose, such as shape-from-focus, shape-from-stereo, or
shape-from-shadows, to mention a few. However, this process
is conceptually involved since, in the end, 3-D information
must be inferred from two-dimensional (2-D) projections.

A simpler and more direct approach for obtaining shape in-
formation of 3-D objects consists of utilizing range images. A
range image is a 2-D array of pixels. Each pixel does not repre-
sent a light intensity level but the distance from a point on the
surface of a 3-D object to a virtual plane referred to the range
sensor utilized to acquire the image. The ability to directly ob-
tain 3-D shapes and the availability of increasingly inexpensive
and fast range sensors explain the popularity that range images
are gaining in the robotics and computer vision communities.
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Range images are dense representations containing tens of
thousands of data points. Processing all those points is costly
and that may hinder the utilization of range images in fields
with real-time constraints, such as robotics, computer vision,
or augmented reality. However, the processing associated with
range images can be significantly reduced by converting the
original dense images into efficient data representations able
to keep the same surface shapes with fewer data, and then
performing the actual processing upon those simplified rep-
resentations. This strategy is advantageous not only in terms
of processing speedup, but also in terms of storage efficiency,
since those reduced representations will also be appropriate
for keeping and updating world models of large and complex
workspaces in an efficient way.

Adaptive triangular meshes are a popular data representation.
They are advantageous since they can adapt to intricate shapes
efficiently. Thus, large planar areas, which in a range image may
occupy tens or hundreds of pixels, can be represented by a few
triangles. In fact, a triangular mesh approximating a range image
can be interpreted as a first level of abstraction of that image,
since planar areas are identified and interrelated. Then, further
processing algorithms (e.g., segmentation, integration, recogni-
tion) can take advantage of such preprocessing to perform more
efficiently. For instance, [1] presents a fast technique for seg-
menting range images approximated by triangular meshes. Be-
sides the speedup of further processing algorithms, triangular
meshes are a convenient representation in order to integrate the
surfaces described by the range image in a world model or to
include them in computer-aided design (CAD) packages.

The common way to generate an adaptive triangular mesh
from a dense range image is through a dense-to-coarse algo-
rithm that consists of two stages: First, a dense (nonadaptive)
triangular mesh is generated by connecting all the pixels of the
range image along rows, columns and diagonals; second, the
dense mesh is iteratively decimated (coarsened) based on a mea-
sure of its approximation error with respect to the original image
(e.g., [2]–[6]) or some appearance metric (e.g., [7]–[9]). Recent
developments (e.g., [6], [7], [10], and [11]) allow the simplifica-
tion of very large triangular meshes at very high speeds. How-
ever, these techniques do not guarantee that surface and orien-
tation discontinuities are preserved when the final meshes are
relatively coarse.

Instead of starting with a dense triangular mesh that is then
decimated. DeFloriani proposed a coarse-to-fine technique
that starts with a coarse triangular mesh that is successively
refined by iteratively adding new points [12]. This technique
also suffers from efficiency problems due to the application of
iterative optimization (at every iteration, the algorithm must
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select the triangle whose subdivision produces the largest
reduction of approximation error with respect to the original
image). Another coarse-to-fine approach was proposed in [13].
This method starts with a coarse mesh approximating the
surface through triangular elements covering the boundary of
the domain, then iteratively adds new points from the data set
until a specified error tolerance is achieved.

A different approach was proposed by Terzopoulos and
Vasilescu in [14]. Instead of starting with either a dense or
coarse mesh and iteratively modifying it, they start with a
uniformly distributed triangular mesh with the desired number
of vertices. The positions of the vertices of this mesh are then
iteratively displaced toward surface and orientation discontinu-
ities detected from the image through a gradient-based operator.
This technique is very efficient if the original mesh is small, but
the relaxation process may be time consuming and expensive in
case of larger meshes. That technique was extended in [15] in
order to enhance the approximation of discontinuities. Besides
moving positions of the mesh vertices, triangles can also be
either subdivided or merged, adding thus further processing
cost.

Adaptive triangular meshes that approximate data points
of closed surfaces were proposed in [16]–[18]. The so-called
Marching Cubes algorithm, introduced in [16], creates constant
density triangular meshes from 3-D data points. Extensions to
this algorithm were presented in [19] and [20]. Alternatively,
balloon models were proposed in [17] and [18]. Both methods
start with an initial small triangulated balloon placed inside the
closed surface. Then, the balloon is inflated until it reaches the
data points, approximating thus the shape of the 3-D model.

The concept of frequency was used in [21] to generate a trian-
gular mesh. Thus, nodes are automatically placed in regions of
the image containing high-frequency features, while coarse tri-
angles are generated in smooth regions. A similar approach was
proposed in [22] with the goal of obtaining a quadrilateral mesh
from a given range image without applying any optimization
stages (without decimations, coarsenings or point movements).
According to this approach, the number of selected points and
thus, the mesh size can be specified a priori. Besides, since the
final mesh can be thought of (although it is not) the deforma-
tion of a uniform mesh, the shape of the obtained quadrilateral
cells varies gently. Later on, an extension of that technique to
obtain triangular meshes was proposed in [23]. The idea was
to split each quadrilateral cell obtained above into two triangles
by choosing the diagonal that mostly agrees with the disconti-
nuities present in the range image.

However, the latter technique presents two basic problems:
1) the adaptation to discontinuities only considers the flip of the
two diagonals inside each of the previously obtained quadrilat-
eral cells. This means that the original edges of the quadrilateral
mesh are not modified. Hence, those edges can cross surface
and orientation discontinuities; 2) the sampling technique guar-
antees that all cells are quadrilateral, but does not prevent the
appearance of degenerated or even twisted quadrilateral cells.
Hence, degenerated and twisted triangles may also appear in the
final mesh.

