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AbstrAct: the paper presents a factorization-based approach to make predictions in 
recommender systems. these systems are widely used in electronic commerce to help 
customers find products according to their preferences. taking into account the customer’s 
ratings of some products available in the system, the recommender system tries to pre-
dict the ratings the customer would give to other products in the system. the proposed 
factorization-based approach uses all the information provided to compute the predicted 
ratings, in the same way as approaches based on singular Value Decomposition (sVD). 
the main advantage of this technique versus sVD-based approaches is that it can deal 
with missing data. It also has a smaller computational cost. Experimental results with public 
data sets are provided to show that the proposed adapted factorization approach gives 
better predicted ratings than a widely used sVD-based approach.

KEy worDs AnD phrAsEs: Factorization technique, recommender systems, singular 
value decomposition.

Since the amount of information available on the World Wide Web increases 
constantly, sometimes it becomes difficult to focus on interesting information 
and discard redundant content. For this reason, there is a high demand for 
methods that select interesting information with respect to users’ preferences. 
Recommender systems target this demand by helping users to find items, 
using previous knowledge about the user’s preferences. Users give ratings 
only to some of the items and therefore the system is able to predict their 
preferences on the rest of items (this is known as prediction task). The system 
can also recommend products according to the user’s preferences (recommen‑
dation task). These two powerful tools are widely used on e-commerce sites. 
Since their introduction in the 1990s, recommender systems have been used 
to filter information on the Web and to provide recommendations for books, 
CDs, movies, news, electronics, financial services, travel, and other products. 
One of the most popular recommender systems is the one at www.amazon.
com. The customer rates some books and the system suggests other books, 
considering information from other customers. A different recommender 
system is used at www.everyonesacritic.net, where users give their opinion 
about movies and the system makes recommendations for people who share 
similar tastes. Another example (www.gnomoradio.org) consists of a music 
recommender system, where the user rates the music, and the system builds a 
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listening profile based on the user’s ratings. In addition, it recommends music 
from other users with similar profiles. Thus, in most cases, the main goal of 
a recommender system is to discover the customer’s preferred products in 
order to increase sales. This also helps customer, because they will only receive 
information filtered according to their individual taste.

Recommender systems store data in a large table of users (also denoted as 
customers) and items (or products). Hence, the information is stored into a 
matrix of data, whose rows and columns correspond to each user and item 
respectively, and whose entries correspond to the ratings customers give to 
items. In real problems, the number of customers and items is huge, so it is 
necessary to deal with large data matrices. Since each user only rates a subset 
of the items, most entries in the matrix of ratings are empty, which means that 
the matrix tends to be very sparse.

Related Work

The technique of collaborative filtering is widely used in recommender systems 
(e.g., [8, 14, 19]). It is usually based on finding neighborhoods of similar custom-
ers, whose similarity is obtained by computing the correlation between their 
opinions. The similarity function is different in each approach. Although this 
technique is useful in many different domains, it has a high computational cost 
and its prediction is limited when dealing with very sparse data, as pointed 
out by Brand and by Sarwar et al. [3, 15]. In fact, Billsus and Pazzani identify 
two important limitations in the collaborative filtering techniques [2]. The first 
one is that the correlation between two user ratings can only be computed 
on items that both users have rated. Since there are generally thousands of 
feasible items to rate, the number of overlapped items is quite small in most 
cases and the similarity measure is based on the correlation of only a few 
items. The second problem is that with this similarity measure, two users 
can only be similar if there is overlap among the rated items. As mentioned 
above, when the number of items to rate is large, it is difficult to obtain overlap 
among the ratings.

