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Abstract—This paper presents a simple distance estimation for
implicit polynomial fitting. It is computed as the height of a sim-
plex built between the point and the surface (i.e., a triangle in 2-D
or a tetrahedron in 3-D), which is used as a coarse but reliable
estimation of the orthogonal distance. The proposed distance can
be described as a function of the coefficients of the implicit poly-
nomial. Moreover, it is differentiable and has a smooth behavior.
Hence, it can be used in any gradient-based optimization. In this
paper, its use in a Levenberg–Marquardt framework is shown,
which is particularly devoted for nonlinear least squares problems.
The proposed estimation is a generalization of the gradient-based
distance estimation, which is widely used in the literature. Experi-
mental results, both in 2-D and 3-D data sets, are provided. Com-
parisons with state-of-the-art techniques are presented, showing
the advantages of the proposed approach.

Index Terms—Curve/surface fitting, geometric distance estima-
tion, implicit polynomial (IP), residual error minimization.

I. INTRODUCTION

I MPLICIT polynomials (IPs) have been used in the com-
puter vision field because they are advantageous compared

with other representations. First, they are a compact way to rep-
resent a given data set, i.e., in a 2-D/3-D space; second, since
they do not require any parametrization, they can be obtained
without a prior knowledge about the data point spatial distribu-
tion or local neighborhood relationship. They are very attractive
particularly when compared with other kinds of data represen-
tations that need to know the spatial data distribution (e.g., tri-
angular meshes [1], [2], B-spline, or parametric active contours
[3], [4]). IP compactness has been also an attractive point to be
exploited when a high-level reasoning is needed (e.g., object
recognition [5], object modeling [6], [7], reverse engineering,
etc.).
In general, IP representations are obtained through a fitting

process. Two different approaches have been proposed in the
literature to find the “best” IP fitting the given data set, i.e.,
1) algebraic and 2) geometric; their difference depends on the
criterion used to define “best” (i.e., accuracy versus speed). The
next section briefly details these two approaches.
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This paper has two main contributions. The first contribution
is the estimation of the orthogonal distance (Euclidean) through
a simple approach, which has been initially proposed for the
quadratic IP case [8], [9]. The advantage of the proposed estima-
tion is twofold. First, it provides a more accurate value than cur-
rent approaches. Second, it can be efficiently computed and run
in real time. The second contribution is based on the use of such
an estimation in a nonlinear minimization framework, i.e., the
Levenberg–Marquardt algorithm (LMA). The rest of this paper
is organized as follows. Section II describes the problem and in-
troduces related work. The proposed technique is presented in
Section III. Section IV gives the experimental results and com-
parisons. Finally, conclusions are presented in Section V.

II. PROBLEM FORMULATION AND RELATED WORK

The two major approaches in implicit polynomial fitting,
namely, algebraic and geometric, are briefly presented here
to show the motivations of the proposed approach. IP fitting
aims at finding the best polynomial that describes a given set
of points by means of its zero set. In other words, the value of
the polynomial should reach zero at the location of the given
data points. Let be an implicit polynomial of degree
represented as

(1)

or in a vector form

(2)

where is the column vector of
polynomial coefficients having as many components as the
combination of taken three at a time without repetitions,
i.e., ; and is the column vector of
monomials, i.e., ;
the fitting problem consists of first defining a criterion, or
a residual error, for measuring the closeness of zero set

to the given data set, and then mini-
mizing this criterion to find the best coefficient vector .
Let be the set of given data points with

coordinates (picked up from object boundaries in 2-D or sur-
faces in 3-D); then, the fitting problem is defined as

(3)

where stands for polynomial coefficient vector ,
where the expression attains its minimum value; there are
two different approaches to find that best coefficient vector
as detailed next.
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A. Algebraic Approaches

Since the implicit representation is used, a point is on the
surface if and only if the output of in (2) is zero at the given
point. It leads us to define the following optimization criterion,
which is known as algebraic distance:

(4)

This optimization problem has the trivial answer ,
giving zero as a minimal value. In order to avoid the trivial an-
swer, a normalization constraint must be imposed. For example,
the two classical normalization constraints used in the litera-
ture are 1) forcing the optimum vector to have a unit length
(i.e., ) or 2) having a unit constant coefficient (i.e.,