This paper presents a new approach for obtaining adaptive tri-
angular meshes from range images without applying costly dec-

Fig. 1. Illustration of the algorithm’s stages.

imation, refinement, or point movement operations. The aim is
the generation of a final mesh with the same number of points
as if uniform sampling was applied, but obtaining a more accu-
rate model of the surfaces present in the range image by con-
centrating more points in those areas that contain more surface
details.

The algorithm consists of two stages. The first stage is a direct
application of the deterministic sampling process introduced in
[22] and [23], which adaptively selects a user-defined number of
points by taking into account an estimation of the curvature as-
sociated with each pixel of the given range image. In the current
work however, pixel curvatures are calculated through an exten-
sion of the technique utilized in [22], [23] by applying multires-
olution. In that way, crease edges are better highlighted. The
second stage meshes the previously sampled points to produce
the final result. First, a two and one half-dimensional (2.5-D)
Delaunay triangulation is applied to the set of selected points.
Then an efficient iterative process flips triangle edges in order to
preserve the discontinuities present in the original range image.

This paper is organized as follows. The proposed technique
is described in Section II. Section III presents experimental re-
sults with real range images. Finally, conclusions and further
improvements are given in Section IV.

II. DISCONTINUITY-PRESERVING ADAPTIVE TRIANGULATION

OF RANGE IMAGES

A range image is usually a rectangular sampling of a scene
surface. Its typical representation is a 2-D array , where each
element is a scalar that represents a surface point of co-
ordinates: referred to a
local coordinate system. The definition of , and depends
on the properties of the actual range sensor being utilized. In
general, can be considered to be the distance between a
surface point and a given reference plane which is orthogonal to
the axis of the sensor and placed opposite it at a specified dis-
tance.

The proposed algorithm generates discontinuity-preserving
adaptive triangular meshes from range images in two stages.
In a first stage, the range image is adaptively sampled and a
user-defined number of points is obtained. The second stage tri-
angulates the previously sampled points through a conventional
2.5-D Delaunay algorithm and then applies an iterative process
that flips triangle edges in order to preserve underlying jump
and crease edges. Fig. 1 presents a chart flow illustrating the al-
gorithm’s stages, which are described below.
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A. Adaptive Pixel Sampling

Let , , and be a range image with
rows and columns in which each valid pair denotes

a pixel located at row and column . Pixels with no available
depth information receive a constant value that corresponds
to the background.

The generation of a set of points whose density agrees with
the features present in the image consists of three steps. First, an
estimation of curvature is computed for every pixel of the given
range image. Second, the range image is tessellated into a user-
defined number of tiles that overlap along one line of pixels.
Finally, an adaptive sampling process is separately run for each
tile based on the range image and its curvature estimation. These
steps are described next.

1) Gap Filling and Curvature Estimation: Given a range
image , a first stage removes single pixel gaps, usually
due to sensor errors and inaccuracies. This is done by substi-
tuting each background pixel that is surrounded by nonback-
ground pixels for the average of those neighbors. Gaps larger
than one pixel are not removed in considering that they are real
gaps in the sensed 3-D surface. An optional filtering of the whole
range image, by applying the same procedure to nonbackground
pixels, has been discarded since it did not lead to significant im-
provements of the final mesh and also due to its tendency to
remove details, such as sharp edges.

From the filtered range image , a curvature image
is computed. Each pixel in is a function of the

curvature associated with its corresponding pixel . The
curvature image is obtained through a multiresolution process in
order to highlight details, such as crease edges, sometimes dif-
ficult to perceive at full resolution but that can become apparent
at lower resolutions. This process is described next.

Let , and
, be an full resolution range image and ,

and , an half res-
olution one obtained by sampling one out of two pixels from

. In general, a range image at a certain resolution
with , , and

is obtained from its corresponding double resolution image as
.

Let be the curvature estimation image computed
from as indicated below. For instance,

represents the full resolution curvature image, while
is the half resolution one. For the sake of simplicity,

we will describe the computation of from . The
same procedure is applied to images of any resolution.

First, horizontal and vertical curvature estimations
are obtained as

The sought curvature is finally obtained as the addition of
both estimations: .

Pixels with an estimated curvature below a small threshold
(e.g., 20) are set to that threshold, ensuring that these low curva-
ture regions are also sampled with a minimum amount of points.
By doing this, unnecessary concentrations of points along the

Fig. 2. (a) Original range image (rendered with perspective). (b) Curvature
image from the filtered range image. (c) Curvature image after merging
estimations at both full and half resolution.

boundary between valid regions and the background or between
low and high variation regions are prevented from happening.

Given the original (filtered) range image sampled at various
resolutions, a curvature estimation image is computed for each
resolution according to the aforementioned algorithm. The final
objective is to obtain a curvature estimation at full resolution
that merges the estimations obtained at the various levels of de-
tail. After trying various schemes, we have opted for adding the
different estimations without any specific weights that distin-
guish among the various resolutions. Given the size of range
images dealt with (under 200 by 200 pixels), the curvature esti-
mations at less than half the original resolution are too coarse
and do not help improve the final result. Thus, the curvature
estimation is finally obtained by adding the curvature estima-
tions at the original and half resolutions:

.
Fig. 2 shows an example of the application of this technique.

The left image is the rendered original range image. The middle
image shows the curvature image at full resolution. Dark re-
gions represent areas of high curvature. The right image shows
the final result when the full and half resolutions are combined
according to the proposed scheme. Notice how crease edges are
better highlighted now. Since the remaining process maps curva-
tures into point densities, more points will be chosen along those
edges, helping increase the accuracy with which those areas are
modeled.

