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Abstract—This paper proposes a new framework for real-time
estimation of the onboard stereo head’s position and orientation
relative to the road surface, which is required for any advanced
driver-assistance application. This framework can be used with
all road types: highways, urban, etc. Unlike existing works that
rely on feature extraction in either the image domain or 3-D
space, we propose a framework that directly estimates the un-
known parameters from the stream of stereo pairs’ brightness.
The proposed approach consists of two stages that are invoked
for every stereo frame. The first stage segments the road region in
one monocular view. The second stage estimates the camera pose
using a featureless registration between the segmented monocular
road region and the other view in the stereo pair. This paper has
two main contributions. The first contribution combines a road
segmentation algorithm with a registration technique to estimate
the online stereo camera pose. The second contribution solves the
registration using a featureless method, which is carried out using
two different optimization techniques: 1) the differential evolution
algorithm and 2) the Levenberg–Marquardt (LM) algorithm. We
provide experiments and evaluations of performance. The results
presented show the validity of our proposed framework.

Index Terms—Differential evolution algorithm, featureless
image registration, illuminant-invariant image, non-linear op-
timization, on-board stereo camera pose, road detection, road
segmentation.

I. INTRODUCTION

S INCE THE increase in automobile park during the last
decades, traffic accidents have become an important cause

of fatality in modern countries. According to the World Health
Organization, every year, almost 1.2 million people are killed,
and 50 million are injured in traffic accidents worldwide [1]. In
the last decade, research by automotive manufacturers, suppli-
ers, and universities is addressing the development of intelligent
onboard systems, which are referred to as advanced driver-
assistance systems (ADASs), which aim to prevent accidents
or minimize their effects when they are unavoidable.
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Vision-based systems are gaining popularity in the context
of the aforementioned ADAS applications. The majority of
these applications require the estimation (from images) of the
onboard camera’s position and orientation related to the 3-D
road plane. Many researchers have addressed this problem (e.g.,
[2]–[4]). The proposed approaches can be broadly classified
into two different categories depending on the target scenario:
1) highways and 2) urban. For each category, the vision sensor
can be either a monocular camera or a stereo head. Although
the objectives are the same for both scenarios, it is very chal-
lenging to develop a generic algorithm that can be used for
both highways and urban scenarios. Real-time estimation of
the onboard vision system pose—position and orientation—is
a difficult task since the sensor undergoes motions due to the
vehicle dynamics and the road imperfections, and the captured
scene is unknown and continuously changing.

Since the sought 3-D plane parameters are expressed in the
camera coordinate system, the camera’s position and orienta-
tion are equivalent to the 3-D plane parameters. Algorithms for
fast road plane estimation are very useful for driver-assistance
applications and augmented reality applications. For ADAS
applications, the ability to use continuously updated plane
parameters (camera pose) will considerably make the tasks of
obstacle and object detection more efficient [5]–[7]. For exam-
ple, the number of candidate regions for pedestrian detection
can be considerably reduced once the road plane is known in the
camera coordinate system. For augmented reality applications,
synthetic objects should be inserted in the video sequences
captured by the onboard camera (e.g., virtual advertisement
overlaid on the road). The continuously updated pose parame-
ters will make the inserted objects seem as a physical part of
the scene. If the used road plane parameters are constant, then
the inserted objects may appear as floating objects whenever the
actual plane parameters change due to the car’s dynamics and
road’s imperfections.

Obviously, dealing with an urban scenario is more difficult
than dealing with a highways scenario since prior knowledge
and visual features are not always available in urban scenes
[8]. In general, monocular vision systems tackle the intrinsic
problems related to the 3-D aspect by using prior knowledge of
the environment as an extra source of information. For instance,
in [9] and [10], it is assumed that the road has a constant width;
in [11], it is assumed that the car is driven along two parallel
lane markings, which are projected to the left and to the right
of the image; and in [12], it is assumed that the camera’s po-
sition and pitch angle remain constant throughout. In [13], the
authors proposed a robust computation of the homography of
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the ground plane between two consecutive images from reliable
ground plane point correspondences. Their proposed method
takes advantage of the temporal coherence of the interframe
plane-to-plane homography to construct a probabilistic predic-
tion framework based on Kalman filtering for the computation
of the homography.

Although prior knowledge has been extensively used to
tackle the associated problems, it may lead to wrong results.
Hence, considering a constant camera’s position and orientation
is not a valid assumption to be used in urban scenarios since
both of them are easily affected by road imperfections or
artifacts (e.g., rough road and speed bumpers), the car’s acceler-
ation, uphill/downhill driving, etc. Reference [9] estimated the
vehicle’s yaw, pitch, and roll by using a single-mounted camera.
The method was based on the assumption that some parts of the
road have a constant width (e.g., lane markings).

Some stereo vision systems have also used prior knowledge
to simplify the problem and to speed up the whole processing
by reducing the amount of information to be handled [14]–
[16]. In the literature, many application-oriented stereo systems
have been proposed. For instance, the edge-based v-disparity
approach proposed in [17] for automatic estimation of horizon
lines and later on used for applications such as obstacle or
pedestrian detection (e.g., [2] and [18]) only computes 3-D
information over local maxima of the image gradient. A sparse
disparity map is computed to obtain real-time performance.
In [19], the authors proposed a method for robustly detecting
lanes under difficult conditions. In addition, they estimate the
pitch angle using stereo-based 3-D data. The proposed method
is based on the principle of maximum a posteriori, where the
likelihood measurement is set to a polar histogram of 3-D points
in the lateral projection plane.

