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Abstract—In this paper, we investigate the problem of visual
odometry for ground vehicles based on the simultaneous utiliza-
tion of multispectral cameras. It encompasses a stereo rig com-
posed of an optical (visible) and thermal sensors. The novelty
resides in the localization of the cameras as a stereo setup rather
than two monocular cameras of different spectrums. To the best
of our knowledge, this is the first time such task is attempted.
Log-Gabor wavelets at different orientations and scales are used to
extract interest points from both images. These are then described
using a combination of frequency and spatial information within
the local neighborhood. Matches between the pairs of multimodal
images are computed using the cosine similarity function based
on the descriptors. Pyramidal Lucas–Kanade tracker is also in-
troduced to tackle temporal feature matching within challenging
sequences of the data sets. The vehicle egomotion is computed
from the triangulated 3-D points corresponding to the matched
features. A windowed version of bundle adjustment incorporating
Gauss–Newton optimization is utilized for motion estimation. An
outlier removal scheme is also included within the framework to
deal with outliers. Multispectral data sets were generated and used
as test bed. They correspond to real outdoor scenarios captured
using our multimodal setup. Finally, detailed results validating the
proposed strategy are illustrated.

Index Terms—Egomotion estimation, feature matching, multi-
spectral odometry (MO), optical flow, stereo odometry, thermal
imagery.

I. INTRODUCTION

IN RECENT years, the field of intelligent transportation
systems (ITS) has noticed a remarkable shift in researchers’

interests particularly toward advanced driver-assistance sys-
tems (ADAS). These systems play a significant role in the
development of intelligent vehicles. Localization of vehicles,
in particular, is a key component of such systems. Ordinarily,
localization information is provided by the Global Positioning
System (GPS). However, this system suffers from a number
of shortcomings where solutions have been investigated in the
literature to temporarily filling signal gaps or completely re-
placing GPS information. In this context, cameras present an in-
teresting sensing alternative. Its main advantages reside in cost
effectiveness, low power consumption and the meaningfulness
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of its content. During the last decade, the automotive industry
witnessed the introduction of a variety of cameras to enhance
vehicles’ safety (e.g., thermal and parking cameras). Devel-
oping localization techniques on these grounds represents an
interesting research path for the coming years. Studies on using
visual information for self-localization have been conducted
over the last decades. Visual odometry (VO) along with visual
simultaneous localization and mapping represent the main vi-
sion driven localization solutions. VO involves the estimation
of the egomotion of an agent using only visual information
from one or multiple cameras. It has been widely investigated in
computer vision and robotics. Early attempts to recover motion
from vision were made as far as three decades ago [1]. VO
was coined as so for the first time in [2]. Its applications span
a variety of domains such as robotics, automotive, and space
missions. In the context of driving assistance and autonomous
systems, self-localization represents a fundamental issue. The
vehicle’s own movement (egomotion) is a prerequisite for
higher level tasks (e.g., scene perception). In general, this task is
performed using wheel odometry, Inertial Measurement Units
(IMUs), or GPS devices. Another way to accomplish that task
is through VO, which takes advantage of cameras. These can
overcome negative aspects of wheel odometry, particularly in
slippery terrain. In addition cameras can mitigate the drawbacks
of IMUs by providing less drifty estimates of the motion.
Furthermore, GPS devices, although very costly, can suffer
shortages or inaccuracies. In this case also, VO comes as a
cheaper and reliable alternative. Up to now, and to the best
of the authors’ knowledge, all the attempts to achieve such
task have been conducted using cameras working on the same
spectral band namely visible. These include monocular, stereo
and omnidirectional cameras. In this paper, the feasibility of
egomotion estimation from cameras working in different spec-
tral bands is investigated. The aim is to extend the concepts
of VO to multispectral odometry (MO). In the field of driving
assistance systems, these types of cameras are already deployed
to tackle a variety of problems. Infrared (IR) cameras are used
to improve night-time driving experience as they are able to
capture scene elements in the dark. Pedestrian detection and
collision avoidance mechanisms based on day-time cameras
were extended to night-time using IR technology. Our aim is
to take advantage of equipment already in place to get more
functionality. The vehicle motion is estimated incrementally on
a frame-to-frame basis using only the acquired stereo image
pairs with no prior knowledge of the environment. The system
is capable of estimating its 6 degrees of freedom (DOF) with-
out use of filtering techniques. These are generally used with
SLAM algorithms, where the choice of the filter influences the
accuracy of the motion estimates [3].
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Fig. 1. (a) IR spectrum and (b) IR transmittance in the atmosphere.

A. Related Work

Many implementations of VO can be found in the literature
that can be classified according to the sequential correspon-
dence search strategy. There are those relying on temporal fea-
ture matching [4]–[6] and those based on tracking algorithms
[7], [8]. VO techniques could also be classified according to
the number of used cameras. Typically, there are monocular ap-
proaches [9]–[11] and those using stereo rigs [4], [12]–[15]. In
general, approaches based on multiple cameras provide better
performance than monocular algorithms. Many investigations
were conducted to enhance the performance of VO. One aspect
relates to the utilization of digital maps [16] and extended digi-
tal maps [17] to accurately localize vehicles with respect to their
surrounding environment. However, the approach adopted in
[17] is dedicated to intersection scenarios. Other works involve
the localization of other sensors to aid the VO as in [18], where
IMU measurements are fused with VO outputs using a Kalman
filter. Agrawal et al. [19], [20] fused GPS and wheel encoders
information within the VO framework. These multisensory fu-
sion schemes were claimed to tackle long-term drifts. Keeping
drift small can also be done through local optimization over
the last N camera poses. Sliding window (windowed) bundle
adjustment (WBA) represents one of the approaches used in
several works. It was demonstrated by Konolige et al. [21] to
track the motion over distances of 10 km with a small error. A
similar approach is adopted in the motion estimation part of this
paper, where the current and previous pairs of images are used.
Other estimation algorithms have been used in works tackling
VO. Milella and Siegwart [13] used the iterative closest point
technique, whereas singular value decomposition was adopted
in [18]. An essential prerequisite for most VO approaches lies
in the so-called low-level image processing task of feature
extraction. In the literature, many interest point extraction and
matching techniques have been utilized. For instance, Shi and
Tomasi’s Good Features to Track [22] was used in [5], [18] to
detect features in the images. SURF [23] descriptors were used
to match the detected features in [5] based on the Euclidean
distance. In [16], the well-established Scale-invariant Feature
Transform (SIFT) [24] feature detector was used. Although the
matching process was not described, it is usually performed
using the Euclidean distance. The Harris Corner Detector [25]
was used in [4] and matching was achieved using normalized
correlation. Works mentioned so far rely mainly on intensity