2) Range Image Tessellation: In order to obtain a final trian-
gular mesh adapted to the different regions of the range image
according to their particular characteristics, and also in order
to favor parallelism, both the given range image and its associ-
ated curvature image are partitioned into a user-defined number
of rectangular tiles. Each tile is considered to be a small range
image upon which further processing is independently applied.
In particular, each range image is divided into horizontal and

vertical stripes, giving rise to different tiles. The par-
tition in tiles is not disjoint. A tile shares one row or column of
pixels with each of its adjacent tiles. If the number of tiles is
excessively large, the adaptive sampling degenerates into uni-
form sampling. Instead, if the number of tiles is very low, high
curvature areas may produce inappropriate undersampling of
distant regions. An intermediate number of tiles (e.g., 4 by 4)
has shown to produce good results without compromising pro-
cessing speed.

3) Curvature-Based Pixel Sampling: Given a range image
tile , , , and its corresponding
curvature image , the objective of this step is to sample
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Fig. 3. (Top) Unnormalized probability density function f (c) that
represents curvature associated with every pixel c from a certain row r.
(Bottom-right) Uniform sampling of the image space of the corresponding
unnormalized probability distribution function F (c) produces a set of
points whose density varies according to f (c).

the given tile at positions (defined by the user) that cover
the whole tile and adapt to the shape of the surfaces comprised
in it.

In order to generate this array, each row of the given tile is
adaptively sampled at different positions so that points tend
to concentrate in high-curvature areas and to disperse in low-
variation ones. This is done as follows.

Let be a row of pixels and its corresponding
curvature profile. This profile is converted into an unnormal-
ized probability density function that denotes the proba-
bility of selecting a given pixel based on its curvature. Logically,
points with high curvature will be more likely to be selected
than low curvature ones. However, if this mapping is linear,
areas of high curvature would be oversampled while planar re-
gions would be undersampled. Therefore, sudden changes of
point density would occur, giving rise to inadequate distribu-
tions of points that would ultimately lead to the proliferation of
degenerated triangles in the final mesh. In order to avoid that
problem, the curvature profile is smoothed by applying a loga-
rithmic transformation function that attenuates high curvatures
while keeping low ones.

(1)

with being a constant weighting factor (e.g., ). Other
underlinear transformation functions can also be applied, being
also possible the definition of customized behaviors by utilizing,
for instance, B-splines.

Once the previous density function has been defined, an un-
normalized probability distribution function is obtained
by “integrating”

(2)

is unnormalized since it does not range between zero
and one but between zero and a maximum value .

If the image space of is sampled at uniformly dis-
tributed points, the application of the inverse distribution func-
tion to those points leads to a set of points adaptively
distributed according to . This principle is illustrated in
Fig. 3. In our case, as the probability distribution function is re-
lated to the curvature estimation from the range image, the den-
sity of the obtained points will depend on that curvature and,
hence, on shape variations.

Fig. 4. (a) Curvature image. (b) Vertical curves after adaptive horizontal
sampling, with H = V = 4 and � = 10.

This process is repeated for every row of the range image
tile , leading to an array:

, , .
For each value , a collection of points ( ) that

determine a “vertical” curve in the range image is obtained by
iterating over . Going over the different values of , we ob-
tain a collection of vertical curves that tend to adapt to the
shape of the underlying objects contained in the range image.
For example, Fig. 4 shows the set of vertical curves obtained by
applying this procedure to all the tiles of the range image shown
in Fig. 2. We are considering a tessellation into 4 by 4 tiles with
ten sampled columns per tile ( ).

Owing to the overlap of one pixel between adjacent tiles, the
same distribution of selected points is obtained at the common
boundary. Hence, curves belonging to adjacent tiles join
smoothly. The final result is a complete range image sampled
in vertical curves that adapt to the shape of the individual tiles
that make up the whole range image.

The next step consists of adaptively sampling each of the ver-
tical curves at positions ( is the input parameter that indi-
cates the number of sampled rows per tile). The process is sim-
ilar to the previous one. The difference now is that a curvature
profile is obtained from the positions of the points that belong
to one of the vertical curves instead of from the positions corre-
sponding to a row of pixels. Again, each tile is processed sepa-
rately.

Let , , represent the
vertical curve corresponding to a certain column , .
The 2-D positions of the points that belong to that curve are
( ).

The unnormalized probability density function corre-
sponding to the curvature profile associated with each curve is
an adaptation of (1)

(3)

Similarly, to (2), an unnormalized probability distribution
function is computed. Then, the image space of this
distribution function is uniformly sampled at positions and
the inverse distribution function is applied to them to
obtain a set of points such that . A vector
of vertical sampled points , , keeping the
different s is computed in this way. In the end, an array
of horizontal and vertical sampled points is obtained
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Fig. 5. (a) Horizontal and vertical sampled points with H = V = 4 and
R = � = 10. (b) Same number of points after uniform sampling.

In summary, given a range image tile and its asso-
ciated curvature image , the array con-
tains the 2-D coordinates of points selected from
the given tile. Fig. 5(a) shows the set of vertical and horizontal
sampled points obtained for the 4 by 4 tiles in which the original
range image was tessellated. Fig. 5(b) shows the same number
of sampled points but considering uniform sampling instead. In
the adaptive distribution, points tend to concentrate in areas of
high curvature, highlighting the shape of the objects contained
in the image. Owing to the overlap between adjacent tiles, the
same distribution of selected points is obtained at the common
boundary.

B. Discontinuity-Preserving Triangulation of Sampled Points

The outcome of the previous stage is an array of
rows and columns, with and being the

number of horizontal and vertical partitions of the range image
into tiles and and the number of rows and columns in which
every tile is sampled. Each position of this array contains the row
and column of a range image pixel and its corresponding value
(depth measure). By construction, the final number of selected
points is predefined by the user. This allows to obtain a final
triangular mesh with a bounded number of points and thus, with
a foreseeable maximum size.