It should be noticed that existing works for onboard camera
pose estimation adopt a two-stage approach. In the first stage,
features are extracted in either the 2-D image space (optical
flow, edges, ridges, and interest points) or the 3-D Euclidean
space (assuming that the 3-D data are built online). In the
second stage, the unknown pose parameters are estimated using
an algorithm that depends on the nature of features and on the
prior knowledge used.

A. Paper Contribution

This paper has two main contributions. The first contribution
is combining a nonparametric model-based road segmentation
algorithm with a registration technique for estimating the online
stereo camera pose. The second contribution is solving the
registration using a featureless method, which is carried out
using two different optimization techniques: 1) the differential
evolution (DE) algorithm and 2) the Levenberg–Marquardt
(LM) algorithm. Although the featureless image registration
is not a novelty of this paper, we believe that the proposed
framework using it for real-time tracking of onboard camera
pose parameters is new. This paper is an extended version of
our work in [20]. In this paper, we additionally provide an
elegant method for the automatic image road segmentation and
some evaluations for the 3-D camera pose parameters. Our
proposed frameworks can be easily used by hybrid systems for
autonomous vehicle navigation (e.g., [21]).

The proposed framework consists of two main consecutive
stages that are invoked for every stereo frame: 1) road seg-
mentation and 2) 3-D stereo camera pose through road image
registration.

1) Road segmentation is an essential functionality for sup-
porting ADASs. One of the major challenges of these
techniques is dealing with lighting variations, particu-
larly shadows. In this paper, rather than using usual
segmentation in a color space, we use a physics-based
illumination invariant space [22] and a statistical road
pixel classification for reliable road segmentation, despite
illumination variations. Using this feature space, we at-
tenuate the shadow influence from the very beginning,
even using a simple road model. The invariant space
consists of a grayscale image that results from projecting
the {log(R/G), log(B/G)} pixel values onto the direc-
tion orthogonal to lighting change. This projection greatly
attenuates the shadows, and it is computable in real time
using a single-sensor color camera.

2) Once the road region is segmented in one monocular im-
age, the current camera 3-D pose is computed using a fea-
tureless registration between this segmented region and
the other view. (The left image if the road is segmented in
the right image.) We solve the featureless registration by
using two optimization techniques: 1) the DE algorithm
(a stochastic search) and 2) the LM algorithm (a directed
search). Moreover, since the camera pose should be com-
puted for every captured frame, we propose two tracking
schemes based on these optimizations. The advantage of
our proposed paradigm is twofold. First, it can run in real
time. Second, it provides good results, even when the road
surface does not have reliable features. In addition, we
stress the fact that the proposed road segmentation does
not belong to the feature-based approaches since all we
need is a set of pixels belonging to road image in one
single monocular image.

As related works, we could mention [23] and [24]. In [23],
we proposed an approach for online stereo camera pose esti-
mation. Although [23] does not require the extraction of visual
features in the images, it is based on dense depth maps and
on the extraction of a dominant 3-D plane that is assumed to
be the road plane. This technique has been tested on different
urban environments. The proposed algorithm took, on aver-
age, 78 ms/frame. Compared with [23], our current proposed
framework has the following advantages: 1) There is no need
to compute a dense 3-D reconstruction of the scene viewed by
the onboard camera. 2) The assumption of a very small roll
angle is released. In [23], this assumption is needed to obtain
efficient road plane extraction. 3) Our approach directly infers
the geometric parameters from image rawbrightness without
using an intermediate stage, i.e., the estimation of the 3-D
coordinates of every pixel. Thus, there is no error propagation
in the estimation of the camera pose parameters. 4) The use
of road segmentation in one monocular image guarantees that
most of available data are contributing to the solution. In [24],
we proposed a framework that tracks the pose parameters using
a sequential Monte Carlo filter based on a featureless criterion.
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Fig. 1. (a) Onboard stereo vision sensor. (b) Time-varying road plane para-
meters d and u. β denotes the pitch angle, and ρ denotes the roll angle.

Although [24] and our current proposed framework are both
using featureless registration, our current proposed framework
has the following advantages: 1) The accurate road region in
every video frame is obtained by using a statistical road pixel
classification, whereas in [24], this road region was a constant
user-defined region. 2) The current proposed framework uses a
deterministic tracking algorithm (directed search minimization)
that is faster than the stochastic tracking algorithm presented in
[24], where a probability distribution is propagated over time.

The rest of this paper is organized as follows: Section II
describes the problem we are focusing on. Section III presents
the used road segmentation approach and some experimental
results. Section IV presents the online camera pose estimation
through road image registration. Section V gives some experi-
mental results and method comparisons. Section VI concludes
this paper.

II. PROBLEM FORMULATION

A. Experimental Setup

A commercial stereo vision system (Bumblebee from Point
Grey1) was used. It consists of two Sony ICX084 color charge-
coupled devices with 6-mm-focal-length lenses. Bumblebee is
a precalibrated system that does not require in-field calibration.
Fig. 1(a) shows an illustration of the onboard stereo vision
system and its mounting device.

