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Unsupervised Contour Closure Algorithm for
Range Image Edge-Based Segmentation

Angel Domingo Sappa, Member, IEEE

Abstract—This paper presents an efficient technique for ex-
tracting closed contours from range images’ edge points. Edge
points are assumed to be given as input to the algorithm (i.e.,
previously computed by an edge-based range image segmenta-
tion technique). The proposed approach consists of three steps.
Initially, a partially connected graph is generated from those
input points. Then, the minimum spanning tree of that graph is
computed. Finally, a postprocessing technique generates a single
path through the regions’ boundaries by removing noisy links
and closing open contours. The novelty of the proposed approach
lies in the fact that, by representing edge points as nodes of a
partially connected graph, it reduces the contour closure problem
to a minimum spanning tree partitioning problem plus a cost
function minimization stage to generate closed contours. Experi-
mental results with synthetic and real range images, together with
comparisons with a previous technique, are presented.

Index Terms—Image edge analysis, image segmentation, range
image.

1. INTRODUCTION

RANGE image is generally represented by means of

a two-dimensional (2-D) array R, where each element
R(r,¢) is a scalar representing a surface point of coordinates:
(z,y,2) = (fu(r), fy(c), f-(R(r,c))) referred to a local
coordinate system [1]. Range image segmentation algorithms
concern the grouping of three-dimensional (3-D) input data
points into disjoint homogeneous regions. Formally, a segmen-
tation of a range image R into n regions 71, ..., r, is defined
by the following properties [2]: /) 1y Ure U --- U1, = R;2)
r; is a connected region Vr; € R; 3)r; Nr; = 0,Vi # 55 4)
P(r;) = TRUE,Vr; € R; 5) P(r; Urj) = FALSE, Vi # j;
where (r;) is a similarity predicate over the points in set
r;—such as they belong to the same surface—and () is the null
set.

Most of the proposed approaches, in general, can be divided
into two categories: a) region-based approaches and b) edge-
based approaches. Alternatively, edge-based approaches can be
used to support region-based segmentation algorithm—usually
referenced as hybrid approaches. Each one of them has its own
advantages and disadvantages. While region-based techniques
have threshold problems, or surface fitting’s definition, edge-
based approaches have as a weakest point the contour closure
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extraction; although most of the edge-based range image seg-
mentation approaches succeed in finding a good sampling of
object’s edges, most of them fail in computing regions’ closed
boundaries. The work in this paper is focused on extracting
closed contours from range images’ edge points.

Human being can easily extract closed contours after
watching their defining set of points. Unfortunately, this simple
and almost trivial action for the human being is a quite dif-
ficult task to be automatically performed. A lot of work has
been carried out in the computer vision community, some of
them using the psychology as an inspiration source. Human
visual system can detect many patterns of image elements;
the ability to extract significant image relations without any
knowledge of the image content and group them to obtain
meaningful higher-level structure is usually referred as per-
ceptual grouping. Research in perceptual grouping was started
in 1920s by Gestalt psychologists. The hierarchical grouping
principles proposed by Gestalt psychologists embodied such
concepts as grouping by proximity, similarity, continuation,
closure, and symmetry [3].

From the 3-D computer vision point of view, several tech-
niques have been proposed in the literature following different
strategies (some of them will be summarized in the next sec-
tion). Classically, they were inspired from the 2-D image pro-
cessing field; hence, some of the proposed 3-D contour closure
approaches have been based on the use of morphological op-
erators (e.g., [4]-[6]). Other approaches, close related to the
topic tackled in this paper, are focused on extracting the ex-
ternal contour of an object (object’s boundary) but not on ex-
tracting the contour of every single region, r;, defining the ob-
ject. These approaches try to link edge points according to local
measures of continuity and smoothness, with no a prior infor-
mation about the object shape. These techniques include several
well-know algorithms from different fields (deformable models,
constrained clustering and data ordering); see [7] for further de-
tails. Differently than these approaches, in this paper, we tackle
the problem from another point of view by proposing a graph-
based technique.