From the set of points obtained above, only those points that
do not belong to the background of the range image will be
considered for the final triangulation.

Once a set of points has been chosen, the objective now is to
triangulate them in such a way that triangle edges agree with the
orientation of the discontinuities contained in the range image
(jump and crease edges). In this line, several data-dependent
triangulations have been proposed in the literature (e.g., [24],
[25]). However, as discussed in [23], discontinuities are not nec-
essarily preserved if the triangulation process is only based on
minimizing the approximation error.

The algorithm proposed in this paper triangulates the set of
points obtained after the adaptive sampling stage as follows.
First a 2.5-D Delaunay triangulation is applied to all the non-
background points. Then, all triangle edges are sorted out ac-
cording to their approximation error with respect to the original
range image. Finally, all edges are considered in turn according
to the previous ordering and a set of geometric tests are applied
to them to decide whether they are flipped or not in order to keep
underlying discontinuities. These stages are described next.

Fig. 6. (a) Two-dimensional Delaunay triangulation of a collection of
adaptively sampled points (range image pixels). (b) Same triangulation but
removing triangles that belong to the background.

Fig. 7. (a) Two-dimensional Delaunay triangulation after removing
background and dangling triangles. (b) Two and one half-dimensional
triangulation obtained from the previous result.

1) 2.5-D Delaunay Triangulation: Given a set of 3-D points
consisting of two image coordinates (row and column number)
and a depth value, a 2-D Delaunay triangulation [27] is ap-
plied to the set of image coordinates. Fig. 6(a) shows the 2-D
Delaunay triangulation of the set of adaptively sampled points
corresponding to the example utilized so far. The triangulation
covers the convex hull of the given set of points.

From this triangulation, triangles that belong to the back-
ground are removed. In particular, the image coordinates (row
and column) of the barycenter of each triangle are computed by
averaging the image coordinates of its three vertices. If the re-
sulting coordinates correspond to a pixel labeled as background
in the input range image, the triangle is removed. The result is
shown in Fig. 6(b).

This procedure can generate dangling triangles, or triangles
that join together by just a single shared vertex. Two groups
of such triangles appear in the previous example. Those trian-
gles are removed in order to produce a valid triangular mesh
in which all triangles join together along a shared edge. Interior
holes may also appear—the previous example has one—but they
do not pose any problems regarding the correctness of the mesh
topology. Fig. 7(a) shows the mesh of Fig. 6(b) after removing
dangling triangles present in it.

When the previous triangulation (without dangling triangles)
is applied to the 3-D points obtained by considering not only
the 2-D image coordinates (row, column) but also the associated
depth measure, and these three coordinates are conveniently
scaled and interpreted as , and coordinates, the result is
the so called 2.5-D Delaunay triangulation. In order to do that,
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each component (row, column, depth) must be converted to 3-D
Euclidean space by multiplying it by an appropriate scale factor
that depends on the calibration of the range sensor being utilized

(4)

At this point, we can appreciate that the obtained triangula-
tion does not preserve the underlying discontinuities—basically
crease edges—present in the image, since many triangle edges
cross such discontinuities producing noticeable artifacts on the
resulting surface. The obvious reason is that the obtained trian-
gulation takes into account a criterion that only considers the
size of the triangles when they are projected onto the plane,
disregarding the shapes of the underlying surfaces. Therefore, a
further stage must flip some of those edges to better align them
along the existing discontinuities. This is done in two steps.
First, all triangle edges are sorted out according to a measure
of the error between them and the original range image. Then,
each edge is considered in turn, deciding whether it is flipped or
not based on the shape of the result. These steps are described
next.

2) Error-Based Sorting of Triangle Edges: All edges of the
previously obtained triangulation are possible candidates to be
flipped. However, the order in which those flips are performed is
important. For instance, consider the example shown in Fig. 8.
Given the configuration depicted on the left, edge AD can be
swapped (flipped) for edge EB. The latter might improve the
approximation of a certain discontinuity present in the range
image. However, if AB was initially swapped for CD, EB would
not be able to be swapped any more, even though EB was a better
solution.

Clearly, this is a problem of priorities that will appear in any
strategy. A possible solution would consist of applying global
nonlinear optimization techniques, such as simulated annealing.
However, besides an important downfall in performance, if the
variable being optimized was the approximation error, the re-
sults would not guarantee that discontinuities are preserved [23].

In order to tackle this problem efficiently, we have opted for
an eager strategy that sorts out all triangle edges according to the
expected approximation gain that they would attain in case they
were flipped. This gain is defined in terms of the variation of
approximation error between the range image and each triangle
edge as it will be explained below. It is important to note that
this gain does not determine whether edges are flipped or not,
but only the order in which they will be subsequently considered
for being flipped. A top-down approach is followed, such that
edges with highest gains are considered first.

Approximation Gain of an Edge: Let us consider that the
given range image is mapped into 3-D space by applying the
linear mapping defined in (4) to all its pixels. This means that ,

, and coordinates are computed for every pixel from both its
row and column coordinates and its associated depth. We will
refer to this mapping as the 3-D range image. Once the range
image and its triangular approximation are in the same space,
we can define the approximation error of a triangle edge as the
cumulative 3-D distance between that edge and the 3-D range
image points closest to it. The lower the approximation error of
an edge is the better that edge will model the underlying surfaces
present in the range image.

Fig. 8. (a) Configuration in which edge AD can be flipped. (b) Configuration
in which edge AD is no longer a candidate to be flipped.