The problem we are focusing on can be stated as follows:
Given a stream of stereo pairs provided by the onboard stereo
head, we like to recover the parameters of the road plane for
every captured stereo pair. Since we do not use any feature
that is associated with road structure, the computed plane pa-
rameters will completely define the pose of the onboard vision
sensor. This pose is represented by the 3-D plane parameters,
i.e., the height d and the plane normal u = (ux, uy, uz)T from
which two independent angles can be inferred [see Fig. 1(b)].
In the sequel, the pitch angle will refer to the angle between
the camera’s optical axis and the road plane, and the roll angle
will refer to the angle between the camera horizontal axis and
the road plane [see Fig. 1(b)]. Due to the reasons previously
mentioned, these parameters are not constant and should be
estimated online for every time instant. Note that the three
angles (pitch, yaw, and roll) associated with the stereo head

1[www.ptgrey.com]

Fig. 2. Moving world coordinate system.

orientation can vary. However, only the pitch and roll angles
can be estimated from the 3-D plane parameters.

Since there is no fixed world coordinate system, our problem
is not equivalent to the classical extrinsic camera calibration in
which the six degrees of freedom of the camera pose should
be estimated. However, this link is possible by adopting a
moving world coordinate system (XW ;YW ;ZW ) (see Fig. 2)
that was defined for every acquired stereo image in such a way
that the XW ZW plane is contained in the current road fitted
plane, just under the camera coordinate system. The origin
of this coordinate system is the orthogonal projection of the
camera center. Thus, by adopting this world coordinate system,
the extrinsic parameters reduce to just three parameters, i.e., a
translational distance and two independent angles. Notice that
the yaw angle is zero for all stereo frames.

B. Proposed Framework

Since the goal is to estimate the road plane parameters for
every stereo pair (equivalently, the 3-D pose of the stereo head),
the whole process is invoked for every stereo pair. The inputs
to the process are the current stereo pair and the estimated
road plane parameters associated with the previous frame. The
proposed framework is shown in Fig. 3. The process is split
into two consecutive stages. First, a road region segmentation
is preformed for the right image (see Section III). Second,
the current camera 3-D pose is computed using a featureless
registration between this segmented region and the other view
(see Section IV).

III. ROAD SEGMENTATION

Our proposed framework for onboard camera pose estima-
tion requires a road segmentation in one monocular view. In
this section, we describe the method selected to detect the road
region in the right images. Vision-based road segmentation is a
very challenging problem since the road is in an outdoor scene
imaged from a mobile platform [25], [26]. Thus, the segmenta-
tion algorithm should be able to deal with a continuously chang-
ing background, the presence of different objects (e.g., vehicles
and pedestrians) with unknown movement, different road types
(e.g., urban, highways, and off-roads), different road attributes
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Fig. 3. Proposed framework consists of two stages. First, a road region
segmentation is preformed for the right image (see Section III). Second, the
current camera 3-D pose is computed using a featureless registration between
this segmented region and the other view (see Section IV).

(e.g., shape and color), and different imaging conditions (vary-
ing illumination, different viewpoints, and weather conditions).
Common vision-based approaches integrate different cues such
as shape [27], color [27], [28], texture [29], or time coherence
[28], which lead to constrained systems (i.e., shape cue limits
the type of the road and scenarios, texture limits the distance
ahead the vehicle because of the perspective effect, and time
coherence limits the speed of the vehicle).

In this section, the color-based approach for the road detec-
tion proposed in [30] is considered. Color provides powerful
information about the road to be detected, even in the absence
of shape information. In addition, color imposes less physical
restrictions, leading to more versatile systems. The underlying
idea of the algorithm is to map the original colors into another
illuminant-invariant feature space in which the road ahead has
some homogeneous color, which is used to classify pixels as
belonging or not to the road class. Nevertheless, the perception
of the road surface depends not only on its own features, which,
in fact, are not constant, but on unknown imaging conditions
(shadows and highlights among others) as well. This variability
is reduced by selecting the most appropriate color space to
characterize the input data.

Therefore, the color-based road detection algorithm, which
combines a physics-based illuminant-invariant color space with
a model-based binary classifier in a frame-by-frame framework
(see Fig. 4), is used [30]. More precisely, our approach exploits
the lighting-invariant benefits of the color space introduced by
Finlayson et al. [22] and a binary classifier based on a nonpara-
metric model [30]. The choice of the color space is motivated by
having sunlight as the main light source. Sunlight is considered
to be Planckian, which is one of the requirements of the selected
color space. Furthermore, the classifier uses the invariant color
representation, together with an online built likelihood to decide
whether a pixel belongs or not to the road class. This likelihood
measure is given by a probability distribution that is built online
for every frame using scattered region seeds in the bottom part
of the image. Thus, the algorithm uses the only assumption
that the bottom region of the image is road to build the road
model. In fact, the lowest row of our images corresponds to a
distance of about 4 m away from the camera placement, which
is a reasonable assumption most of the time.

Fig. 4. Road segmentation algorithm. First, each RGB image is converted
onto an illuminant-invariant image using the invariant direction θ in the 2-D
{log(R/G), log(B/G)} space, which is an intrinsic parameter of the camera.
Each pixel is then classified as road or nonroad according to a nonparametric
road model (a likelihood measure) and a fixed threshold λ.

In the remainder of this section, we first describe the
illuminant-invariant feature space, then the proposed nonpara-
metric classifier, and finally, some segmentation results are
shown.

A. Illumination-Invariant Space

Finlayson et al. have shown that, if Lambertian surfaces
are imaged by a three delta-function sensor under approxi-
mately Planckian light sources, it is possible to generate an
illuminant-invariant image (J ) [22]. Under these assumptions,
a log–log plot of 2-D {log(R/G), log(B/G)} values for any
surface forms a straight line, provided camera sensors are
fairly narrowband. Thus, lighting change is reduced to a linear
transformation along an almost straight line (see Fig. 5). In
practice, empirical results prove that this theory holds, even for
real-world scenes (roughly Lambertian surfaces) imaged using
a regular camera (i.e., having only approximately narrowband
sensors) under approximately Planckian illumination [30].