). More elaborated constraints have been also proposed;
for instance, [10] imposes the mean value of gradient length to
be unit (i.e., ). Due to simplicity,
the second normalization constraint is used in this paper, and the
constant element in monomial, together with its corresponding
coefficient, is removed in this case. This minimization problem
is also equivalent to the overdetermined system of equations

(5)

where is the monomial matrix (every row contains monomial
vector computed at the given point), and is
a column vector containing 1 in every entry. Regardless to
these interpretations, the optimal solution could be algebraically
computed through least squares solutions

(6)

The noniterative framework of algebraic approaches is an
appealing feature for many applications. In spite of that, two
common problems inherent to algebraic approaches are: 1) com-
putational instability of the zero set and 2) lack of geometric in-
formation of the data in this procedure. For instance, focusing
on the instability problem, Helzer et al. [11] analyzed the sensi-
tivity of the zero set to small coefficient changes and minimized
an upper bound of the error in order to have amore stable output.
Keren and Gotsman [12] tried to constrain the surface param-
eter space in order to obtain a geometrically reasonable output.
Tasdizen et al. [13] proposed adding some geometric concept
inside the optimization problem. They try to maintain the esti-
mated gradient value at each data points while they fit the data.
The 3L algorithm proposed by Blane et al. [14] is a linear

least squares polynomial fitting that consists of generating two
additional level sets, namely, and , from given data
set . These two additional data sets are generated so that
one is internal and the other is external, and they are placed
at a distance from the original data along a direction that
is locally perpendicular to the given data set. Hence, the 3L al-
gorithm incorporates local geometric information resulting in
a more stable solution. Considering the three level sets, i.e.,

and , (5) could be represented by using a block
matrix and a block column vector

(7)

where , , and are the matrices of monomials
calculated in the original, inner, and outer sets, respectively; and
are the corresponding expected values in the inner and outer

level sets. The distance metric proposed by the 3L algorithm is

(8)

Then, the least squares solution for is obtained as

(9)

where denotes the pseudoinverse of . Aiming at im-
proving the accuracy of the 3L algorithm, [15] proposes an al-
gorithm, still in the algebraic category, which relaxes the addi-
tional constraints (7) so that the values are independently
adjusted for every single point.

B. Geometric Approaches

In this case, the distance between a point and the surface is
usually defined as the shortest distance between this point and its
correspondence on the surface (i.e., orthogonal distance). Thus,
in the general case of geometric methods, we have the following
optimization problem:

(10)

where each is the correspondence of on the surface. Here,
we consider the norm to calculate distance , and conse-
quently, a nonlinear least squares optimization must be solved.
Theoretically, both unknown surface parameters and the

correspondences must be simultaneously found, but practically,
this problem is tackled by first assuming an initial surface,
and then refining it until convergence is reached. Therefore,
the fitting problem is split up into two stages, i.e., 1) point
correspondence search and 2) surface parameter refinement.
The first stage deals with the summands in (10), whereas the
second one concerns about (3).
Point Correspondence Search: Regarding the first stage, two

different strategies have been proposed in the literature, i.e., 1)
finding the shortest distance by solving a nonlinear system (e.g.,
[16] and [17]) and 2) computing an estimation of the shortest
distance (e.g., [10], [18], and [19]).
In [16], Ahn et al. proposed a method to find the correspon-

dence (or foot point) on the surface, which is based on its geo-
metric properties. This foot point is somewhere on the surface
satisfying . Furthermore, the line connecting the data
point with the foot point must be parallel to the at the foot
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point, where is the gradient operator. In other words, we must
have . Merging these two conditions, the fol-
lowing system of equations must be solved:

(11)