Graph theory has long been used in the 2-D image segmen-
tation problem (e.g., [7]-[12]). Our proposed approach differs
from them not only due to the fact that it is focussed on range
image processing but also on the following aspects. First, some
of those techniques were meant for partitioning a gray-level
image into connected homogeneous regions—region-based
approaches [8]-[10]; for example, [8] introduces a 2-D image
segmentation algorithm using minimum spanning trees. By
minimizing the sum of gray levels variations a minimum
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spanning tree is partitioned into subtrees, representing different
homogeneous regions. Similarly, [9] proposes a graph-parti-
tioning with nonparametric clustering approach for 2-D image
segmentation. Second, as mentioned above, other approaches
were proposed for extracting the external contours of a single
object (object’s boundary); hence, they are not able to compute
a closed contour for every single region r; (e.g., [7] and [11]).
[7] presents a clustering algorithm based on the minimization
of a cost function that depends on several well-known tech-
niques: snakes, Kohonen maps, elastic nets, and hard and fuzzy
c-means. Differently than the previous proposal, [11] presents
an object contour closure technique by finding the eigenvector
with the largest positive real eigenvalue of a transition matrix
for a Markov process where edges from the image serve as
states. That work incorporates the Gestalt principles of prox-
imity and good continuity. Additionally, this approach is able to
handle scenes containing several objects, but again one single
closed contour per object is computed.

The use of graph-based representations and techniques for
image processing and analysis has been discussed on [12]. The
authors introduce a full graph-based active vision system able
to solve such tasks as: image segmentation, image perceptual
grouping and object recognition (face and 3-D object recogni-
tion). The system is used to drive an autonomous mobile robot.
Segmentation problem has been solved by using a graph parti-
tion greedy algorithm with superlinear time complexity.

Similarly to graph-based approaches mentioned above, in
this paper, we propose to tackle the contour closure problem
as a graph-related problem. This work is an extension of a
previous work presented in [13]. Improvements in front of that
work are in two key points. First, the current version avoids
user defined parameters, such as the number of iterations during
the filtering stage. Second, the new version of the algorithm is
intended for extracting closed contours, while [13] was only
able to compute a set of open polylines defining the contours.
The next section will summarize some of the approaches pro-
posed in the literature to compute contour closure from range
images’ edge points.

II. PREVIOUS APPROACHES

Edge detection is the first and most important stage of human
visual process as discovered by [14]. Contour extraction is a
common problem within the edge-based approaches (2-D or
3-D). However, so far, it did not get so much attention. Clas-
sically, most of the authors have preferred to develop solutions
for their specific problems. For example, [15] presents an edge
linking algorithm to close a one pixel gap in any one of the four
directions.

Some other works tackle the contour extraction problem by
analyzing the enclosed surfaces [6], [16]; therefore, contour and
region are simultaneously extracted. Reference [6] deals with
the understanding of natural scene from range images; in the
area close to the ending point of an edge, a local analysis of the
depth is performed in order to select an optimal edge dilation di-
rection. [4] brought forward an adaptive approach that extracts
closed contour by applying a process of hypotheses generation
and verification. This algorithm is based on the consideration
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Fig. 1. Examples of some atypical open contour configurations that have
appeared after processing real range images.

that any contour gap can be closed by dilating the input edge
map. Thus, a single dilation operation followed by region ver-
ification is applied until all regions are labeled. The problem
is that, as the dilation is performed in all directions, thin re-
gions are liable to disappear, due to the fusion of the contours
enclosing them.

An extension of the previous approach is presented in [5].
There, the geometry of contours is taken into account in order
to apply the dilation—the dilation process is restricted to
one direction. This direction-guided dilation is applied only
over the ending points of the contours. Direction of dilation
is determined from the last three points connected with the
ending point. Thus, from these four points, one gets an average
direction which will be considered as the direction of dilation.
Since some uncertainty still remains about the direction vector,
it is suggested to include surrounding points to that direction.
Instead of being carried out along a single straight line, the
dilation is applied along a conic region; the apex of that cone
is the ending point of the open contour. This approach can deal
with thin regions. Sometimes, however, considering the last
three segments of an open contour only—the last point plus
three previous ones over that contour—cannot be enough to
obtain the good boundary direction. Normally, this technique
cannot handle most of the possible pathological cases emerging
when real range images are processed (see illustration shown
in Fig. 1). Those problems may appear when final points are
affected by noisy data or when open contours describe curved
shapes; in this last case, the direction vector used for the dila-
tion may not be representative of the boundary direction—in
addition to the noisy data that direction vector is also dependent
on the boundary’s curvature and the edge point density.