In short, J is a grayscale image that is obtained from pro-
jecting the {log(R/G), log(B/G)} pixel values of the incom-
ing data onto the direction orthogonal to the lighting change
lines, i.e., invariant direction θ from now on. This direction is
device dependent and is estimated offline using the calibration
procedure in [22].

B. Model-Based Road Classifier

The aim of the model-based road classifier is assigning to
each image pixel one of the two possible classes, i.e., road and
background. Two entities are used to decide whether a pixel
belongs or not to the road class. The first entity, i.e., the road
model (likelihood measure), is a probabilistic description of
the road that provides insight for predicting the label (road
or background) of each image pixel. The second is a fixed
threshold λ on this model. Hence, a road label is assigned to a
pixel exhibiting a support provided by the model higher than λ.
Otherwise, a background label is assigned to that pixel.

The road model is built online for each image based on a
training set. The training set consists of surrounding areas of
several pixels (seeds) placed at the bottom part of the image to
be segmented. Thus, the algorithm considers only road pixels
(positive examples) and assumes that the bottom area of the
image belongs to the road surface. In this paper, nine seeds
are placed using an equidistant distribution along two rows
in the bottom part of each frame (see Fig. 6). The size of the
surrounding region of each seed is fixed to 11 × 11 pixels
for an image of 640 × 480 pixels. Then, the road model is



958 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 4, DECEMBER 2011

Fig. 5. Illuminant-invariant image can be obtained under the assumptions of Planckian light, Lambertian surface, and narrowband sensors. This image is almost
shadow free.

Fig. 6. Road model example. The model is built using the histogram formed
with the surrounding region (white blocks) of several seeds. We have used
nine seeds placed at the bottom part of J , which is the illuminant-invariant
image.

computed as the normalized histogram of these pixel values.
There are two important advantages in using histograms
(nonparametric methods) over parametric approaches (e.g.,
mixture of Gaussians): nonparametric methods are faster in
training and usage, and they are independent of the shape
of the data distribution. Hence, the normalized histogram is
used as a likelihood function, indicating the support of each
possible illuminant-invariant value depicting road surface: the
probability of observing J (p) given that the pixel p belongs to
the road. As a result, the road model (the normalized histogram)
is highly adaptive and can cope with sudden changes.

Finally, the algorithm for road detection is shown in Fig. 7.
First, the incoming image is converted to the illuminant-
invariant space. Then, the road model is applied to obtain a road
confidence map [see Fig. 7(a)] depicting the probability of a
pixel being road. This map is binarized using a fixed threshold λ
[see Fig. 7(b)]. Then, connected components (region growing)
is applied to the binary image using the same set of seeds used
to build the road model [see Fig. 7(c)]. Finally, a hole-filling
process using simple mathematical morphology operations is
applied to obtain the final result [see Fig. 7(d)].

C. Road Segmentation Results

In this section, we present qualitative results to validate
our proposal. The algorithm has been tested using different

Fig. 7. (a) Road probability map. (b) Binarized image using a fixed threshold
and set of seeds overlapped (red blocks). (c) Mask image after applying
connected components. (d) Detected road mask obtained applying standard
mathematical morphology.

sequences acquired using the system described in Section II.
These images cover approximately the nearest 80 m ahead of
the vehicle. The threshold λ of the algorithm is fixed using an
offline learning approach. This approach consists of process-
ing and evaluating a set of images using all possible values
within the range of the parameter [0, 0.05, . . . , 1]. The optimal
threshold is that which maximizes the average performance (see
Fig. 8). That is, the arithmetical mean of performance values
obtained for each image in the set. The optimal threshold is
then chosen for subsequent segmentation at runtime.

Fig. 9 shows the segmentation results associated with a
sequence of images with extreme light variations. These images
include nonhomogeneous roads due to extreme shadows and
the presence of other vehicles. Fig. 10 shows the segmenta-
tion results associated with another challenging road sequence
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Fig. 8. Variation of the averaged performance in the process of learning the
threshold λ. This process consists of processing and evaluating a set of images.
The optimum λ is the one maximizing the average performance (mean of
performance obtained for each image in the data set).

Fig. 9. Segmentation results associated with extreme light variations. The left
column is the original image that covers the nearest 80 m ahead of the vehicle.
The right column shows in white the corresponding segmented road.

acquired when the car is performing a turning maneuver. The
challenge relies on the fact that, in some frames, the road
region is not well defined and is very small compared with the
background. Despite this challenge, the proposed segmentation
algorithm has provided the correct segmentation. The nonroad
small regions can be discarded by a simple analysis.

For evaluation purposes, the proposed method is compared
with a simple approach that does not need offline learning and
calibration. It works on the hue and saturation components (re-
ferred as HS-based algorithm hereinafter). HSV color space
has been used for scene segmentation under varying illumi-
nation conditions [31], [32]. The used HS-based algorithm
splits the segmentation stage into two phases. The first phase
is only invoked every T frames for updating the color model
and for obtaining a real-time performance. The second phase
exploits the road color consistency over short time. The first
phase consists of a classical K-means algorithm that is applied

Fig. 10. Challenging road sequence. The left column shows the original
image. The right column shows in white the corresponding segmented road.

on the hue H and saturation V values of the pixels belonging
to a predefined region of interest (ROI) that is centered at the
bottom of the image. The number of classes can be between
three and five. The cluster having the largest number of pix-
els will be assumed to belong to the road. Once the cluster
is identified, the mean and covariance of its color (hue and
saturation components) can be easily computed. In the second
phase (invoked for every frame), by assuming that the color
distribution of the detected cluster is Gaussian, we can classify
any pixel. Thus, pixels within the ROI are labeled as road pixels
if their Mahalanobis distance to the mean is below a certain
threshold.