and gradient information for matching features. Unfortunately,
these algorithms provide very poor results (or fail completely)
in the multimodal stereo configuration tackled in our work.
The most obvious reason would be the fact that in a cross-
spectral image pair, the relationship between pixel intensities
of the thermal and visible images is nonlinear. That is, pixels
that appear bright in a thermal image might appear dark in
its visible stereo pair and vice versa. In this sense, having
information on pixels in one modality (i.e., thermal or visible)
does not provide any information on the corresponding pixel of
the other modality. It is also to be noted that all of the methods
mentioned above rely on images acquired in the visible part of
the spectrum. These differ greatly from thermal imagery, which
is characterized by low resolution and lack of textureness.
Jung et al. [26] proposed an algorithm for egomotion estimation
from a monocular infrared (IR) camera. Focus of expansion was
used as a basis for feature matching and egomotion was com-
puted using reprojection errors. However, the shown results did
not include egomotion trajectories. In [27], authors proposed
a similar monocular approach but using two cameras: thermal
and visible. A handover mechanism was introduced, but once
again, each camera was separately used for monocular SLAM.
The cross-spectral setup was not used in a stereo fashion, and
hence, no matching was required between images.

B. Background

In contrary to what is generally believed, any object that has a
temperature greater than the absolute zero is a source of thermal
radiation (even cold objects) as it emits heat in the IR spectrum.
Within the electromagnetic spectrum, IR light lies between the
visible and microwave bands [see Fig. 1(a)]. It is traditionally
divided into three subbands: near-, mid-, and far-IR. From
these, only portions are of interest as most of the radiation is
absorbed by water and carbon dioxide molecules present in
the atmosphere [see Fig. 1(b)]. These are the short-wavelength
IR (SWIR/NIR) [0.7–1.4 μm]; the medium-wavelength IR
(MWIR/MIR) [3–5 μm]; the long-wavelength IR (LWIR/FIR)
[8–14 μm]. The subband of interest in our work is the far-
IR or thermal. FIR cameras are widely used for night-time
vision-based driver assistance applications (e.g., pedestrian de-
tection [28]). In the far-IR band, heat reflectance of observed
objects hardly contributes to the captured image. Instead, it is
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composed mainly of the objects’ thermal radiation. Intensity
information contained within these images does not vary with
lighting conditions but rather with changes in temperature. This
makes it possible for thermal cameras to see in the dark (i.e.,
nighttime) and through smoke or fog. Nonetheless, IR imagery
exhibits a number of challenges compared with visible imagery
[29] namely: 1) high noise and low spatial resolution, where the
former invalidates the smoothness model, and the latter means
losing high-frequency data; 2) history effects caused by the fact
that the brightness of a pixel in a thermal image depends on
objects’ self-emissions, which are function of their temperature
as well as the environment’s temperature. In contrary to light
variations, temperature variations take time in general. This
means that the information captured by thermal sensors does
not depend only on the instantaneous states of the objects
being imaged but also on the effects of the history of changes.
Therefore, pixel information captured by the camera may relate
to an object that is no longer present in the scene (i.e., ghost
objects); and 3) image saturation due to the nature of thermal
imagery, and more precisely, thermal self-emissions. Objects
being imaged emit radiation, of which strength is proportional
to the fourth degree of the objects temperature. Therefore, very
dark and very bright objects are expected to be seen every
time. In such case, local texture information is lost as either the
bright objects are overexposed or the dark objects are under-
exposed. These drawbacks increase the difficulties encountered
within the different subtasks of VO. For instance, due to low
resolution, the number of extracted interest points is lower in
thermal images than in visible images. Furthermore, because
of the history effects, which invalidate the basic assumption of
the brightness constancy constraint, optical flow-based trackers
cannot be used to track features in sequential thermal images.
This paper is organized as follows: Section II describes the
proposed feature extraction and matching approach. Motion
estimation scheme is explained in Section III and the experi-
mental results are detailed in Section IV. Conclusions are drawn
in Section V, where some insights into our future work are
highlighted.

C. Motivations

Multispectral vision systems are commonly used on military
ground and air vehicles. This is dictated by the 24-h all-weather
operation capability required for these military assets in terms
of target/threat detection and identification. Similarly, in recent
years, cars manufacturers have been equipping new vehicles
with networks of sensors, from visible to thermal cameras. One
can take advantage of such multispectral setup to get more
functionality out of it and provide added value. This forms
the main motivation of this paper, where the aim is to develop
strategies that take advantage of what is already available in
terms of sensors and accomplish more tasks than what they
were designed for. One concrete instance of utilization is on-
board military vehicles, where the former setups would be
used for egomotion estimation in addition to the inherited
“Detection, Recognition, and Identification” military-oriented
functions. This can be particularly beneficial when the military
assets are facing GPS signal loss or jamming, and alternatives

must be used to allow self-localization with respect to the
surrounding environment. Therefore, the prime aim of this
paper is to demonstrate the feasibility of egomotion estimation
from a multispectral setup. The same task has been widely
demonstrated in the literature using a pair of (or a single)
visible band cameras. Indeed, the idea of this proposed solution
is to exploit the existence/availability of different modality
sensors such as thermal cameras that are usually dedicated to
the detection and tracking for either day (cluttered) time or
nighttime. The goal is to improve and complement a monocular
visible band camera based motion estimation setup into a more
efficient stereo multispectral motion estimation setup without
the need of installing two visible cameras. Tackling night-time
VO is not considered in the scope of this paper.