Most of the aforementioned techniques are based on the con-
sideration that closed contours can be extracted by dilating the
input edge map and that every contour gap will be closed. It may
be good to deal with the typical open contour but the common
issue of these techniques is to find the good dilation direction in
a general way.
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Fig. 2. (Left) Intensity image (640 x 480). (Middle) Input range image
(640 x 480). (Right) Input binary array of edge points corresponding to the
given range image (11075 points).

III. CONTOUR CLOSURE ALGORITHM

The proposed technique is carried out with no a prior informa-
tion about the object’s surface shape. It treats the contour closure
problem as a graph partitioning one. Assuming that a range
image, together with its corresponding edge point information
are given as input, the proposed technique consists of three con-
secutive stages. First, edge points, represented in a 2-D space, are
triangulated. Then, that triangular mesh is depicted as a weighted
graph where points of the mesh are the nodes and the mesh’s
edges become graph’s links. Weight (or cost) associated to each
edge corresponds to the 3-D distance between the two range
image points connected by thatedge. Second, the minimum span-
ning tree (MST) is computed from the weighted graph. Third, a
postprocessing technique, based on a filtering technique plus a
cost function minimization, generates a single path describing
the region’s boundaries. These stages are described below.

A. Two-Dimensional Triangulation and Graph Generation

Let R(r, c) be a range image with R rows and C columns,
where each array element (r,c¢)(r € [0,R) and ¢ € [0,C)) is
a scalar that represents a surface point of coordinates (z, y, z),
referred to a local coordinate system associated with the range
sensor. Additionally, the corresponding edge points’ informa-
tion is given as a binary array B(r, ¢)—edge points are labeled
with a 1, while nonedge points with a 0. These points are sup-
posed to be previously computed by some edge-based range
image segmentation algorithm [see illustration in Fig. 2 (right)].

The aim at this stage is to find the best connectivity between
edge points. A simple and easy approach could be to start with a
fully connected graph; however, in order to speed up further pro-
cessing, a partially connected graph is chosen. Having in mind
that the partially connected graph should connects edges linking
every couple of nearest neighbors, a 2-D Delaunay triangulation
algorithm has been finally adopted.

Let P = {B; = (ri,c;)|i = 1,...,n} be a set of edge
points in the binary array B(r,c), its 2-D triangular mesh
is a piecewise linear partition consisting of triangles con-
nected along their edges. Formally, a 2-D triangular mesh
M is a set {P,E}, where P = {By,...,B,},B; € R? is
a set of vertex and F is a description of the mesh topology,
E = {(B;,B;)|i,j =1,...,n,i # j}. The triangular mesh M
is a Delaunay triangulation of P if and only if the circumcircle
of any triangle of M does not contain a point of P in its interior
[17]. In other words, the Delaunay triangulation of the input
edge points P will connect every point with its nearest, as we
were looking for.

Finally, that triangular mesh is now considered as a par-
tially connected weighted planar graph G = {P,E,};
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Fig. 3. (Left) 2-D Delaunay triangulation of a given set of points tree connect-
ing all the input points. (Right) The MST computed from the 2-D Delaunay
triangulation.

every edge is associated with a cost value computed
as the 3-D distance between the range image points
linked by that edge, {E, = (B;,Bj,w;;)|(wi; =
diSt(R(T“Cz),R(Tj,cj)))/\(z',j =1,...,n,0# j)}.