Fig. 11 shows comparison results associated with two
frames: Fig. 11(a) depicts the original frames, (b) shows the
segmentation results obtained with the HS-based algorithm,
and (c) shows the segmentation results obtained with the pro-
posed method. As can be seen, both methods have succeeded to
segment a large part of the road. The side part of the road has
not been detected by the HS-based algorithm since the used
ROI is a rectangular window and the method assumes that the
road color has one mode.

All these results suggest that a reliable road segmentation
algorithm is obtained by combining the illuminant-invariant im-
age space and the online model-based classifier. Road surface is
well recovered most of the time, with the segmentation stopping
at road limits and vehicles, and can deal with complex road
shapes. Nevertheless, the algorithm fails for areas where there is
a lack of color information leading to nonvalid invariant image
areas. However, this issue can be addressed by improving the
acquisition system (i.e., cameras with higher dynamic range).
For a detailed quantitative and failure case study, see [30].
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Fig. 11. Road segmentation associated with two frames. (a) Original images.
(b) Segmentation results obtained with the color consistency method (HS
method). (c) Segmentation results obtained with the histogram road model.

Fig. l2. Mapping between the corresponding left and right road pixels is given
by a linear transform.

IV. THREE-DIMENSIONAL POSE PARAMETERS

THROUGH IMAGE REGISTRATION

A. Right-Image-to-Left-Image Mapping

This section describes the 2-D mapping between road pixels
belonging to the same stereo pair: the left and right images. This
mapping implicitly depends on the camera pose parameters.
It is well known [33] that the 2-D projections of 3-D points
belonging to the same plane onto two different images are
related by a 2-D projective transform having eight independent
parameters, i.e., homography. In our setup, the right and left
images are horizontally rectified.2 Let pr(xr, yr) and pl(xl, yl)
be the right and left projections of an arbitrary 3-D point P
belonging to the road plane (d, ux, uy, uz) (see Fig. 12). In the
case of a rectified stereo pair where the left and right cameras
have the same intrinsic parameters, the 3 × 3 homography
matrix will have the following form:

H =

(
h1 h2 h3
0 1 0
0 0 1

)
. (1)

In other words, the right and left coordinates of correspond-
ing pixels belonging to the road plane are related by the
following linear transform (the homography reduces to a linear
mapping):

xl =h1xr + h2yr + h3 (2)
yl = yr (3)

2The use of nonrectified images will not have any theoretical impact on our
developed method. However, the image transfer function will be given by a
general homography.

where h1, h2, and h3 are functions of the intrinsic and extrinsic
parameters of the stereo head and of the plane parameters. For
our setup (rectified images with the same intrinsic parameters),
those coefficients are given by

h1 = 1 + b
ux

d
(4)

h2 = b
uy

d
(5)

h3 = −bu0
ux

d
− bv0

uy

d
+ αb

uz

d
(6)

where b is the baseline of the stereo head, α is the focal length
in pixels, and (u0, v0) is the image center (principal point). Let
w be the three-vector encapsulating the 3-D plane parameters,
i.e., w = u/d. Thus, w is given by

w = (wx, wy, wz)T =
(ux

d
,
uy

d
,
uz

d

)T

. (7)

Note that the vector w fully describes the current road plane
parameters. The problem can be stated as follows: Given the
current stereo pair, estimate the corresponding 3-D road plane
parameters d and u or, equivalently, the vector w.

B. Approach

Let R denote the segmented road region in the right image
(e.g., the white regions in the right column of Fig. 9). This
segmentation is obtained using the approach described in the
previous section. Recovering the plane parameters from the
rawbrightness of a given stereo pair will rely on the following
fact: if the parameter vector w corresponds to the actual road
plane parameters—the distance d and the normal u—then the
registration error between corresponding pixels in the right and
left images over the road region R should correspond to a
minimum. In our work, the registration error is set to the sum
of squared differences (SSD) between the right image and the
corresponding left image computed over the road region R. The
registration error is given by

e(w) =
∑

(xr,yr)∈R

(
Ir(xr,yr) − Il(h1xr+h2yr+h3,yr)

)2
. (8)

The corresponding left pixels are computed according to
the linear transform given by (2) and (3). The computed xl =
h1xr + h2yr + h3 is a noninteger value. Therefore, the gray
level Il(xl, yl) is set to a linear interpolation of the gray level
of two neighboring pixels, i.e., the ones whose horizontal
coordinates bracket the value xl.

The optimal current road parameters are given by

w� = arg min
w

e(w)

= arg min
w

∑
(xr,yr)∈R

(
Ir(xr,yr) − Il(h1xr+h2yr+h3,yr)

)2

(9)

where e(w) is a nonlinear function of the parameters w =
(wx, wy, wz)T . In the sequel, we describe two minimization
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techniques: 1) the DE minimization and 2) the LM minimiza-
tion. The first one is a stochastic search method, and the second
one is a directed search method. Moreover, we present two
tracking schemes. Recall that the goal is to compute the 3-D
pose or the plane parameters for all frames. Finally, we stress
the fact that our 3-D pose estimation relies only on the raw-
brightness of the region R, i.e., a subset of the right image and
the rawbrightness of the left image. We should notice that the
choice of SSD criterion is justified by the fact that the scene is
imaged by two identical cameras having the same orientation.
In other words, the difference in gray levels of a given pair
of corresponding points is modeled by a Gaussian noise. It is
worth noticing that the preceding SSD function can be replaced
by any M-estimator [34].