In order to gain efficiency, the approximation error of an edge
AB is estimated as follows. Its two extremes, A and B, are 3-D
points whose and coordinates are proportional (4) to the
row and column coordinates of two range image pixels:
and , respectively. Instead of computing which points
of the 3-D range image are closest to the given edge, we deter-
mine which pixels from the range image are traversed by edge
AB when it is projected onto the image plane. This is done by
applying Bresenham’s algorithm [28] to “draw” a straight (ras-
terized) line between and . All pixels traversed
by this line are the ones considered to be closest to AB. Then,
those pixels are mapped to 3-D points by applying (4). Finally
the Euclidean distances between those 3-D points and the 3-D
edge AB are computed and added together, obtaining thus an es-
timation of the sought approximation error.

The approximation gain of an edge AB is computed as fol-
lows. Let us consider the triangular mesh shown in Fig. 8(a).
Let be the approximation error of AB computed as indi-
cated above. Edge AB can be swapped for edge CD. Let
be the approximation error of the latter. The approximation gain
of AB is defined as: . According to this for-
mulation, when the approximation error of the alternative edge
CD is lower than the approximation error of AB, the approxi-
mation gain of AB will be positive, implying that a swap of AB
for CD is advantageous in terms of approximation accuracy. The
higher that difference, the higher the gain. Thus, this gain can be
utilized to rank all edges of the triangular mesh in order to de-
termine the order in which they will be considered for flipping:
edges with high approximation gain will be considered first.

However, there are two cases in which an edge does not have
an alternative edge for which it can be swapped. The first case
affects exterior edges, or edges that belong to the boundary of an
open triangular mesh. For example, this is the case of edge DE in
Fig. 8(a). The second case is when the alternative edge does not
intersect the original edge. This happens when the two triangles
adjacent to the given edge do not form a convex quadrilateral.
For instance, this situation arises in the case of AD in Fig. 8(b).
If AD is swapped for CE, the resulting triangulation would not
be topologically correct. This second situation is easily detected
by checking if the two edges (segments) intersect when their
end-points are projected onto the image plane according to the
inverse of (4).

In both cases, when no alternative edge is found, the approx-
imation error of the alternative edge is considered to be infinity,
leading to a minus infinity approximation gain that will prevent
the given edge from being flipped.

Optimal Ranking of Triangle Edges Based on Approxima-
tion Gain: At this point, all edges of the given triangulation are
considered in turn and sorted out in decreasing order according
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to their approximation gain. If two edges have exactly the same
approximation gain, one of them is randomly chosen to be pro-
cessed first. The final objective is to iterate over all those edges
in the given order until there are no more edges whose gain is
above a certain threshold. The nature of this last iterative stage
determines the process utilized to perform the ranking, which is
described below.

If all edges depicted in Fig. 8(a) were sorted out according
to their respective gains and AB was the edge with the highest
gain, the iterative algorithm mentioned above would try to swap
AB for CD. If this flip was feasible, we would get the triangular
mesh shown in Fig. 8(b). Obviously, the old edge AB is removed
from the sorted list of edges and a new edge CD is introduced
with its corresponding approximation gain. However, besides
these two operations, the four edges that form cell ADBC may
suffer from a variation of their respective approximation gains,
since the mesh topology will have changed. In this example,
only the gain of AD would be modified from a certain gain to
minus infinity, as EC is not feasible. The other three edges are
exterior and their gains would remain at minus infinity. In gen-
eral, however, all those edges could be interior and would po-
tentially have to be recomputed, leading to possible relocations
inside the sorted list of edges.

This means that when an edge is flipped, besides removing
that edge from the sorted list and including the new edge in it,
four edges must be found inside the list and, if necessary, relo-
cated according to their newly computed approximation gains.
Obviously, this process must be done as efficiently as possible.
In order to sort out all edges efficiently and to allow for fast re-
locations, insertions and deletions of edges, we have opted for
an optimal sorting strategy based on the use of a priority queue
(max-heap) [29]. The advantage of priority queues is that inser-
tion, deletion and relocation operations are performed in loga-
rithmic time, with being the number of elements
being processed.

In order to rank the edges of the triangular mesh according
to their approximation gains, all edges are sequentially inserted
into the queue in optimal asymptotic time . The or-
dering key is the edge’s approximation gain computed as indi-
cated above. To get the sequence of ordered edges, each edge
must be extracted in turn leading to a total optimal time cost

. The objective is to extract edge after edge from
the head of the queue until the approximation gain is below a
certain threshold. This process is described next.

3) Discontinuity Preserving Iterative Flip of Triangle
Edges: As a result of the previous process, all edges of the
given triangular mesh are inserted in a priority queue. The edge
at the head of the queue is the one with the largest approxima-
tion gain, meaning that a swap for its alternative edge leads to
the maximum drop of approximation error between the trian-
gular mesh and the given range image. Edges will be considered
for flipping according to this heuristic, which corresponds to an
eager policy as discussed earlier in Section II.B2.

Since the approximation gain is based on an error measure
that considers the distance between the triangular mesh and the
3-D range image, as discussed in [23], a flipping strategy based
on this gain would have the same drawbacks than other methods
based on similar principles, not guaranteeing the preservation of

Fig. 9. Spans, normals of spans and normals of triangles for the two possible
configurations of a convex quadrilateral cell.

discontinuities, especially of crease edges. Instead, once an edge
is extracted from the queue, a set of heuristic tests are carried
out to determine whether that edge must be flipped or not. If
all tests are passed, the edge is swapped for its alternative one
and the queue is internally reorganized in order to reflect the
changes. In particular, the old edge is removed, the new edge
is inserted according to its approximation gain, and the gains
of the four edges that form the quadrilateral cell containing the
old edge are recomputed and their corresponding positions in
the queue eventually recalculated. If the extracted edge is not
swapped, it is inserted back into the queue with a minus infinity
gain. The algorithm is very efficient since the total asymptotic
cost of these operations is , with being the number
of stored edges. For example, for 2,000 edges, each operation
would require a maximum of 11 internal displacements in the
queue. Only four more displacements could be required if the
number of edges was ten times higher.