B. Minimum Spanning Tree Generation

During this stage, the shortest—cheapest—path linking all
the edge points will be computed. Problems such as these have
been called in the literature as the traveling salesman problems.
The MST of G is the acyclic subgraph of G that contains all the
nodes and such that the sum of the costs associated with its edges
is minimum. The MST of a graph G, defined by m edges and n
vertices can be efficiently computed in O(m logn) by applying
Kruskal’s algorithm [18]. In the current implementation, due to
the fact that GG is a 2-D Delaunay triangulation of the n inputedge
points, but not a fully connected graph, the cost can be bounded
by O(nlogn), assuming that the average number of edges is
proportional to the density of points [19]. Notice that the MST of
the Delaunay triangulated input data points gives the same result
than if it were computed over a fully connected graph of those
input data points. In other words, as it has been stated in [20], the
MST of a set of points P (in any dimension) is a subgraph of the
Delaunay triangulation. This can be briefly proved as follow. Let
T be the MST of a given set of points and w(T") its corresponding
total cost; let p and ¢ be any two points such that pq is an edge of
T'. Suppose to the contrary that pq is not an edge in the Delaunay
triangulation. This implies that there is no empty circle passing
through p and ¢, and in particular, the circle whose diameter is
the segment pq contains another point, let call it r (see illustration
in Fig. 3). The removal of pq from the MST splits the tree into
two subtrees. Assume without loss of generality that r lies in the
same subtree as p. Now, remove the edge pq from the MST and
add the edge 7q in its place. The result will be a spanning tree
T’ whose cost can be easily computed from w(7’) as: w(1") =
w(T)—7Tq+pq < w(T);thelastinequality follows because pgis
the diameter of the circle, implying thatpg < 7¢. This contradicts
the hypothesis that 7' is the MST, completing the proof.

Fig. 4 (top right) shows the MST corresponding to the trian-
gular mesh [Fig. 4 (top left)] computed from the edge points
presented in Fig. 2 (right); enlargements are presented in Fig. 4
(bottom). As expected, the generated tree goes along edge points
unveiling regions’ contours. In addition, the algorithm generates
several short branches which are removed during the following
stage. Finally, as mentioned above, the MST is the acyclic sub-
graph of GG so no closed contours will appear at this stage. These
open contours are easily detected and connected during the next
stage.
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Fig. 4. (Top left) 2-D triangular mesh of the binary edge map (20387
triangles). (Top right) Resulting MST (11 074 edges). (Bottom left)
Enlargement of a 2-Dtriangular mesh section. (Bottom right) Enlargement of
the MST corresponding to the same region.

C. MST Filtering and Contour Closure

The resulting MST can be understood as a single polyline
linking all the input points (differently than in [13] where several
polylines, defining open contours, were computed). As men-
tioned above, several short branches, connected with the main
path, were generated from the MST. They belong to information
redundancy and noisy data, mainly in jump edge regions. The
aims at this stage are two; first, to remove those short branches
(see enlargement shown in Fig. 4 (bottom right)), and, second,
to close open contours.

In order to perform the removal process, and by using math-
ematical morphology concepts, a kind of opening algorithm
has been implemented. This algorithm consists of performing
an iterative erosion process followed by a dilation stage ap-
plied as many times as the erosion requires. The opening al-
gorithm assumes segments of the polyline—i.e., edges from the
graph—as basic processing elements (like pixels in an intensity
image). Those segments linked from only one of their defining
points—so-called end segments—are removed during the ero-
sion stage. This stage is applied » times and at each iteration, all
the end segments of that configuration are removed. The number
of iterations depends on the input binary edge map. On the con-
trary with [13], where n was a fixed value (ten iterations), in the
current implementation n is automatically computed according
to the difference between removed elements at each iteration:
A = Reg) — Rei—1) (Re(y) represents the elements removed
in the iteration t). The erosion process ended when that differ-
ence (A) is null in at least 7 consecutive iterations, 7 was set
to four in the current implementation. Although in the current
version we have to define the threshold value 7, we consider
that it is more appropriate than before hand defining the number
of iterations [13]. We could assume that after 7 consecutive it-
erations without changes in the number of removed edges, the
erosion process has finished removing short branches and has
arrived to a stability point where edges belonging to the main
path are being processed. After ending the erosion process, n
dilations are performed.
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Fig. 5. (Left) Illustration of the opening algorithm. (Right) Removal stages
used during the dilation process.