This equation could be solved by the Newton–Rophson algo-
rithm for nonlinear system of equations. Although the fitting
method in [16] is precise enough, and even covers some well-
known methods in the literature such as [10] and [20], it is quite
time consuming due to the iterations.
In [17], the orthogonal fitting is extended for general error

functions such as the and norms of the residual error in-
stead of the common norm. This highlights the importance of
the error function selection for the fitting process. The authors
present the fitting algorithm as an evolutionary process of a sur-
face along its normal direction. They discuss and compare their
approach with other common error functions, including the al-
gebraic types.
Instead of computing the shortest distance through (11), [19]

proposes approximating it, avoiding iterative approaches as a
result. In that work, which is an extension of [18] for more
general surfaces, first, a normal vector for each point is
computed by using the principal component analysis in a small

neighborhood centered at each point [21]. In other words,
is defined as the eigenvector of local co-

variance matrix associated with the smallest eigenvalue

(12)

where is the vector showing the mean po-
sition of the neighboring points in the region. Finally,
is computed as the intersection of the surface with a
line passing through and parallel to , i.e.,

(13)

The intersection is used as an approximation for the foot point
in the geometric distance (10).
In [10], Taubin proposes an approximation for (10), which is

based on the first-order Taylor expansion of the distance func-
tion. The distance could be computed through normalizing the
algebraic distance by the gradient norm

(14)

This approximated distance is used in an iterative weighted least
squares method and in a nonlinear optimization framework. In
addition, a new constraint is imposed on the coefficient vector,
which is based on the data points and on the coefficients. The
approximated distance proposed by Taubin [10] may not reach
the correspondence point lying on the zero set, which could af-
fect the final fitting result. In fact, instead of considering the zero
set, the level set where the point is lying on is affected by this
optimization process. Finally, every point forces its level set to
move in order to reach a lower accumulated distance.

Fig. 1. Simplex used for estimating the geometric distance: (a) 2-D case and
(b) 3-D case.

Surface Parameter Refinement: As a result from the previous
stage, the set of points corresponding to every in
the given data set has been found. Afterward, it must be fol-
lowed by an optimization framework to refine the surface pa-
rameter. Although different optimization algorithms could be
used (e.g., genetic algorithm (GA) [19], trust region [22], quasi-
Newton method [23], and particle swarm [24]), in this paper,
the LMA [25] has been chosen since it exploits gradient infor-
mation provided by the proposed distance estimation. LMA, in
some sense, interpolates between the Gauss–Newton algorithm
and the gradient descent (more details about the LMA are given
in Section III-B).

III. PROPOSED APPROACH

This paper proposes a geometric approach to tackle IPs fit-
ting through an estimation of the orthogonal distance. In spite
of being focused on the geometric framework, the polynomial
coefficients are first initialized by using an algebraic-based al-
gorithm like the 3L algorithm [14]. This initialization process
is intended for speeding up the convergence of the algorithm;
other strategies, for instance, starting with the smallest bounding
circle/sphere, can be used as well. The proposed geometric ap-
proach consists of two stages. First, the residual error from the
given set of points to the initial IP coefficients is estimated by
means of the proposed approach. Then, the IP coefficients are
accordingly updated through LMA. The two stages are repeated
until convergence is reached; they are detailed next.

A. Approximated Residual Error

The first contribution of this paper lies in a direct approach to
estimate the orthogonal distance, which works as follows. First,
a simplex is constructed through each point and its intersections
along the coordinate axis. A simplex is a triangle in 2-D and
a tetrahedron in 3-D, as depicted in Fig. 1(a) and (b), respec-
tively. Without loss of generality, the 3-D case is considered
here. In this case, having constructed the tetrahedron, its height
segment is considered as an approximation of the geometric dis-
tance. This tetrahedron is defined by the given point and three
intersections satisfying , ,
and , where is the given
point. In the particular case tackled in this paper, since the fitted
curve/surface is defined by the implicit polynomial (1), the inter-
secting points are found by computing the closest root of three
1-D functions to the data point.
Once the intersecting points have been obtained, a direct for-

mula is used to estimate the geometric distance. Let , , and
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Fig. 2. Contour of constant distance for (a) orthogonal distance; (b) algebraic distance; (c) [10]; and (d) proposed distance estimation.

be the three intersections with the current surface that create a
triangular planar patch [see Fig. 1(b)]. Since the volume of the
tetrahedron is defined as the product of the area of each base by
its corresponding height, three sets of expressions lead us to the
same value. Hence, the height of the tetrahedron could be
easily computed from the following relationship:

(15)

where refers to the cross-product operator between two vec-
tors. Similar relationship can be obtained in the 2-D case by
using the triangle area instead of the tetrahedron volume. More
details can be found in [9].
As presented above, in order to estimate the distance, the in-

tersections of the curve/surface along the coordinate axis must
be found first. In the quadric case, these intersections can be di-
rectly found [9]. However, for higher degree cases, an iterative
method should be used to find the roots. In the current imple-
mentation, Newton’s method has been used [26]. In the case
that the first iteration is considered, an approximation of the
root can be obtained through the first-order Taylor expansion.
For instance, the expansion along the axis can be expressed
as follows:

(16)

where corresponds to the partial derivative in the -direction,
and is the intersection of the surface with the line passing
through in the -direction. Hence, segment can be easily
estimated as

(17)

Considering similar approximations for the other two intersec-
tions, the proposed distance for point could be approximated
as follows:

(18)

thus, the proposed distance is a generalization of Taubin’s
method when the intersections are approximated.
The preciseness of the proposed distance is presented for two

examples in Fig. 2 and compared with other approximated dis-
tances, as well as with the orthogonal one. The first row of the
figure shows the isocontours1 of the set ,
which consists of two intersecting lines, and the second row
shows the isocontours of a regular curve

. As illustrated in the last two columns, ourmethod
and Taubin’s similarly behave in the linear case (when the Jaco-
bian matrix is linear with respect to the point coordinates). In the
second example, our method outperforms compared with other
approximations and has a quite similar result to the isocontours
obtained by the orthogonal method.

B. Implicit Polynomial Fitting

As a result from the previous stage, the distance from each
single data point to the current curve/surface has been found.
Accumulation of all these distances provides a good criterion
for curve surface fitting

(19)

1Contours with the same distance from the zero set.
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This distance is in the least squares formwhere each term is non-
linear with respect to coefficient vector . It provides a straight-
forward method to approximate the orthogonal distance. Hence,
it can be used in an appropriate optimization algorithm to find
the best parameters describing the given set of points. We al-
ready used this distance in a RANdom SAmple Consensus-
based framework to find the quadratic surface parameters [9].
Other optimization techniques such as GA [19] or quasi-Newton
method [23] have been already used in surface fitting.
This paper not only proposes a simple and fast distance es-

timation but also, as a second contribution, it shows how this
estimation can be used in a nonlinear framework. In our im-
plementation, the LMA has been used [25] to optimize the dis-
tance (19) with respect to the curve/surface parameters. LMA is
specifically designed for nonlinear functions in the least squares
form, which is the case in (19). It starts from an initial coefficient
vector , obtained by some algebraic fitting technique (as
aforementioned, the result from the 3L algorithm has been used
as initialization). LMA updates these parameters iteratively as
follows:

diag (20)

where is the refinement step; represents the refine-
ment vector for the surface parameters; is the damping
parameter in LMA; is the Jacobian matrix of ; and
vector corresponds to distances

, whose norm must be minimized. Pa-
rameter refinement (20) must be repeated until convergence
happens.
Each iteration of LMA contains two stages, namely, 1) dis-

tance estimation and 2) Jacobian matrix computation. In the first
stage, all the intersections along the coordinate axis must be
found. For this purpose, Newton’s method is applied to find the
root of the parametric function , which is a 1-D func-
tionwith respect to . Direction vector is set to ,

, and for each axis. Having com-
puted all the intersections along the coordinate axis, the terms

, , and , and consequently the distance (15), can be
estimated. As aforementioned, it should be noticed here that if
we stop the Newton’s method after one iteration, the proposed
distance will be easily computed through (18), which is the same
as [10].
In order to handle LMA, the value of the functional (19) and

its partial derivatives, which are used to build the Jacobian ma-
trix, should be provided. These values show the sensitivity of
each in (15) with respect to parameter vector . The Jacobian
matrix could be directly derived through the differentiation rules
as follows:

(21)

where is the differentiation operator with respect to
parameters. Since the intersection , , and lies on the surface,

, , , and can be implicitly expressed as a
function of the surface parameters. In order to calculate each

Fig. 3. Convergence criterion defined as the deviation between the IP normal
and the local normal at each point.