II. FEATURE EXTRACTION AND MATCHING

Feature extraction is a low-level image processing task that
represents a prerequisite for most computer vision applications.
This is particularly true in the case of autonomous navigation
applications, where essential information contained within an
image needs to be extracted. Our interest point extraction and
matching strategy is detailed in our previous work on multi-
modal stereo matching [30]. Nevertheless, in order to help the
reader and make this paper self-contained, a summary of the
approach is given here.

A. Feature Extraction

The goal is to represent a given image by a set of distinctive
interest points or features. These should be stable enough to
be repeatedly detected, invariant to geometric transformations
and robust to noise. Phase congruency (PC), the adopted feature
detector, is derived from the work done by Morrone and Owens
[31] based on the local energy model (LEM). This model was
shown to successfully explain a number of psychophysical
effects in human feature perception [32]. The LEM assumes
that image features are located in the frequency domain, where
their Fourier components are maximally in phase. Tradition-
ally, intensity-based extractors assume them to be at points of
maximal intensity gradients. These classical operators exhibit
a common behavior. The corner response varies considerably
with image contrast and changes in lighting conditions making
the setting of appropriate thresholds a difficult task. In [33],
Kovesi represented the PC at a position x as follows:

PC2(x) =

∑
n W (x) �An(x)ΔΦ(x)− T �∑

n An(x) + ε
(1)

where

ΔΦ(x)=cos
(
Φn(x)−Φ̄(x)

)
−
∣∣sin (Φn(x)−Φ̄(x)

)∣∣ . (2)

In (1) and (2), An(x) and Φ(x) represent, respectively, the
amplitude and phase of the nth component at position x; W (x)
is a factor that weights for frequency spread; ΔΦ(x) is the
phase deviation; T is the estimated noise influence; and ε is
a small constant added mainly to avoid division by zero. The
symbols � � denote that the enclosed quantity is equal to itself
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Fig. 2. IR and visible stereo pair with corresponding edge maps. (a) and (b)
IR and visible images. (c) and (d) Corresponding edge maps. (Images from our
data set).

when its value is positive and zero otherwise. This means that
only energy values that exceed the noise level T are taken
into account in the result. In (2), Φ̄(x) represents the weighted
mean phase angle. In practice, the PC is computed using banks
of Log-Gabor filters at different frequencies and orientations.
Our implementation comprises a set of 24 Log-Gabor filters
corresponding to six orientations at four frequencies. They are
used to obtain the PC map of the images used to extract edges
and corners by calculating the maximum (M) and minimum
(m) moments

M =
1
2

(
c+ a+

√
b2 + (a− c)2

)
(3)

m =
1
2

(
c+ a−

√
b2 + (a− c)2

)
(4)

where

a =
∑

(PC(θ) cos θ)2 (5)

b =
∑

(PC(θ) cos θ) (PC(θ) sin θ) (6)

c =
∑

(PC(θ) sin θ)2 (7)

where PC(θ) represents the PC value determined at orientation
θ and the sum operation is performed for the set of the used
orientations (06). At this stage, a given pixel is labeled edge
if its maximum moment is large. It is labeled corner if, at
the same time, its minimum moment is also large. Fig. 2
shows the resulting edge map for a multispectral image pair.
In order to improve our detection and matching cross-spectral
approach [30], nonmaxima suppression, and feature spreading
were introduced.

1) Nonmaxima Suppression: Once corners are extracted, a
common observation is that these might be clustered. This
can possibly add ambiguity when matching those features.
One solution to tackle this problem is the use of nonmaxima

Fig. 3. Extracted features in a stereo pair (left:IR, right:visible). (a) and (b)
Raw. (c) and (d) Using nonmaxima suppression. (e) and (f) Using subimage
extraction.

suppression. It is used in computer vision applications and more
specifically in feature extraction algorithms [24]. It mainly
consists in keeping only corners larger than all their neighbors.
Fig. 3 illustrates the obtained corners before and after applying
the nonmaxima suppression using a three-pixel neighborhood.

2) Spreading Features Across the Image: A common prob-
lem with feature detectors is that some areas of the images are
overloaded with interest points, whereas other regions are left
featureless (i.e., nearly empty). This is due to the fact that the
detection process is carried out at a small scale where only a
restricted area around a given pixel is considered. Fortunately,
there are alternatives for this limitation. In our work, the consid-
ered image is subdivided into subimages, where the detection
takes place. A maximum number of features are allowed per
subimage to guarantee the spread of interest points to all image
regions if there is enough texture. Fig. 3 illustrates an example
contrasted to the original detection scheme.

B. Feature Description

The next step is matching the extracted keypoints. For this
aim, descriptors are computed based on the edge histogram
descriptor (EHD) [30] and combined with the Log-Gabor co-
efficients (24 elements) computed in the previous step. This
yields a larger descriptor incorporating frequency and shape
information. Such descriptor choice is primarily dictated by
the nonlinear relationship intensity-wise between multispectral
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images, which make the use of gradient-based descriptors use-
less. Furthermore, as concluded in [34] and shown in Fig. 2,
FIR images tend to preserve the same boundaries as visible
images. This implies that a descriptor based on the shape in-
formation around the keypoints should provide better matching
performance. There are many edge detection algorithms in the
literature (e.g., Canny [35], Laplacian of Gaussian [36]) that
can be used to compute the first part of the descriptor (EHD).
However, we opted for the edge map obtained from the PC
as it is computed in the previous step meaning that no extra
computation is required. In addition, experiments with classical
algorithms were conducted where no significant improvements
were noticed. The spatial component of the descriptor is ob-
tained as follows:

• Select a region of P × P pixels centered at the keypoint
of interest from the edge map.

• Divide the region into 16 (4 × 4) subregions.
• Compute local edge histograms for each subregion where

five bins are used to categorize an edge: horizontal,
vertical, 45◦ diagonal, 135◦ diagonal, and isotropic (no
orientation).

The resulting histogram vector formed of 80 bins (4 × 4 × 5)
is then normalized. Combining the two parts creates the sought
descriptor consisting of 104 elements.