1) DE Minimization: The DE algorithm is a practical ap-
proach to global numerical optimization that is easy to im-
plement, reliable, and fast [35]. We use the DE algorithm
[36], [37] to minimize the error (9). This is carried out using
generations of solutions, i.e., population. The population of the
first generation is randomly chosen around a rough solution. We
point out that even the exact solution for the first frame is not
known, the search range for the camera height and for the plane
normal can be easily known. For example, in our experiments,
the camera height and the normal vector are assumed to be
around 1 m and (0, 1, 0)T , respectively.

The optimization adopted by the DE algorithm is based on
a population of N solution candidates wn,i (n = 1, . . . , N)
at iteration (generation) i, where each candidate has three
components. Initially, the solution candidates are randomly
generated within the provided intervals of the search space. The
population improves by iteratively generating new solutions for
each candidate.

Calibration. Since the stereo camera is rigidly attached to
the car, the DE algorithm can also be used as a calibration
tool by which the camera pose can be estimated offline. To
this end, the car should be at rest and should face a flat road.
Whenever the car moves, the offline calibration results can
be used as a starting solution for the whole tracking process.
Note that the calibration process does not need to run in
real time.

2) LM Minimization: Minimizing the cost function (9) can
also be carried out using the LM technique [38], which is a
well-known nonlinear minimization technique. One can notice
that the Jacobian matrix only depends on the horizontal image
gradient since the right and left images are rectified.

C. Tracking Schemes

The DE algorithm performs a global search, whereas the
LM algorithm performs a directed and local search. Since
the unknown parameters (road parameters/camera pose) should
be estimated for every stereo pair, we propose two tracking
schemes, which are shown in Fig. 13. The first scheme [see
Fig. 13(a)] is only based on the DE minimization. In other
words, the solution for every stereo frame is computed by
invoking the whole algorithm where the first generation is
generated by diffusing the previous solution using a normal

Fig. 13. Parameter tracking using two strategies. (a) Tracking is only based
on the DE search. (b) Tracking is based on the LM algorithm, although it is
initialized with the DE search.

distribution. A uniform distribution is used for the first stereo
frame.

The second tracking scheme [see Fig. 13(b)] uses the DE
minimization for the first stereo frame only. It utilizes the LM
algorithm for the rest of the frames where the initial solution for
a given frame is provided by the solution w�

t−1 associated with
the previous frame.

Although the first scheme might have better convergence
properties than the second scheme, the latter scheme is better
suited for real-time performance since the LM algorithm is
faster than the DE search. (The corresponding central process-
ing unit (CPU) times are illustrated in Section V.) In both
tracking schemes, the pose parameters associated with the first
stereo pair are estimated by the DE search.

V. EXPERIMENTAL RESULTS

The proposed technique has been tested on different urban
environments since they correspond to the most challenging
scenarios. In this section, we provide results obtained with two
different videos associated with different urban road structures.
Moreover, we provide a performance study using synthetic
videos with ground-truth data.

A. Tracked Road Parameters

The first experiment has been conducted on a sequence
corresponding to an uphill driving. The stereo pairs are of
resolution 320 × 240. Fig. 14(a) shows the estimated camera’s
height as a function of the sequence frames. Fig. 14(b) and (c)
shows the estimated pitch and roll angles as a function of the
sequence frames, respectively. The dotted curves correspond to
the first tracking scheme that is based on the DE minimization.
The solid curves correspond to the second tracking scheme,
which is essentially based on the LM algorithm. As can be
seen, the estimated parameters are almost the same for the
two proposed tracking schemes. However, as we will show,
the second scheme is much faster than the first scheme (the
stochastic search).

1) DE convergence: Fig. 15 shows the behavior of the
DE algorithm associated with the first stereo pair of the pre-
ceding stereo sequence. This plot depicts the best registration
error (SSD per pixel) obtained by every generation. The three
curves correspond to three different population sizes. The first
generation (iteration 0) has been built using a uniform sam-
pling around the solution d = 1 m and u = (ux, uy, uz)T =
(0, 1, 0)T . The algorithm has converged in five iterations (gen-
erations) when the population size was 30 and in two iterations
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Fig. 14. Camera’s height and orientation from the proposed tracking schemes.

Fig. 15. Evolution of the best registration error obtained by the DE algorithm
associated with the first stereo pair. The algorithm has converged in five
iterations (generations) when the population size was 30 and in two iterations
when the population size was 120.

when the population size was 120. At convergence, the solu-
tion was d = 1.25 m, and u = (ux, uy, uz)T = (−0.03, 0.99,
−0.02)T . Note that, even if the manually provided initial cam-
era’s height has 25-cm discrepancy from the current solution,
the DE algorithm has rapidly converged to the actual solution.
In addition, we have run the LM algorithm with the same
starting solution, but we get, at convergence, d = 1.09 m, and
u = (ux, uy, uz)T = (0.01, 0.99,−0.02)T . This is not surpris-
ing since the LM algorithm can get stuck at nondesired local
minima.

2) Horizon line: In the literature, the pose parameters—
plane parameters—can be used to compute the horizon line. In
our case, since the roll angle is very small, the horizon line can
be represented by an horizontal line in the image. Once the 3-D
plane parameters d and u = (ux, uy, uz)T are computed, the
vertical position of the horizon line will be given by

vh = v0 +
αd

uyZ∞
− αuz

uy
≈ v0 −

αuz

uy
. (10)

Fig. 16. Estimated horizon line associated with frames 10 and 199. The
sequence corresponds to an uphill driving.