TABLE I
PARAMETER SETUP

Fig. 4. Fitting a set of points from an ellipse. (a) Without noise: (dotted line)
algebraic and (solid line) proposed methods. (b) Noisy data case: (dotted line)
the algebraic approach misses the elliptic structure, whereas (solid line) the pro-
posed approach reaches a good result.

term of (21), the implicit differentiation rule must be used for
each intersection. For instance, for a given point , term
is computed just by considering its -component, i.e.,

and its partial derivatives as follows:

(22)

where is the th monomial component calculated in the
intersection. Term can be expressed based on the inter-
sections, as mentioned in (15). Then, its partial derivatives can
be computed based on the other single terms.
Having estimated the geometric distance (15) and its Jacobian

matrix through (21), the LMA iterates equations in (20) until
convergence is reached. In this paper, a convergence criterion
has been defined using the deviation between the IP normal and
the local normal at each point (see illustration in Fig. 3). This
criterion, on the one hand, is easy to be computed, and on the
other hand, it is robust enough to be used with different geome-
tries. Note that the local normal at each data is already computed
during the initialization stage (the 3L algorithm). Therefore, the
only required computation is regarding the angle estimation

(23)

Additionally, since is monotonic, just the
absolute value of the inner expression, without calculating the
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Fig. 5. Two-dimensional contours fitted by (first and second rows) fifth- and (third, fourth, and fifth rows) sixth-degree IPs’ results from (a) 3L algorithm, (b)
[10], (c) proposed approach, and (d) [16], which is used as a ground truth. AFE shows the accumulated fitting errors. The fourth row shows a case where [16] stops
due to the maximum iteration criterion.

cosine inverse, is considered. Therefore, the criterion used for
measuring the goodness of the current fitting result is

(24)

where is the number of points in the original data set. LMA
iterates while (24) decreases more than a user-defined threshold

or a maximum number of iterations is reached.

IV. EXPERIMENTAL RESULTS

The proposed method, which belongs to the geometric fitting
category, is implemented and compared with the most important
methods in the literature, both algebraic and geometric. The re-
sults presented here are evaluated using the fitting error (FE)
computed for every single points with [16]. It is used to ob-
tain a quantitative criterion for comparison, which is referred to

Fig. 6. Fitting two concentric ellipses. (a) Result from the 3L algorithm.
(b) Result from the proposed approach.

as accumulated FE (AFE) where AFE FE . In all the
cases, the given data points are centralized and scaled between

. The parameters of initialization (3L algorithm), opti-
mization (LMA), and stopping criterion are empirically set up,
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Fig. 7. Synthetic data sets fitted with the proposed approach.

as presented in Table I. The same initialization and stopping cri-
terion have been used once the proposed approach is compared
with other approaches.
In the 2-D case, different sets of points picked from quadric

contours sampled with nonuniform distributions have been
fitted with the proposed approach and compared with other
approaches. Fig. 4(a) depicts the result of the proposed method
when a nonuniformly distributed 2-D data set is fitted. Both
the algebraic and proposed methods converge to a similar
result, but problems arise when noise is added to the points.
Fig. 4(b) highlights the robustness of the proposed method to
noise, whereas the algebraic one misses the elliptic structure
of the data and fits the patch as a split hyperbola. Fitzgibbon
et al. [27] propose a fitting method just for 2-D elliptic cases
based on algebraic approaches. From this simple example, one
can understand the hardship for algebraic methods when the
function space is bigger than the quadratic one.
The proposed approach is also implemented for fitting higher

degree IPs. Fig. 5 shows 2-D contours fitted by fifth- and sixth-
degree IPs (depending on the shape complexity) using the 3L
algorithm [see Fig. 5(a)], the approach proposed in [10] [see
Fig. 5(b)], the proposed approach [see Fig. 5(c)], and a nonlinear
orthogonal-distance-based approach [16] used as a ground truth
[see Fig. 5(d)]. The fitting error, computed over the whole set
of points with [16], is used as a quantitative criterion for com-
parison. In all the cases, the accuracy obtained with the pro-
posed approach considerably improves the one obtained with
the 3L algorithm and, in most of the cases, gives better results
than [10]; it is comparable (in one case better since the stopping
criterion has been reached, see fourth row) to the results ob-
tained when the nonlinear approach is used. Although out of the
scope of this paper, it should be mentioned that in the 2-D case,
the proposed approach is about 10 times faster than [16]. Fi-
nally, another challenging 2-D shape defined by two concentric
ellipses has been fitted by a fifth-degree IP using the proposed