C. Matching

There are mainly two types of matching tackled within the
scope of this paper. This is driven by the fact that at any
time t, the algorithm is fed with four input images: left and
right at times t− 1 and t. Therefore, in addition to the stereo
matching that takes place every time a stereo image pair is
acquired; there is a temporal (sequential) matching that needs
to be addressed. For this dual objective, the cosine similarity
function is used to compare features descriptors. Let DL be
the descriptor of the feature fL at position (xL, yL) in the
left image. Similarly, let DR be the descriptor of a potential
match fR at position (xR, yR) in the right image within a search
window dispx × dispy centered at (xL, yL). dispx and dispy
account for the maximum expected horizontal and vertical
disparities, respectively. The similarity function is given by

S(DL, DR) =

∑
j dLjdRj√∑

j dLj
2 ∑

j dRj
2

(8)

where (DL, DR) are the descriptors of the compared features;
dLj

, dRj
are, respectively, the jth coefficients of (DL, DR).

The feature in the right image that maximizes the similarity
function for a given feature in the left image is selected as a
potential match. A threshold is then applied to keep only strong
matches. As stated above, the algorithm is fed with four images:
previous left (imLt−1

), previous right (imRt−1
), current left

(imLt
), and current right (imRt

). The matching is carried out
in a loop fashion [14] to keep only features that find their
correspondences across all four images. Fig. 4 illustrates the
different steps. We first start by finding stereo matches between
(imLt−1

) and (imRt−1
) (I). Then, sequential matches are found

Fig. 4. Illustration of the loop matching steps.

between (imRt−1
) and (imRt

) (II). Another stereo matching
is performed between (imLt

) and (imRt
) (III). Finally, a

last sequential matching is performed between (imLt−1
) and

(imLt
) (IV). At this stage, if the starting and ending feature

points are identical, then the match is accepted. Otherwise, it is
simply rejected. This process is carried out for all the features
extracted in the first image (imLt−1

).
As the multispectral image pairs are to be rectified, the

search window (2-D) reduces to a search line (1-D) in the
stereo matching process. Correspondences are expected to be
found on the same line (i.e., epipolar constraint) of the left and
right images. However, this is not the case with the sequential
matching where a 2-D search would be still required.

III. MOTION ESTIMATION

The proposed algorithm for egomotion estimation is based
on a reduced version of the wide variety of bundle adjustment
algorithms surveyed in [37]. This version is called WBA as it
analyzes only a portion of the image set to derive the motion
estimates. In our case, only the previous and current image
pairs of the sequence are used at each time step. First, features
are extracted and matched in all four images as described in
Section II. Egomotion estimation is achieved using these
matches by minimizing reprojection errors using Gauss–
Newton optimization within the WBA framework. An out-
lier rejection scheme based on random sample consensus
(RANSAC) [38] is included prior to the final motion opti-
mization step. Outliers that occur due to false matches or
matches detected on independently moving objects are dealt
with. Each of the aforementioned steps is detailed here along
with a reminder of the camera model.

A. Camera Model

In the current work, a multispectral stereo vision setup is
considered. The intrinsic and extrinsic calibration parameters of
the camera are assumed to be known. Let K be the calibration
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parameters matrix. In what follows, the left camera is con-
sidered as the reference camera. The relationship between the
homogeneous image coordinates x̂ = (u, v, 1) and the camera
coordinates XC = (XC , YC , ZC) is given by

x̂ = K.XC. (9)

It is worth mentioning that the parameters matrix K is identical
for both cameras after rectification of the images. Considering
the projections on the left and right images, this yields

K = KL = KR =

⎛
⎝

αu 0 u0

0 αv v0
0 0 1

⎞
⎠ (10)

where αu, αv correspond to the focal length u0, v0 the principal
point coordinates. Therefore, the projections x̂L = (uL, vL, 1)
and x̂R = (uR, vR, 1) on the left and right cameras, respec-
tively, are given by

x̂L =K.XC (11)

x̂R =K.
(
XC − (bL, 0, 0)T

)
(12)

where bL denotes the stereo baseline. Note that vL and vR
are identical. It is then convenient to define a vector y =
(uL, vL, uR) of the projected coordinates on the stereo images
obtained by applying the projection function π to a 3-D point
X (with respect to the left camera)

y = f(X) =

⎛
⎝

uL

vL
uR

⎞
⎠ =

⎛
⎜⎝

αu

(
X
Z

)
− u0

αv

(
Y
Z

)
− v0

αu

(
(X−bL)

Z

)
− u0

⎞
⎟⎠ . (13)

We assume that the camera parameters do not change with time
allowing the bundle adjustment to not recompute them again.

B. Motion Parameters

The camera/vehicle motion can be regarded as a combination
of rotations and translations embodied in a motion parameters
vector m = (φ, θ, ψ, tx, ty, tz). The first three parameters cor-
respond to the Euler rotations and form the rotation matrix
R = (φ, θ, ψ), whereas the last parameters form the transla-
tion vector t = (tx, ty, tz). Writing the transformation matrix
Mp(m) derived from the motion parameters gives

Mp(m) = Txyz(t).Rx(φ).Ry(θ).Rz(ψ). (14)

This transformation matrix, in homogeneous coordinates, rep-
resents the evolution of the motion of a given vector according
to the 6 DOF parameters m.

In order to retrieve the motion parameters m, the following
bundle adjustment formulation of the reprojection error func-
tion is minimized:

S(m) =
1
2

n∑
i=1

q∑
j=1

rj

(
m,X(i)

)2

(15)

where rj represent the residuals that are functions of the motion
vector m. X(i) correspond to the observations. By observations,

it meant the 3-D coordinates obtained from the triangulation
of matched features across a stereo image pair. According to
[37], Gauss–Newton optimization postulates that the optimal
solution m to (15) can be computed in an iterative manner by
calculating an increment δm at each iteration using the Jacobian
matrix J ≡ dr/dm of the residuals vector with respect to the
motion parameters m as

(JT .J).δm = −JT .r (16)

where r ∈ R
n is the residual vector and (JT .J) represents an

approximation of the Hessian matrix [37]. There are typically
two reprojection strategies for motion estimation where either
points from the previous pair are reprojected into the current
frame or the other way round. However, as stated in [5],
combining both reprojections yields better estimates of the
motion. Following the same strategy, the residuals are defined
as rd ∈ R

6

rd =
(
rTf , r

T
b

)T
(17)

where

rf = yk − ŷk = yk − f (Mk(m̂).Xk+1) (18)

rb = yk+1 − ŷk+1 = yk+1 − f
(
M−1

k (m̂).Xk

)
. (19)

In (18), ŷk correspond to the estimated coordinates of the
feature on the previous camera frame. Similarly, in (19), ŷk+1

are the estimated coordinates of the feature on the current
frame.