Given a certain edge AB, a set of local geometric tests aimed
at detecting the presence of discontinuities are sequentially ap-
plied in order to decide whether AB is swapped for its alternative
edge CD. Both edges are contained in a convex quadrilateral cell
ADBC, Fig. 9(a). Those tests are based on the local geometry
around the cell rather than on the approximation error, which,
as mentioned above, is not a reliable indicator of discontinuities.
The tests make use of some magnitudes that are introduced next.

Let Fig. 9 represent the two possible triangulations of a
convex quadrilateral cell. Let us suppose the original triangu-
lation is done through diagonal AB. The subsequent tests are
carried out in order to assess if diagonal CD is more advanta-
geous than diagonal AB in the sense that CD agrees with the
orientation of an underlying discontinuity more than AB. For
each vertex opposite the cell’s diagonal, we define its span
as the set of triangles that contain that vertex, excluding the
cell’s triangle. For example, the span of vertex C in Fig. 9
contains all the triangles around C excluding triangle ABC.
Spans are shown as dark polygons in Fig. 9. For each span, we
define the normal of span as the sum of all the unitary normal
vectors corresponding to the triangles that belong to that span.
For example, is the normal of the span of vertex C. The
normal of span gives an estimate of the predominant orientation
of the surface that surrounds a certain vertex. When the span
of a vertex does not contain any triangles, the corresponding
normal of span is the null vector. This situation arises when the
three vertices of a triangle are exterior, for instance, for vertex
E in the triangular meshes shown in Fig. 8.
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Given both the normal of span of a certain vertex C, ,
and the normal of a triangle ABC containing that vertex, ,
we define the disparity of the triangle as: shown in (5) at the
bottom of the page, where is an upper disparity threshold
(e.g., ). The disparity of a triangle indicates how much
the orientation of that triangle deviates from the overall ori-
entation of the surface around it. Low disparities are an indi-
cator of the absence of a discontinuity. When the angle between
the normal of span and the triangle normal is above the upper
disparity threshold, the disparity is set to its maximum value
in considering that a possible discontinuity is likely to exist.
The upper disparity threshold is statistically computed from the
mean and standard deviation ( ) of the disparities
corresponding to triangles that are known to belong to a single
surface in a manually segmented triangular mesh (ground-truth
segmentation) that approximates a given range image utilized as
a training dataset.

Given two triangles ABC and BAD sharing a diagonal
AB, two disparities, and , are com-
puted as indicated above. Taking those separate disparities
into account, we define the disparity of the diagonal as
the maximum of the disparities of its associated triangles:

. In general, a diagonal
between two triangles will be likely to belong to a discontinuity
if its disparity is low while the angle between the triangles
is high. Similarly, given the two alternate diagonals inside a
quadrilateral cell, the diagonal with the lowest disparity will
be likely to be the one that best preserves the discontinuities in
that region. Actually, this criterion is the final heuristic test we
use to decide whether a flip is performed or not. However, prior
to it, several geometric tests are sequentially carried out to deal
with several particular situations.

Test 1: Deadlock Avoidance: The objective is to avoid al-
gorithm deadlocks by preventing old edges from being subse-
quently chosen. In the previous example, if the alternative edge
CD had already been considered, it would have to be discarded
in future iterations. In order to do that, each vertex of the tri-
angular mesh keeps a list of identifiers of its former adjacent
vertices. An edge between two former neighbors is rejected.

Test 2: Significant Disparity Variation: The objective is to
reject a swap of the current diagonal AB for its alternative diag-
onal CD if the difference between their corresponding dispari-
ties is below a lower disparity threshold,
. This situation occurs when the improvement obtained after

the flip is negligible (e.g., ). In that case, performing the
flip is not worthwhile and usually leads to triangles with worse
shapes than the original ones, which were the result of a De-
launay triangulation. If there is a significant disparity variation,
the third test is applied.

Test 3: Triangle Degeneration: At this point, a significant
disparity variation exists between the two diagonals. The objec-
tive now is to reject a swap of the current diagonal AB for its

alternative diagonal CD if any of the two new triangles, DCA or
CDB, are degenerated and both lie at a smooth region. A triangle
is degenerated if one of its internal angles is above a maximum
angle (e.g., 160 ). Two triangles potentially lie at a smooth re-
gion if the angle between their respective normals is below a cer-
tain threshold. This threshold has been chosen to coincide with
the upper disparity threshold utilized above (e.g., ).
If no degeneration is found or it is found but accepted because
the triangles do not presumably lie at a smooth region, the fourth
test is applied.

Test 4: Noticeable Shape Variation: At this point, a sig-
nificant disparity variation exists and the new triangles are not
degenerated (or if they are, they do not presumably belong to a
smooth region). The objective now is to determine if the flip pro-
duces a noticeable variation of shape. Specifically, the normals
of the new triangles, and , must have a differ-
ence of angles above a certain threshold (e.g., 5 ). If this does
not occur, the flip is worthless since it will not contribute to
highlighting any discontinuities (the new triangles after the flip
would almost be planar). If the previous condition is not satis-
fied, the flip is rejected. If no rejection is decided, the fifth test
is applied.

Test 5: Noticeable Discontinuity Existence: At this point,
a noticeable disparity variation exists, the new triangles are not
degenerated and the flip produces a noticeable change of shape.
The objective now is to decide whether the flip will likely lead
to the probable loss or highlight of an orientation discontinuity
(crease edge).