The preceding formula is derived by projecting a 3-D point
(0, Yp, Z∞) belonging to the road plane and then taking the
vertical coordinate v = α(Yp/Z∞) + v0. Z∞ is a large depth
value. The right-hand expression is obtained by using the fact
that uy is close to one and Z∞ is very large. Fig. 16 shows
the computed horizon line for frames 10 and 199. The whole
video illustrating the computed horizon line can be found at
www.cvc.uab.es/~asappa/HorizonLine.avi.

3) Occlusions: To study the algorithm behavior in the
presence of significant occlusions or significant segmentation
errors, we conducted the following experiment: We used a
video sequence corresponding to a flat road (see Fig. 11).
We run the proposed featureless registration technique twice.
(The ROI was defined manually.) We used the second tracking
scheme differential evolution/Levenberg–Marquardt (DE-LM).
In the first run, the stereo images were used as they are. In
the second run, the right images were modified to simulate a
significant registration error. To this end, we set the vertical
half of a set of 20 right images to a fixed color. The left images
were not modified. The road region is kept fixed to a rectangular
window centered at the bottom of the image.

Fig. 17 compares the pose parameters obtained in the two
runs. The solid curves were obtained with the noncorrupted
images. The dotted curves were obtained when the right images
of the same sequence are artificially corrupted. The simulated
occlusion starts at frame 40 and ends at frame 60. The upper
part of the figure illustrates the stereo pair 40. As can be
seen, the only significant discrepancy has affected the camera
height. Moreover, one can see that the correct parameters have
been recovered once the occlusion has disappeared. Fig. 18
shows the optimized registration error, which was obtained at
convergence, as a function of the sequence frames. As can be
seen, the obtained registration error has suddenly increased,
which can be used for validating the estimated parameters.

We have plotted the registration error in the neighborhood
of the optimal solution d ≈ 1.05 m and β ≈ 3.5◦ (pitch angle).
Fig. 19(a) shows the registration error (9) as a function of the
camera’s height while the orientation is kept fixed. Fig. 19(b)
shows the registration error as a function of the camera’s pitch
angle for four different camera’s height. In both figures, the
depicted error is the SSD per pixel. From the slop of the
error function, we can see that the camera height will not be
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Fig. 17. Comparing the pose parameters when a significant occlusion occurs.
The solid curves are obtained with the noncorrupted images. The dotted
curves are obtained when 20 frames of right images of the same sequence are
artificially corrupted. The occlusion is simulated by setting the vertical half of
the right images to a fixed color. This occlusion starts at frame 40 and ends at
frame 60.

Fig. 18. Registration error obtained at convergence as a function of the
sequence frame. The second tracking scheme is used.

Fig. 19. Registration error as function of the camera pose parameters.
(a) Error as a function of the camera height with a fixed orientation. (b) Error
as a function of the camera’s pitch angle associated with four different camera
heights.

recovered with the same accuracy as the plane orientation. This
will be confirmed in the accuracy evaluation section.

B. Method Comparison

The second experiment has been conducted on a short
sequence corresponding to a typical urban environment (see
Fig. 11). The stereo pairs are of resolution 320 × 240. Here,

Fig. 20. Camera’s height and orientation using two different methods.

the road is almost flat, and the changes in the pose parameters
are mainly due to the car’s accelerations and decelerations.
Fig. 20(a) and (b) show the estimated camera’s height and
orientation as a function of the sequence frames using two
different methods. The solid curves correspond to the developed
direct approach (DE-LM), and the dashed curves correspond to
a 3-D data based approach [23]. This approach uses a dense
3-D reconstruction, followed by a random sampling consensus
(RANSAC)-based estimation of the dominant 3-D plane, i.e.,
the road plane. One can see that, despite some discrepancies, the
proposed direct method is providing the same behavior of
changes.

On a 3.2-GHz personal computer, the proposed approach
processes one stereo pair in about 20 ms, assuming that the
ROI size is 190 × 90 pixels and that the number of the
detected road pixels is 11 000 pixels (3 ms for the fast color-
based segmentation and about 17 ms for the LM minimization).
The same time becomes about 50 ms if the histogram-based
segmentation is used.

Moreover, the LM algorithm is faster than the DE algorithm,
which needs 120 ms, assuming that the number of iterations
is 5 and the population number is 30. (The number of pixels
is 11 000.) Obviously, devoting a very small CPU time for
estimating the road parameters/camera pose is advantageous for
real-time systems since the CPU power can be used for extra
tasks such as pedestrian or obstacle detection.

C. Accuracy Evaluation

The evaluation of the proposed method has been carried out
on real video sequences, including a comparison with a 3-D
3-D data based approach (see Section V-B). However, it is very
challenging to get ground-truth data for the onboard camera
pose. In this section, we propose a purely vision-based scheme
giving the ground-truth data for the road parameters using
synthesized images. To this end, we use 1000 frames captured
by the onboard stereo camera. For each stereo pair, we fix the
distance (camera height) and the plane normal, i.e., the ground-
truth 3-D plane road parameters. Those can be fixed for the
whole sequence or can vary according to a predefined trajectory.
In our case, we keep them constant for the whole synthesized
sequence. Each left image in the original sequence is then
replaced with a synthesized one by warping the corresponding
right image using the image transfer function encapsulating
road parameters. The obtained stereo pairs are then perturbed
by adding Gaussian noise to their gray levels.
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Fig. 21. Two stereo pairs from a perturbed 1000-frame video. The standard
deviation of the added Gaussian noise is 20. The left images are synthesized
using the ground-truth road parameters.