C. Outlier Rejection

In order to improve the accuracy of the motion estimation,
the algorithm has to get rid of outliers. These are generally
caused by matched features belonging to nonstationary objects
or simply undetected false matches from the matching process.
One way to deal with outliers is constraining the reprojection
error residuals relative to a feature to be bound by a user-defined
threshold ε. This constraint is expressed by

⎛
⎝

q∑
j=1

rj

(
m,X(i)

)2

⎞
⎠ < ε. (20)

To this end, the bundle adjustment estimation is wrapped in
a RANSAC scheme. At each iteration, three matched points
are randomly selected to estimate the motion parameters. The
rest of the points are tested and classified as inliers or outliers
according to (20). The winning solution with the largest number
of inliers is then used to refine the motion parameters m.

D. Additional Constraints

The randomly selected three points for motion estimation
need to be spread across the image. Therefore, we incorpo-
rated an additional constraint into the algorithm. Let a(xa, ya),
b(xb, yb), and c(xc, yc) be the three candidate points in the
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image. If the area covered by the triangle abc is larger than
a user-defined portion of the image area then the points are
accepted. Combining this constraint with the feature extraction
constraint ensures that motion estimation is carried out on fea-
tures that are spread across the image. Thus, near and far objects
are considered to obtain more precise egomotion estimation.

E. Large Motion Challenges

As it will be shown in the experimental section, the pro-
posed approach provides promising results. However, during
testing, it came to our attention that the temporal matching
might occasionally fail to find correspondences in some specific
and challenging conditions. This is particularly true when the
vehicle goes into speed bumps at a relatively high speed. Losing
sequential matches means that egomotion cannot be estimated
at those frames and therefore motion information is lost. We
investigated a solution to tackle this problem. Instead of using
descriptors based matching with search windows, we opted for
an optical flow-based method, namely, the pyramidal imple-
mentation of the Lucas– Kanade (LK) tracker [39] for feature
tracking. The choice of the pyramidal version was motivated by
the fact that it can deal with large motions by using different
image scales in the tracking process. The original LK tracker
[40] handles only small pixel displacements. However, optical
flow cannot be used on IR images due to the reasons mentioned
in Section I-B. Therefore, tracking was instead performed on
visible images. Matching features is carried out following the
same strategy explained in Section II-C. However, temporal
matches are obtained using optical flow within the visible
images. The loop cannot be closed as before. Instead, the
descriptor of the starting feature and the one computed from
stereo matching between (imLt

) and (imRt
) are compared. If

the distance between them exceeds a user-defined threshold,
then the loop is closed, and the match is accepted. Otherwise,
the match is rejected.

IV. EXPERIMENTAL RESULTS

A. Setup Overview

This section details the multispectral stereo head used in
our experiments together with the calibration and rectification
steps. Fig. 5 shows an illustration of the whole platform con-
sisting of the stereo head [see Fig. 5(a)] and the electric car [see
Fig. 5(c)] used to generate the data sets.

The stereo head consists of a pair of cameras separated
by a baseline of about 12 cm and a nonverged geometry.
One camera works in the IR spectrum, more precisely long-
wavelength IR and is referred to as FIR. It detects radiations
in the range of 8–14 μm. The other camera, which is referred
to as visible (VS), responds to the visible spectrum. Images
captured by the multispectral stereo head are calibrated and
rectified using [41]; a process similar to the one presented in
[42] is followed. It consists of a reflective metal plate with an
overlain chessboard pattern. This chessboard can be visualized
in both spectrums making possible the cameras’ calibration and
image rectification. Fig. 5 shows a pair of calibration images.

Fig. 5. Dataset acquisition system, calibration images, and typical set of im-
ages from semiurban and rural scenarios. (a) Multispectral stereo rig. (b) Stereo
rig mounted on the car. (c) Electric vehicle used as mobile platform to generate
the data sets. (d) IR image of the checkerboard pattern. (e) Visible image of the
checkerboard. (f) and (g) Typical pairs of stereo images from urban sequences.
(h) and (i) Typical pairs of stereo images from rural sequences.

The FIR camera (Gobi-640-GigE from Xenics) captures
images up to 50 fps with a resolution of 640 × 480 pixels.
The VS camera is an ACE acA645-100gc from Basler that
provides up to 100 fps with a resolution of 658 × 492 pixels.
Both cameras are synchronized using an external trigger [see
Fig. 5(a)]. The focal lengths of the cameras were set so that
pixels in both images contain a similar amount of information
of the observed scene. The whole platform is placed on the roof
of a vehicle for driving assistance applications [see Fig. 5(c)].
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TABLE I
MULTISPECTRAL VIDEO SEQUENCES USED FOR EXPERIMENTS

TABLE II
ESTIMATED MO VARIATION WITH NUMBER OF DETECTED FEATURES

Once the FIR and VS cameras have been calibrated, their
intrinsic and extrinsic parameters are estimated. Additionally,
ground truth geopositional information is obtained from a low-
cost GPS connected to the acquisition system. Hence, every
frame from the camera is enriched with the latest latitude-
longitude information from the GPS. However, the GPS data
is updated almost 2 times per second, which is considerably
slower than the camera frame rate.

B. Results

Our MO technique was tested against a series of real out-
door sequences captured from our experimental vehicle. These
scenarios are split into semiurban and rural scenarios (see
Fig. 5) and detailed in Table I. The former are richer in terms
of extractable features than the latter. However, at the same
time, they present more probabilities of containing nonstation-
ary objects (i.e., vehicles, pedestrians. . .). All these sequences
represent real traffic conditions with strong illumination vari-
ations and lack of texture. The texture issue applies more to
thermal images and can be explained by the fact that FIR pixel
brightness depends on heat variations. Most of the lower part of
images is composed of ground, where heat does not vary a lot.
This means that this part of the image would be textureless and
therefore not used in the matching process. Unfortunately, this
limitation impacts the motion estimation in a sense that closer
objects within the scene cannot be included in the computation
process.