Fig. 6. (Left) MST filtered by the opening process (9352 edges).
(Right) Enlargement of the same region presented in Fig. 4 (bottom).

Dilations are carried out over end segments left by the ero-
sion process. It consists of putting back the segment connected
with each one of the end segments present at each iteration. The
number of dilations is the same than the number of erosions.
Thus, in order to perform the dilation process, it is necessary to
store previous stages of those end segments left by the erosion
process. Removed points that are not recovered during the di-
lation process are also removed from the binary array B(r, ¢).
Fig. 5 (left) shows an illustration of the proposed opening al-
gorithm while Fig. 5 (right) illustrates the data structure used
during the erosion and dilation stages. Experimental results with
the MST presented in Fig. 4 (top right) are presented in Fig. 6
(left). An enlargement of the resulting contours, obtained after
the opening stage, is given in Fig. 6 (right).

Finally, after removing short branches, the last stage of the
algorithm focuses on detecting and closing open contours. This
is the second improvement in front of [13], where only a set of
open polylines were computed but not closed contours. Open
contours were originated by construction, due to the fact that
a MST is an acyclic subgraph so that it does not contain any
closed contours. First, edge points only connected once are de-
tected—they are easily identified from end segments left by the
opening algorithm. For each one of those end points, a list of
candidate points is extracted from the binary array B(r, ¢). Fi-
nally, the point with a minimum linking cost is chosen to close
that open contour. These stages are further detailed below.

Given an end point B; ;), defining an end segment, the
set of candidate points to be linked with B(; ;) are selected
by means of an iterative process over a dynamic window
centered at that point. Initially, all those edge points, from the
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Fig. 7. (Left) Final contour after the closure stage—minimum linking
cost—(9 426 edges). (Right) Enlargement showing that the large gap presented
in previous figures has also been closed.

binary array, contained in the window By, ) are chosen as
candidates: (m = {i,i+1,...i%s,...;ixt},n =
{j,dgx1,...5%s,...,5 £t} ¢ = s 4+ 7 and
{(s<m<t)V(s<n<t)}); during the first itera-
tion, s is set to zero, then after each iteration, s is increased by
the user defined value 7; threshold 7 depends on the density of
edge points in the binary array, in the current implementation
T was set to four.

After extracting the set of candidate points a linking cost,
representing the cost of connecting each one of those candidates
with the given end point By; ), is computed according to the
following expression:

_ diSth(i,j),(u,v)

Cost(i, ), (u,v) (1

»(w,0)

dist3D represents the 3-D distance between the corresponding
range image points [R(z, j), R(u,v)] while PathLength mea-
sure the length of the path—number of edges—Ilinking those
two points. In case of no candidate points were extracted from
the current window or the PathLength values from those can-
didates to the given end point were equal or smaller than ¢, the
size of the dynamic windows is increased by 7, so that s and ¢,
and the process starts again by extracting a new set of candidate
points. The new set of candidate points does not contain those
previously studied due to the fact that the new window is only
defined by the outside band. Otherwise, the point with lowest
linking cost is chosen to be linked with the point B; ;).

The philosophy of the proposed cost function is to link an
end point with its nearest edge point in the 3-D space (dist3D),
avoiding those points already connected in its neighborhood
(PathLength). Fig. 7 presents the final result after closing all
open boundaries, by linking end points with their corresponding
minimum linking cost points. Although a regular sampling of
edge points is expected to be given, notice how the big gap pre-
sented in Fig. 6 (right) has been also correctly closed.

IV. EXPERIMENTAL RESULTS

Closed contour extraction is a task highly dependent on the
quality of detected edge points. Therefore, in order to test the pro-
posed approach, independently of the quality of the given edge
points, three different test methodologies have been proposed.
First, experimental result from synthetic scenes, containing a
single object each, will be presented. These synthetic range
images together with their corresponding edge points (uniformly
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Fig. 8.
single object (synthetically generated) is processed. (Left) 2-D triangular mesh
(843 triangles). (Middle) MST of the previous triangular mesh (597 edges).
(Right) Final result (600 edges).