The presence of a discontinuity can be hypothesized by mea-
suring the angle between the normals of corresponding spans.
Particularly, if the angle between and (Fig. 9) is
high, diagonal AB will likely be part of a crease edge separating
two surfaces with different orientations. Thus, if the angle be-
tween those two normals is significantly larger than the angle
between the normals of span of the alternative triangles obtained
after the flip, there is a high probability that a discontinuity may
be lost as a result of that flip. In practice, if the angle between

and is larger than twice the angle between and
, the flip is rejected. This test is especially suitable for de-

tecting triangle edges (diagonals) that cross crease edges joining
planar regions.

If this test is applied and no decision is made about the con-
venience of the flip, the last test is responsible for reaching the
final decision.

Final Test: Difference Between Disparities: At this point,
all previous tests have been unable to determine whether the
swap of edge AB for CD is advantageous or not in order to high-
light surface discontinuities. The final test consists of comparing
the disparities between the two alternative diagonals. If the dis-
parity of the given diagonal AB, , is larger than the dis-
parity of CD, , the flip is performed. On the contrary,
the flip is rejected. In other words, the configuration in which
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Fig. 10. Comparison of the proposed flipping technique. Triangles are
shown both in solid and wireframe at the top and only in solid at the bottom.
(Top-left) Adaptive mesh through the proposed adaptive sampling plus the
discontinuity-based flipping technique—AS+DBF. (Top-right) Adaptive
mesh through adaptive sampling plus an error-based diagonal selection
algorithm—AS+EBF. (Bottom-left) Adaptive mesh computed with Jade.
(Bottom-right) Adaptive mesh computed with Qslim.

Fig. 11. Examples of the application of the proposed flipping technique.
(Left) Original range image (rendered with perspective). (Middle) Triangulation
after adaptive sampling plus discontinuity-preserving diagonal flipping. (Right)
Triangulation after regular sampling plus error-based diagonal selection.

the triangles have an orientation more similar to the orientation
of their respective neighborhoods (spans) produces the lowest

TABLE I
EXPERIMENTAL RESULTS FOR THE TRIANGULAR MESHES PRESENTED IN FIG. 11

Fig. 12. Approximation of a range image at four different resolutions using
the proposed technique. (Top-left) 125 vertices (5� 5 samples per tile), 0.13
s. (Top-right) 276 vertices (7� 7 samples per tile), 0.20 s. (Bottom-left) 385
vertices (8� 8 samples per tile), 0.25 s. (bottom-right) 639 vertices (10� 10
samples per tile), 0.34 s.

disparity and is likely to be the one that most highlights the
underlying discontinuity. For example, if edge CD in Fig. 9(a) is
part of a crease edge that separates two planes, the disparity of
edge CD will be zero, since triangle DCA and the span of vertex
A will lie on the first plane, and triangle DCB and the span of B
will lie on the second plane. However, the initial configuration,
in which diagonal AB will cross the discontinuity, will tend to
have a disparity above zero, since the triangles and their spans
will cover an area across the discontinuity and will tend to have
quite disparate normals.

The previous tests are applied in sequence to all the edges
extracted from the priority queue. As mentioned above, each
flip decision involves the extraction of the old edge from the
queue, the inclusion of the new edge and the recomputation of
the approximation gain (and possible internal relocation in the
queue) of the edges that delimit the involved quadrilateral cell.
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TABLE II
SUMMARY OF EXPERIMENTAL RESULTS FOR EACH OF THE ADAPTIVE TRIANGULAR MESHES PRESENTED IN FIG. 12 (4 BY 4 TILES IN ALL EXAMPLES)

This iterative process stops when the edge at the head of the
queue, which is the edge with the largest approximation gain, is
below a certain threshold. Interestingly enough, the best results
are not obtained when edges with positive approximation gains
are only considered, but when edges with negative gains are also
accepted. The reason is related to the fact that the approximation
error is not a reliable indicator of discontinuities [23]. Therefore,
edges that exhibit a large approximation error may be necessary
in order to highlight a discontinuity. In practice, all edges are
considered except for those with a minus infinity approximation
gain, which correspond to diagonals of nonconvex quadrilateral
cells and edges already flipped—the latter edges are inserted in
the priority queue since, eventually, they can be recomputed as
a result of a new flip. Notwithstanding, edges with very nega-
tive approximation gains are usually associated with edges that
correctly model discontinuities and, if they were flipped, they
would cross those discontinuities leading to larger approxima-
tion errors. This means that edges with very low (negative) ap-
proximation gains will not tend to produce flips and will only
be relocated in the queue with a minus infinity gain without pro-
ducing any considerable overload.

III. EXPERIMENTAL RESULTS

The proposed technique has been applied to real range im-
ages obtained with the MSU Prip Lab’s Technical Arts 100
scanner and the OSU’s Minolta 700 range scanner. These im-
ages contain planar and curved surfaces with surface and ori-
entation discontinuities (jump and crease edges). Since the pro-
posed technique is mainly devised to improve the quality of ap-
proximation of crease and jump edges and they usually cover a
small percentage of the overall range image, improvements are
qualitative rather than quantitative and, hence, they are better
appreciated through images of the final result. However, quan-
titative results also show an improvement as it will be described
below. CPU times have been measured on a 650 MHz Pentium
III. This is the typical processing power of the computers cur-
rently embedded in commercial mobile robots.