1) Feature Extraction and Matching Analysis:
Number of Detected Features: Here, we show the influence

of the number of detected features on the estimated MO.
With this approach, thresholds used to extract interest points
are implicitly adapted (i.e., adaptive thresholding) in order to
get the same feature numbers in thermal and visible images.
Experiments were conducted using different amounts of fea-
tures n = {500, 1000, 1500, 2000, 2500}. Table II shows the
distance errors (%) as well as the RMSE (in meters) for
different values of extracted features and Fig. 6(a) illustrates

Fig. 6. Influence of the number of detected features on the motion estimation.
(a) MO trajectories (yellow line: GPS; red line: 500; magenta line: 1000; green
line: 1500; blue line: 2000; white line: 2500). (b) Graph showing the variation
of the RMSE with respect to the number of detected features.

the estimated trajectory for each value on an initial data set.
It corresponds to Vid00 in Table I, which consists in an urban
sequence containing moving objects and a left bend. The es-
timated MO accuracy increases with the number of detected
features. However, in our experiments, it reaches a maximum
and stabilizes at a certain number of features (1500), as shown
in Fig. 6(b). This could relate to the added number of false
matches not detected in the matching process.

Feature Correspondence: Here, we present some results
regarding the performance of feature correspondence. We com-
pare our correspondence approach to state-of-the-art intensity-
based algorithms, namely, SIFT and SURF, as well as binary
techniques such as BRISK [43] and ORB [44]. Note that we do
not dispose of the disparity ground truth and the comparisons
in terms of correct matches are qualitative. A visual inspection
was carried out to determine good matches when produced by
the algorithms. All the algorithms were implemented using the
OpenCV library [45] with heuristically tuned parameters. The
tuning process was independently carried out for the visible
and thermal images. This comes from the observation that
setting the same thresholds for both modalities led to disparities
in terms of the number of extracted features. For instance,
setting a similar contrast threshold (e.g., 0.04) for the SIFT
detector yields the extraction of 503 features for the thermal
image in contrast to 2781 for the visible image. In order to
have a fair comparison, the parameters of all the tested detec-
tors/descriptors were tuned to have an equal number of features
in both modalities (2000). In addition, the epipolar constraint is
imposed on all detectors when computing matches to keep only
those on the same scan line (rectified images). Indeed, when
this constraint is not implemented, the intensity-based detectors
provide almost no match [see Fig. 7(c)]. This observation is
valid for the other algorithms as well. Fig. 7 shows a sample
of the results obtained when using intensity-based algorithms.
Results obtained using our approach on the same image pair are
shown in Fig. 8(f) (to avoid duplication). Table III summarizes
the results obtained by the tested algorithms on a sample
of 100 images from Vid01. In general, all tested techniques
provide very poor correspondences. BRISK and SURF struggle
to extract features from thermal images despite tuning of their
parameters. However, SIFT extracts the required number of



1218 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 3, JUNE 2015

Fig. 7. Feature matching results using intensity-based detectors/descriptors.
(a) and (b) Original thermal and visible images. (c) Correspondence using
SURF without enforcing epipolar constraint. (d) Matching using SURF with
epipolar constraint. (e) SIFT matching results. (f) ORB matching results.
(g) BRISK matching results.

features once tuned. The ratio matched/detected highlighted in
Table III indicate that intensity-based algorithms provided poor
correspondence in the multispectral scenario. When inspecting

Fig. 8. PC edge map versus Canny edge map. (a) and (b) Original thermal and
visible images. (c) Corresponding edge maps using Canny. (d) Corresponding
edge maps using PC. (e) Matching results using Canny. (f) Matching results
using PC.

TABLE III
FEATURE CORRESPONDENCE RESULTS ON SAMPLE IMAGES

the matches visually, it seems that on average these algorithms
find 3∼six correspondences successfully. In contrast, our ap-
proach provides around 250∼300 matches in average.
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Fig. 9. Repeatability results on the bikes dataset.

Edge Filter: We also show the influence of the edge de-
tector used to compute features’ descriptors on the matching
performance. For that, we compare the PC edge map (currently
implemented in the descriptor) with the well-known Canny
edge detector. Once again, different thresholds had to be in-
dependently tuned for the visible and thermal images for the
Canny detector, whereas the same values are used with PC. The
tests show that no significant gain is obtained when replacing
the PC edge map by Canny’s [see Fig. 8(c) and (d)]. In addition,
it would induce more computational burden on the algorithm
(when using Canny). This is due to the fact that when using
PC, both corners and edges are computed in one run. Another
aspect related to the Canny operator is that lines are detected
twice unlike PC, which provides a single response. The same
observation was also made in [46]. In general, the matching
algorithm gives roughly the same numbers of features using PC
and Canny [see Fig. 8(e) and (f)].

Motion Blur: Image blur induced by the motion of the
sensing system introduces more challenges on most feature
extraction algorithms. In order to show the robustness of our
algorithm to blurring effects, we used the bikes data set [47]
to evaluate the performance of the feature extraction compared
with SIFT. The data set contains images captured with varying
image blur. The VLBenchmark [48] was used to compute the
repeatability of both extractors. The repeatability can be defined
as the percentage of detected features that survive some trans-
formation or disturbance (blur) between two images. The higher
it is, the better is the detection algorithm. The results are shown
in Fig. 9, where it can be clearly seen that PC outperforms SIFT.
In addition, we noticed that motion blur occurred in some parts
of our data sets. For this reason, we picked sample images from
Vid01 (Fig. 10) to compare the feature extraction on blurred and
normal images representing the same scene (acquired at 0.1-s
interval). Once again, the frequency-based extractor performs
better than SIFT. Indeed, in Table IV, we can see that even
in the presence of blurred images, PC can extract the required
2000 features (without modifying the extraction parameters),

Fig. 10. Feature extraction on a sample pair of images from Vid01. (a) and (b)
PC feature extraction on normal and blurred images, respectively. (c) and (d)
SIFT feature extraction on normal and blurred images, respectively.

TABLE IV
EXTRACTED FEATURES WITH AND WITHOUT MOTION BLUR

whereas SIFT barely extracted half the required number of
features.