Different steps of the proposed algorithm when a scene containing a

sampled through the object’s edges) are considered as inputs
to the system. Second, experimental results by using the same
synthetic scenes mentioned above but now adding noisy data
points are presented. Finally, the proposed approach is applied to
real range images; this last test includes several real range images
from two different range scanners. Edge points were computed
by means of two edge-based range image segmentation tech-
niques [4], [13], in addition by using different approximation
errors—approximation error defines the edge points’ density.

A. Synthetic Data Points

Synthetic range images defined by 480 x 640 points have
been used. From those synthetic range images, uniformly
distributed edge points were computed according to the surface
orientation discontinuities. Fig. 8 shows results from different
algorithm’s steps, when a scene containing a single object is
processed. Fig. 8 (left) displays the triangular mesh gener-
ated by means of the 2-D Delaunay triangulation algorithm.
Fig. 8 (middle) presents the computed tree, together with a
sketch of the tree’s branches. Finally, during the postprocessing
stage, open contours (A, B, and C in the illustration) were
closed by using the proposed closing approach (minimum
linking cost). In this particular example, there are no short
branches to be removed—noisy data or redundant informa-
tion—hence, the opening morphological operator only consists
of the first five iterations (five erosions and five dilations).

B. Synthetic Data Points Plus Noisy Data

The aim at this stage is to test the proposed technique in pres-
ence of noise. Noisy data were randomly introduced in the bi-
nary array (edge points); the corresponding 3-D values were ex-
tracted from the range image. Additionally, some edge points
are removed assuming they are not correctly extracted by the
segmentation algorithm. Different synthetic range images have
been considered. Fig. 9 presents results obtained after adding
noisy data points, and removing some edge points, to the syn-
thetic range image presented in Fig. 8. Fig. 9 (top) contains
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Fig. 9. Scene presented in Fig. 8 after adding noisy data points and
removing some edge points. (Left) Triangular meshes of the input data points.
(Middle) Resulting MST, short branches are generated by noisy data points
(enlargements show open boundaries). (Right) Final result after filtering noisy
data points and closing open boundaries.

triangles

6.5% of wrong edge points (noisy data plus removed), while
Fig. 9 (bottom) contains 9.4% of wrong edge points. Noisy
data points generate short branches [Fig. 9 (middle)] that are
removed during the opening stage. Fig. 9 (right) presents final
results after filtering MST and closing open boundaries. Some of
those open boundaries (see enlargement in Fig. 9 (top middle))
cannot be closed by those techniques only based on dilation
process—Section II.

C. Real Range Images

Finally, the proposed approach has been tested with sev-
eral real range images obtained with the K2T structured light
sensor—from the Vision lab data base at the University of South
Florida (http://marathon.csee.usf.edu/range/DataBase.html)—
and with the OSU’s Minolta 700 range scanner (http://sample.
eng.ohio-state.edu/~sample/data/3DDB/RID/minolta).  Edge
points were computed by using the code presented in [4] and
[13]; the difference between them is that [4] not only deals
with rows and columns but also diagonals. Edge points were
computed at different approximation errors. The range image
used through the paper, to illustrate the different stages of
the proposed technique, consists of 480 x 640 points. Fig. 2
(right) shows input edge points (11075 points), while the cor-
responding triangular mesh and MST are presented in Fig. 4.
The triangular mesh contains 20387 triangles, while its MST
is defined by 11074 edges. Notice as the low density of points
in the middle of the image (enlargement area) produces a gap
by the MST algorithm. This gap is closed during the last stage,
just after removing noisy points. Again, techniques based on
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10,836 points “ 8,611 edges

= 13,981 points

Fig. 10. (Left) Edge points computed at different approximation errors.
(Right) Final representations corresponding to those edge points.

edge dilation are not able to close gaps so big like that. After
removing short branches, by means of the proposed opening
algorithm, those couples with minimum linking cost are con-
nected. This final result is presented in Fig. 7 and it consists
of 9426 edges. Fig. 10 presents experimental results with the
same range image, but after modifying the edge points’ density
(by increasing and reducing the approximation error during the
edge point extraction, [4] and [13]). Fig. 10 (left) presents input
edge points while Fig. 10 (right) shows final results.