Fig. 22. Errors associated with the plane parameters as a function of the
noise standard deviation using synthesized video sequences. (a) Height errors.
(b) Plane orientation errors. Each point of the curves—each noise level—
corresponds to 10 000 stereo pairs corresponding to ten realizations, each of
which is a sequence of 1000 perturbed stereo pairs.

Fig. 21 shows two perturbed stereo pairs. The Gaussian noise
standard deviation is set to 20. Here, the gray level of the
images has 256 values. The noise-free left image is synthe-
sized using the ground-truth road parameters. The proposed
approach is then invoked to estimate the road parameters from
the noisy stereo pair. The performance can be directly evaluated
by comparing the estimated parameters with the ground-truth
parameters. The camera height error is simply the absolute
value of the relative error. The orientation error is defined by
the angle between the direction of the ground-truth normal and
the direction of the estimated one.

Fig. 22 summarizes the obtained errors associated with the
synthetic stereo pairs. Fig. 22(a) shows the distance error, and
Fig. 22(b) shows the orientation error. Here, one percent error
corresponds to 1.2 cm. Each point of the curves—each noise
level—corresponds to 10 000 stereo pairs corresponding to ten
realizations, each of which is a sequence of 1000 perturbed
stereo pairs. The solid curves correspond to the global average
of errors over the 10 000 stereo pairs, and the dashed curves
correspond to the maximum error.

D. Convergence Study

To study the convergence behavior of the two optimization
techniques (the DE algorithm and the LM minimization tech-

TABLE I
AVERAGE CAMERA POSE ERRORS. THE FIRST COLUMN CORRESPONDS

TO THE LM MINIMIZATION, AND THE SECOND COLUMN CORRESPONDS

TO THE DIFFERENTIAL EVOLUTION MINIMIZATION. IN THIS

EXPERIMENT, THE INITIAL SOLUTION FOR EVERY

FRAME WAS ARTIFICIALLY CORRUPTED

nique), we run the following experiment. We used the same
synthetic stereo sequence containing 1000 stereo frames. The
standard deviation of the added image noise is kept fixed to 4.
For every stereo frame in the sequence, the starting solution was
shifted from the ground-truth solution by 20 cm for the camera
height and by 10◦ for the plane normal. This shifted solution
is used as the starting solution for the LM technique and as
the center of the first generation for the DE technique. Table I
depicts the average height and orientation errors obtained with
the LM and DE minimizations for our artificial scenario. As can
be seen, the DE minimization has better convergence properties
than the LM minimization, which essentially looks for a local
minimum. We stress the fact that global minimum of registra-
tion error is the same for both search algorithms. However, the
LM algorithm has difficulty reaching it if the starting solution is
so far from it. Moreover, we can observe that the average error
associated with the LM minimization is roughly equal to the
introduced shift.

VI. CONCLUSION

This paper has proposed a new framework for the real-
time estimation of the onboard stereo head’s position and
orientation. This framework can be used with all road types:
highways, urban, etc. This paper has provided two main con-
tributions. The first contribution is combining a nonparametric
model-based road segmentation algorithm with a registration
technique for estimating the online stereo camera pose. The sec-
ond contribution is solving the registration using a featureless
method, which is carried out using two different optimization
techniques: 1) the DE algorithm and 2) the LM algorithm.

The method adopts a registration scheme that uses images’
brightness. The advantages of the proposed framework are
given as follows. First, the road region is segmented by using an
illuminant-invariant road model classification where the model
is built for every acquired frame. Second, the registration tech-
nique that determines the pose parameters does not need any
specific visual feature extraction neither in the image domain
nor in 3-D space. Third, the technique is fast compared with
almost all proposed stereo-based techniques. A good perfor-
mance has been shown in several scenarios—uphill, downhill,
and flat roads. Although it has been tested on urban environ-
ments, it could also be useful on highways scenarios. Experi-
ments on real and synthetic stereo sequences have shown that
the accuracy of the orientation is better than the height accuracy,
which is consistent with all 3-D pose algorithms. The provided
experiments tend to confirm the following: 1) The DE search
was crucial for obtaining accurate parameter estimation, and
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2) the LM technique was crucial for obtaining real-time track-
ing. As a consequence, the DE optimization can be used as a
complementary tool to the LM optimization in the sense that
it provides the initialization and the recovery solution from a
tracking discontinuity adopting the LM algorithm.

Our proposed generic framework has required that the road
geometry in the vicinity of the car is mainly a planar structure
and that at least one camera is calibrated for the direction of
the invariant axis in the 2-D {log(R/G), log(B/G)} space.
One can notice that, in general, these two requirements are not
restrictive.

We believe that the size of the road in the stereo pair
has no major impact on the accuracy of the camera pose
parameters. Indeed, there are three degrees of freedom that
are estimated through image registration of a region having
thousands of pixels in both images. The main limitation of
the proposed framework is mainly linked to the limitation
of the road segmentation in the sense that, if the road seg-
mentation stage fails for some reason, the proposed frame-
work will not able to estimate the 3-D stereo camera pose.
A typical segmentation failure may occur when the road is
almost totally occluded. However, even in this extreme case,
a simple analysis of the obtained segmented road region can
be used to invoke or not invoke the registration-based pose
estimation.
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