2) Outlier Removal: Experiments were also conducted to test
the motion estimation subprocess. To this end, different outlier
rejection threshold values were used to determine their influ-
ence on the MO outputs for Vid00. Setting a threshold value
underlines a tradeoff because high values allow more wrong
matches, whereas low values might discard valid matches.
Fig. 11(a) illustrates the obtained results on the same sequence
(Vid00). The resulting travelled errors are shown in Fig. 11(b)
for the different values ε = {1.5, 3.5, 5.5}. Fig. 11 also shows
the effect of not using the outlier rejection scheme within
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Fig. 11. Influence of the outlier rejection threshold on the motion estimation.
(a) MO trajectory (yellow line: GPS; red line: ε = 1.5; blue line: ε = 3.5;
magenta line: ε = 5.5; green line: without outlier rejection) (b) corresponding
travelled errors (same color legend applies).

the estimation of the trajectory. Note the divergence of the
outputted trajectory with respect to the other thresholds. As
expected, the accuracy of the motion estimation decreases with
the increase of the outlier rejection threshold. This is due to
the fact that more outliers are used in the process when the
threshold is increased.

3) Multimodal Odometry: The following results are based on
both types of sequences namely semiurban (Vid01 & Vid02)
and rural (Vid03 & Vid04). Note that the term semiurban
is used instead of urban as a good portion of the images
contain vegetation [see Fig. 5(g)]. Vid01 represents the simplest
scenario, where the vehicle is travelling along a straight road.
Vid02 is a more challenging data set within the same environ-
ment, which contains speed bumps and bends. Both sequences
have proven to be challenging as many nonstationary objects
and significant illumination variations were experienced. Vid03
corresponds to a straight road followed by a left bend in a rural
environment, where moving vehicles were overtaking our car
and where severe lighting conditions were encountered at and
after the bend. Vid04 represents a U-turn at a roundabout, where
MO suffered from blurred images at the level of the roundabout.
The major challenge in this type of scenario is that images lack
of nearby features. It is mainly due to the nature of thermal
imagery, where thermal response of the road varies less than
in the visible spectrum. This causes the corresponding image
region to be textureless. The direct impact is an underestimation
of the motion as noted in [49]. It is believed to be due to the lack
of close-by features combined to the short baseline of the stereo
rig. This issue will be addressed in future work.

Based on the previous results (Section IV-B1 and B2), a
fixed number of features (1500) is used. This guarantees a
reasonable amount of matches for odometry. In addition, an
outlier rejection threshold ε = 1.5 is selected.

As stated in Section IV-A, the geopositional information is
provided by a low-cost GPS considered as ’drifty’ ground truth.
For this reason, a more precise Google Earth-based ground truth
(GT) was manually generated. It was created by introducing
control points (based on the images) every 100 frames in
Google Earth. This allowed us to obtain a more precise ground
truth for comparison with MO estimated trajectories. Fig. 12(b)
illustrates the altitudes estimated by our MO compared with
the GPS readings for Vid01. Fig. 12(a) represents the elevation
profile extracted from Google Earth corresponding to the same
sequence. It shows that our MO estimates are far more accurate

Fig. 12. Comparison of the MO estimate of the altitude against GPS mea-
surements for Vid01. (a) Google Earth elevation profile of the trajectory.
(b) MO estimation of the altitude against GPS measurements. (c) Errors
between GT-GPS and GT-MO.

Fig. 13. MO trajectories and travelled errors for semiurban sequences. (a) and
(c) MO trajectories for Vid01 and Vid02, respectively (yellow line: GPS; red
line: MO; yellow circle: starting point). (b) and (d) Corresponding travelled
errors.

than the GPS measurements. The same observation applies
for the estimated trajectory (of the same sequence) as it can
be noted in Fig. 12(c). It illustrates errors between Google
Earth-based GT and GPS measurements as well as between
GT and MO. Note that errors between GT-GPS are larger than
between GT-MO. Following these findings, the same strategy
was adopted for all the sequences, where two error graphs
are always plotted along with the estimated trajectory. The
first error is computed for every frame between MO and the
GPS readings that are linearly interpolated due to their low
update rate. The second error is the one computed every 100
frames between GT and MO. The errors that are adopted to
evaluate the MO performance are based on the GT-MO graphs.
Therefore, hereinafter, errors are always expressed from the
GT-MO graphs.
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Fig. 14. MO trajectories and travelled errors for rural sequences. (a) and (c)
MO trajectories for Vid03 and Vid04, respectively (yellow line: GPS; red line:
MO; blue circle: starting point). (b) and (d) Corresponding travelled errors.

Fig. 13 illustrates the trajectories computed by the GPS and
MO for the semiurban sequences (Vid01, Vid02). The peaks in
errors (MO-GPS) are due to the imprecision of the GPS and
are given as indication only. From Fig. 13(b) and (d), it can
be seen that the achieved results are successful reaching errors
as low as 2% and 3% for Vid01 and Vid02, respectively, and
defined as

error(%) =
100.mean(errors)
travelled distance

. (21)

These errors do not correspond to the ones commonly provided
in the literature and defined as the ratio of the last offset
(endpoint) to the travelled distance. The latter errors do not
provide information on the behavior of the system along the
whole trajectory in contrary to the errors provided here. The
estimated trajectories from the rural sequences are shown in
Fig. 14. Errors obtained in this scenario (rural environment) are
slightly higher than in urban sequences for the aforementioned
reasons. These errors are shown in Fig. 14(b) and (d). They
correspond to 5% and 4% for Vid03 and Vid04, respectively. In
general, the system is able to temporally track 40–50 features
due to the textureless nature of thermal imagery. However,
in the case of rural scenarios, most of them correspond to
far features therefore increasing the errors in the estimation
process. In severe lighting conditions, the number of tracked
features falls considerably (6–10), making the motion estima-
tion even noisier. Restrictions imposed by the RANSAC-based
outlier rejection deal with the wrong matches and allow more
robust estimations. Features on nonstationary objects are also
discarded by the same restrictions.