Fig. 11 presents three experimental results obtained after
processing a range image defined by 480 x 640 points. Input
edge points (computed at different approximation errors) are
presented in Fig. 11 (left), while the computed closed contours
are shown in Fig. 11 (right). Another example, from the same
database, is presented in Fig. 12. The original range image is
defined by 480 x 640 points (top left), its corresponding inten-
sity image is presented in Fig. 12 (top right). Input edge point
representations, computed at different approximation errors, are
presented in Fig. 12 (middle left) and (bottom left). They were
computed with the code presented in [4], while in the previous
examples both codes were alternatively used ([4] and [13]). Final
results are shown in Fig. 12 (middle right) and (bottom right).

Fig. 13 presents experimental results by using range images
from the OSU’s Minolta 700 range scanner. These range images
are defined by 200 x 200 points. Edge points [Fig. 13 (middle)],
computed by using [13] are used as input to the proposed algo-
rithm. The resulting closed contours are presented in Fig. 13
(right).

Finally, a comparison between the proposed technique and
the one presented in [4] has been carried out. The objective
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Fig. 11.  (Left) Input edge points computed at different approximation errors.
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Fig. 12. (Top) Original range image (480 x 640 points) with the correspond-
ing intensity image. (Middle left) Input edge points (9481 points).
(Middle right) Closed boundaries extracted with the proposed technique
(6 194 points). (Bottom left) Input edge points (8 941 points). (Bottom right)
Final result (6 082 points).

of the comparison has been to compute the final represen-
tation by using the same input (edge points). Fig. 14 (left)
presents different input edge point representations computed
by [4]—they were also used as input by the contour closure
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Fig. 13.  (Left) Original range images (200 x 200 points). (Middle) Input edge
points, computed with [13]. (Right) Final closed boundaries computed with the
proposed technique.
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Fig. 14. (Left) Input edge points (computed from [4]). (Middle) Regions
corresponding to the given inputs, computed with the region-based approach
presented in [4] (not only the edge points presented at the left are considered
as input but also the corresponding range image’s points are needed in order
to compute surfaces’ parameters). (Right) Final result computed with the
proposed technique (only edge points are considered as input).

algorithm presented in [4] and by the algorithm proposed in
this paper. Fig. 14 (top left) corresponds to the highest density
of edge points (8946 points), while Fig. 14 (middle left) and
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(bottom left) contain a lower density of edge points, 7394
and 6 564 points, respectively. Regions computed with [4] are
presented in Fig. 14 (middle column), while closed contours
generated by the proposed technique are presented in Fig. 14
(right). Additionally, CPU time required to compute each one
of these final representations is also provided. Notice that the
objective is to compare the final representation computed by
each algorithm when the same set of edge points are used as
inputs. Remember that the proposed technique is not focused
on edge point generation but in closed contour extraction,
independently of the input quality. Another point that de-
serves to be highlighted is the fact that the results presented
in Fig. 14 (middle column) were computed by using a kind of
region-based algorithm [4] (see Section II for further details).
On the contrary, the technique proposed in this paper only takes
into account the edge points given as input; any information
concerning the surface shape is required. This explains why
the CPU processing time decreases when the amount of edge
points contained in the input also decreases (Fig. 14). Finally,
no careful tuning of the user-defined parameters required by
[4] has been performed; in other words, the results presented in
Fig. 14 (middle column) were not intentionally computed. They
were generated by using the tuning provided in the code of [4].

V. CONCLUSION

This paper presents a graph-based approach to deal with the
classical contour closure problem. This problem can be under-
stood as the last stage of edge-based range image segmentation
techniques. The proposed technique only requires the informa-
tion about edge point positions, no other assumption about the
enclosed surfaces has to be considered. Assuming a range image
with its corresponding edge points are given as inputs, the pro-
posed technique consists of three stages. First, a 2-D triangular
mesh of those input edge points is generated. Next, the corre-
sponding MST of that partially connected graph is obtained. Fi-
nally, a postprocessing stage removes short branches and con-
nects open boundaries. Experimental results with several range
images and comparisons with a previous technique show the
performance of the proposed technique when different inputs
(edge points) are considered.
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