The example used so far corresponds to a 188 row by 208
column range image (39,104 pixels). This image was split up
into 4 by 4 tiles ( ) and 10 by 10 points were adap-
tively sampled per tile. After applying the sampling technique
described in Section II.A, an adaptive quadrilateral mesh with
1,369 points is obtained in 0.07 s. Then this mesh is triangu-
lated in 0.04 s., producing 3,286 valid triangles, 1,563 edges,

Fig. 13. (Left) Original range images (rendered with perspective) obtained
with the OSU’s Minolta 700 range scanner. Each range image is defined by
40 000 points. (Right) Final result (in solid and wireframe) computed with the
proposed technique (adaptive sampling plus discontinuity-based flipping).

and 639 3-D vertices. Considering that each pixel of the orig-
inal range image represents a 3-D point, a point reduction of
98% is obtained. This reduction must not be interpreted as a
data compression ratio though, since the storage space to rep-
resent a dense range image and a triangular mesh are not com-
parable. However, this figure is significant in terms of geomet-
rical reduction and post-processing speedups, since many range
image processing algorithms deal with all pixels of the range
image, frequently converting it to a dense triangular mesh. In
that case, the point reduction ratio would be directly reflected
into an equivalent processing time reduction. In case the range
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TABLE III
EXPERIMENTAL RESULTS FOR THE TRIANGULAR MESHES PRESENTED IN FIG. 13

image is intended to build a world model, it will usually be con-
verted into a triangular or quadrilateral mesh. In that case, the
storage reduction is certainly significant.

Once the triangular mesh was obtained, 275 edges were
flipped according to the technique described in Sections II.B2
and II.B3 in 0.23 s. Thus, the total CPU time to generate the
final triangular mesh from the given range image was 0.34 s.

Fig. 10 compares the proposed edge-flipping technique (top-
left) with an error-based technique (top-right) and two iterative
(optimization-based) decimation techniques (bottom-left) and
(bottom-right). The error-based technique determines whether
an edge is flipped or not based on the approximation error be-
tween the mesh triangles and the original range image. Specif-
ically, edges with high approximation gain are flipped as they
are extracted from the priority queue without applying any of
the aforementioned geometric tests. In both cases, the original
triangular mesh was obtained through the adaptive sampling
technique presented in Section II.A. Notice that the majority of
artifacts that appear along crease edges when the error-based
technique is applied are removed by the proposed edge-flipping
technique.

The iterative decimation techniques are based on different
optimization algorithms that fulfill a user defined point re-
duction while minimizing an approximation measure—the
approximation error with the original data in the first case and
a quadratic error metric in the second one. These algorithms
are described in [2] and [8], and they are available as public
software packages (Jade and Qslim, respectively). In both
algorithms, until the number of points of the approximating
mesh equals the amount of points specified by the user, the
algorithms sequentially identify the points whose removal
produces the lowest approximation measure and extract them
from the mesh, retriangulating their corresponding neighbors.
In the example shown in Fig. 10(bottom-left), Jade obtains 638
points in 138 s. (the same amount of points is obtained in 0.34
s with the proposed adaptive technique). Fig. 10(bottom-right)
has been generated with Qslim. It contains 639 points and was
computed in 1.18 s. Qslim is faster than Jade but it produces
more artifacts in the final representation (see solid model).

As mentioned above, quantitative results also show that the
proposed technique improves the quality of approximation of
the original range image. Thus the relative approximation error
between each triangular mesh and the original range image has
been computed as follows. For every pixel of the 3-D range
image, the vertical distance between its 3-D position and the
first triangle intersected by a vertical line passing through that

pixel is computed. This absolute distance is divided by the
maximum height of the objects contained in the range image.
In this way, the final relative approximation error is computed
by averaging the relative errors of all nonbackground pixels of
the range image. The relative errors for the examples shown
before are: 0.24% (adaptive sampling + error-based flipping,
Fig. 10(top-right) and 0.18% [adaptive sampling + proposed
flipping, Fig. 10(top-left)].

Some more examples are shown in Fig. 11. The middle
column shows the triangular meshes that result from applying
the proposed technique (adaptive sampling plus disconti-
nuity-preserving diagonal selection). The right column shows
the triangular meshes that result from applying a regular
sampling of the range image and then a triangulation with an
error-based diagonal selection. The corresponding original
range images are presented in the left column. Experimental
results are summarized in Table I.

Fig. 12 shows the same example utilized throughout this
paper but with a different number of adaptively sampled points.
All examples were run with 4 by 4 tiles per range image.
Table II summarizes the experimental results corresponding to
this example.

Finally, Fig. 13 shows five different range images (left) ob-
tained with the OSU’s Minolta 700 range scanner. Each range
image consists of 200 by 200 points. The corresponding adap-
tive triangular meshes computed with the proposed technique
are presented both in solid and wireframe in the middle and right
columns. In addition, information, such as CPU time, relative
error and triangular mesh definition, is presented in Table III.

IV. CONCLUSIONS AND FURTHER IMPROVEMENTS

This paper presents an efficient technique aimed at the gen-
eration of adaptive triangular meshes from range images pre-
serving surface and orientation discontinuities (crease and jump
edges). Initially, the algorithm generates an adaptive quadri-
lateral mesh from the range image. This mesh is more accu-
rate than a uniformly sampled one since it distributes the same
number of points by considering the curvature of the surfaces
contained in the range image. Then, all points of this mesh are
triangulated through a 2.5-D Delaunay algorithm. Finally, an
iterative process goes over all edges of that triangulation de-
termining whether they must be flipped or not according to a
set of geometric tests that highlight underlying discontinuities
present in the original range image. The algorithm is very ef-
ficient and appropriate for fields with tight timing constraints
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such as robotics. The obtained triangular meshes can be inte-
grated in world-models of complex workspaces or to serve as
the input data for further segmentation, integration or recogni-
tion algorithms that will perform more efficiently than if they
directly worked on the original dense range images.
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