4) Visible Band Odometry: In order to be more complete in
the assessment of the proposed approach, we also compare our
approach to the algorithm introduced in [14] (Geiger_2011)
using a pure visible data set captured in the same conditions
(same route). This is mainly added to demonstrate the validity
of our approach in the pure visible band-based VO. For this
particular experiment, we used a stereo rig that consists in

Fig. 15. Comparison of the estimated trajectories on the visible band data
set. (a) MO trajectories (yellow line: GPS; red line: our approach; green line:
Geiger_2011). (b) Corresponding travelled errors.

Fig. 16. Illustration of MO and VO on similar data sets.

two IDS ueye cameras (resolution: 1280 × 1024) capturing
images at 10 fps. We recorded the same trajectory as in Vid00
using this setup. For the Geiger_2011 algorithm, we used the
parameters reported in their paper. As shown in Fig. 15, our
approach yields a better estimate of the trajectory. In average,
our approach computes 400 matches with 50% inliers, whereas
Geiger_2011 obtains 300 matches with 35% inliers. Inliers
are defined as the correct matches whose reprojection errors
are below a user-defined threshold (20). Note that the same
threshold (ε = 1.5) was used for both algorithms. In terms of
travelled errors (Fig. 15(b)), the proposed framework outper-
formed Geiger_2011 achieving errors of 1.28% compared with
1.66% for the latter.

5)MultispectralVersusVisibleOdometry:Thevisiblebandda-
ta set generated for the experiment described in Section IV-B4
was also used to compare the behavior of our approach on
multispectral data sets with respect to visible band data sets.
We illustrate the estimated trajectories obtained from both data
sets on a similar sequence (see Fig. 16). In other words, we
captured the same route using both types of setups each with its
own ground truth. As shown in Fig. 16, one can see that quite
similar results are obtained when using multispectral or visible
band data sets. A quantitative comparison is not possible at this
stage and will be addressed in future work.

6) MO Versus Monocular VO: Here we show a comparison
between trajectories estimated using the proposed MO scheme
and a classical monocular VO algorithm. In order to obtain a
fair comparison, images from both the visible spectrum and
thermal cameras were used to estimate the trajectory. Moreover,
we used the implementation of [50] with finely tuned parame-
ters to compare the results. Their monocular VO approach uses
L∞ norm with convex optimization for the motion estimation
part. SIFT is used to extract features, and matching is based
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Fig. 17. Comparison of MO and monocular VO. (a) MO and monocular
VO trajectories (yellow line: GPS; green line: MO; red line: monocular VO
using visible band images; white line: monocular VO using IR images).
(b) Corresponding travelled errors.

on the Euclidean distance between interest points. To deal
with the scale ambiguity relative to the projective effects in
monocular systems, they use an H∞ filter for the frame-to-
frame scale estimation. As shown from Fig. 17(a), the proposed
MO algorithm outperforms the monocular scheme in terms of
the estimated trajectory and the travelled errors [see Fig. 17(b)].
In addition, Fig. 17 shows that monocular VO provides less
accurate estimates than MO for both types of imagery (i.e.,
visible and thermal). However, although the travelled errors
from monocular VO are approximately the same, each modality
coped differently with the images of the travelled path. The end-
points of the two monocular algorithms in Fig. 17(a) as well
as the complete trajectories illustrate it clearly. This enforces
our motivation to take advantage of the available multimodal
setup to estimate the motion of the vehicle rather than using
each camera separately in a monocular fashion.

7) Optical Flow-Based Strategy for Challenging Sequences:
Fig. 18 illustrates the improvement obtained by switching the
temporal feature matching technique for sequences containing
speed bumps. In their presence, optical flow is used for a
number of frames to track interest points within the visible
images. The descriptor-based matching fails in these images to
obtain good sequential correspondences. However, in normal
operating conditions, the descriptor-based matching provides
the egomotion estimation subtask with less outliers than the
optical flow tracking. For this reason, it is utilized throughout
the sequences except when the vehicle encounters speed bumps
and large motions may occur. In this case, the MO output is
improved by approximately 15%, as shown in Fig. 18(b). Note
that speed bumps are detected using a simple yet effective
approach. Speed bumps are usually marked on the ground using
rectangular and triangular patterns in white paint. Therefore, the
lower part of the image is analyzed every N frames to look for
a similar pattern as in Fig. 18(d). Histogram thresholding and
blobs detection are used on FIR images to extract the sought
shapes. FIR images are used due to the large contrast between
the painted and nonpainted regions of the road induced by the
change in their thermal reflection (due to the paint). A basic
template matching scheme is then applied to test if the patterns
are present within the bottom part of the image. When detected,
the matching scheme automatically switches to the optical flow

Fig. 18. Improvement of multimodal odometry in sequences containing speed
bumps. (a) MO trajectories (yellow line: GPS; red line: MO with mixed
matching; green line: MO with descriptor matching only; red dot: starting point;
blue rectangles: positions of the speed bumps on the road). (b) Travelled errors
for both strategies. (c) Speed bumps painted pattern. (d) Processed bottom part
of the image showing the sought pattern.

tracking for a limited number of frames (i.e., time to get past
the bump).

V. CONCLUSION AND FUTURE WORK

A multispectral stereo odometry solution has been introduced.
To the best of our knowledge, it represents the first attempt
in the literature. Features are extracted using a frequency-
based detector, namely, PC, and described using a combination
of spatial and frequency information. Motion is retrieved using
a sliding WBA incorporating Gauss–Newton optimization and
RANSAC for outlier removal. The experimental part involved
the setting-up of a multimodal stereo rig on a vehicle and
the capture of our own data sets. Tests were performed under
real traffic conditions. Shown results validate our approach and
more importantly demonstrate the possibility to achieve MO.
As part of our future work, we intend to improve the temporal
matching scheme using available on-board sensors such as the
IMU in order to guide the search region for feature matching.
In addition, a pure night-time VO work is currently under
investigation using either a monocular approach, where only
one thermal camera is used or a stereo framework by using
two IR cameras (if available). In addition, we are investigating
other motion estimation techniques, where the aim is to further
improve the accuracy obtained from multimodal odometry.
Finally, generating data sets with varying distances, weather
conditions, and times of the day while incorporating different
types of stereo cameras is also under work.
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