TABLE II
SYNTHETIC DATA SET: AFE CORRESPONDING TO THE ILLUSTRATIONS

PRESENTED IN Fig. 7

Fig. 8. Solid surface representing a fourth-degree IP; wire frame is used to
visualize given data points. (a) IP obtained from the 3L algorithm. (b) Result
from the proposed approach (note the similarity between the wire frame and the
surface from the computed IP).

approach; Fig. 6(a) shows the result from the 3L algorithm used
as initialization of the proposed approach. The final result is de-
picted in Fig. 6(b).
The proposed approach has been also evaluated with 3-D data

sets, i.e., both synthetic and real data sets were fitted with low-
and high-degree IPs. On average, in the 3-D case, the proposed
approach is not as good as in the 2-D case, but it is about twice
faster than [16]. Fig. 7 shows eight different results obtained
with the proposed approach; in all the cases, the results are quite
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Fig. 9. Data set from AIM@SHAPE fitted with the proposed approach.

Fig. 10. (a) Fitting with a rough initialization. (b)–(d) First, second, and third
iterations, respectively.

TABLE III
DATA SET FROM AIM@SHAPE: AFE CORRESPONDING TO THE

ILLUSTRATIONS PRESENTED IN FIG. 9

similar to the ones obtained with [16] and considerably better
than those obtained with [14]. Table II presents the AFE ob-
tained with the different approaches for a quantitative compar-

ison. Note that these results were obtained once the stopping
criterion has been reached; if a larger number of iterations are
allowed, [16] achieves better results. The proposed algorithm
has been tested with a more challenging 3-D data set with a dif-
ferent topology; Fig. 8 presents the results from both the 3L al-
gorithm AFE , which is used as an initialization of the
proposed approach, and the final result obtained after ten itera-
tions AFE . In this case, a fourth-degree IP has
been used (solid surface), given that data points are represented
by means of a wire frame just for a visual comparison.
In addition to the synthetic objects, a data set from

AIM@SHAPE2 has been used for evaluating the proposed
approach. Fig. 9 shows eight illustrations of fourth-, sixth-,
and seventh-degree IPs obtained with the proposed approach.
Table III presents the AFE obtained with the different ap-
proaches for a quantitative comparison. Fig. 10 illustrates the
independence to initial guess by using a sphere covering the
given data set as an initialization [see Fig. 10(a)]. The first,
second, and third iterations of the proposed approach are shown
in Fig. 10(b)–(d), respectively; the result obtained after 25
iterations is already depicted in Fig. 9(a). Surface parameter
refinements through these iterations are depicted in Fig. 11.
Fig. 11(a) corresponds to the evolution of the 35 IP coefficients,
whereas Fig. 11(b) shows how the AFE decreases with the
iterations. Finally, Fig. 11(c) depicts the accumulated angle
(23) used as a convergence criterion. It should be mentioned
that this criterion has a similar behavior than Fig. 11(b), but its
complexity is considerably lower.

V. CONCLUSION

This paper has presented a novel geometric approach for
2-D/3-D implicit polynomial fitting, which is based on a fast
geometric distance estimation. Despite other geometric esti-
mations, which are based on a single direction to find the foot

2http://shapes.aimatshape.net/
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Fig. 11. Parameter evolution of Fig. 10 along 25 iterations: (a) IP coefficient values, (b) AFE, and (c) accumulated angle used as a convergence criterion.

point associated to each data point, the proposed one is based
on two or three directions (depending on the data dimension).
The smoothness and accuracy of the proposed distance have
been shown. Additionally, the implicit connection between
this distance and the IP coefficients has been presented and
shown to be differentiable. This property allows the use of
any gradient-based optimization techniques. In this paper, the
LMA is applied to find the best set of surface parameters in an
iterative way. Comparisons with state-of-the-art techniques are
presented. Moreover, the proposed distance is proved to be a
generalization of the distance presented in [10].
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