Billsus and Pazzani present collaborative filtering in a machine-learning 
framework to solve the aforementioned limitation [2]. Their approach is based 
on Singular Value Decomposition (SVD) [9] (details on SVD can be found in the 
Appendix). Other recommender systems use SVD to reduce data representa-
tion and give predicted ratings using linear regression (e.g., [1, 13, 15]). Sarwar 
et al. show the limitations of the classical collaborative filtering algorithms and 
propose to use SVD to deal with them [15]. Their experimental results show 
better performance of SVD with respect to collaborative filtering techniques 
when working with sparse matrices of ratings [15]. The main advantage of 
SVD is that it uses, not only information from correlated customers, but also 
information obtained from users whose ratings are not correlated. SVD makes 
it possible to project user ratings and rated items into a lower dimensional 
space. Thus, some users become predictors for other users’ preferences even 
without any overlap of rated items. Unfortunately, computing the SVD of a 
large matrix requires a high computational cost, and also all the data must be 
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known. Therefore, in order to be able to apply SVD, missing ratings must be 
filled in somehow. Some approaches add zeros in the missing entries, while 
others fill them with the corresponding row or column average (e.g., [15]). 
Then, these previously filled in missing entries are updated with the SVD. In 
a more recent paper, Sarwar et al. present an incremental SVD that aims at 
reducing the computational cost of the SVD [16]. The idea is to precompute 
an SVD decomposition by using the method in [15], considering a reduced 
number of users and items, which forms the model (known also as the basis). 
Then, this precomputed decomposition is used to perform predicted ratings 
for new users. The size of the basis of the precomputed SVD must be deter-
mined in order to obtain good predicted ratings—it should be small enough 
to produce a fast model and large enough to produce good prediction quality. 
Although this technique requires less time and storage space than the SVD, 
it can result in loss of quality due to the fact that the computed incremental 
SVD model is not orthogonal, as pointed out in [16].

A similar incremental SVD is proposed by Brand [3]. Actually, it was in-
troduced by Brand to predict the position of occluded features in computer 
vision problems [4]. Specifically, Brand presents a method for adding data 
to a thin SVD data model (see Appendix for details), which is significantly 
faster than full SVD. Instead of computing the SVD of a large matrix, an exact 
rank-1 update, which provides a linear-time construction of the whole SVD, 
is computed. The main advantage with respect to [16] is that the obtained 
model is orthogonal, which provides better results. Moreover, Brand proposes 
to use some prior knowledge in order to obtain better predicted ratings. This 
approach first rearranges the rows and columns of the matrix of ratings so 
that a high density of data is accumulated in one corner of the matrix. This 
initial submatrix grows out of the corner by sequential updating with partial 
rows and columns. An imputation update that maximizes the probability of 
correct generalization is used to fill in the missing entries. The main drawback 
of this technique is that the result depends on how the data are sorted (see 
[10]). Furthermore, the goodness of the predicted ratings depends on the size 
of the original full matrix, which tends to be very small in most cases, due to 
the sparse nature of the matrices of ratings.

In addition to the aforementioned limitations, a common problem of col-
laborative filtering techniques, and of most recommender systems, is that they 
do not properly model human-to-human interaction. In order to deal with this, 
conversational recommender systems have been recently proposed (e.g., [6, 12]). 
These systems provide dialogues supporting the customer in the selection 
process. By adding the user’s feedback, the system can improve the predic-
tion of the product the user may be interested in. This type of recommender 
system is beyond the scope of the present work.

Objective

The current paper presents an approach for dealing with the prediction task in 
recommender systems. It is an extension of the previously introduced meth-
od [11]. The proposed approach uses the fact that the problem can be reduced 
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to a low-dimensional one. Thus, the goal consists in the approximation of the 
data matrix by a low-rank matrix. An adaptation of a factorization technique 
originally introduced for the Structure from Motion problem (SFM) [17] is 
used to find the low-rank matrix approximation. In particular, the Alterna‑
tion technique [18], which has been widely studied in the computer vision 
framework (e.g., [5, 7, 10]), is used. Given a matrix of ratings W, the Alterna-
tion technique aims at finding the best A and b factors whose product results 
in the best low-rank matrix approximation of W. At the same time, missing 
entries in W are filled in with the product of the recovered factors Ab. Hence, 
the prediction task in recommender systems can be seen as a way of filling 
in the missing entries in the matrix of ratings. The proposed approach uses 
information from all the users, not only from the correlated ones, in the same 
way as the SVD-based approaches. One of the advantages of the Alternation 
technique over the SVD is that it can deal with missing data, and thus there 
is no need to either fill in the missing ratings with zeros or averages before 
applying it or to begin with an initially full submatrix. In addition, its com-
putational cost is not as high as the SVD approach. The performance of the 
proposed adapted factorization approach is compared with the SVD-based 
method proposed in [15].

An SVD-Based Approach

Drawbacks of Collaborative Filtering Techniques 

As mentioned in the preceding section, Sarwar et al. report some of the limita-
tions of the collaborative filtering techniques commonly used in recommender 
systems [15]. These techniques are based on finding neighborhoods of similar 
customers by computing a correlation coefficient. Sarwar et al. point out that 
in some cases, the correlation coefficient is defined between customers that 
have only rated few products in common [15]. This produces a limitation re-
ferred to as sparsity that is engendered by the fact that recommender systems 
generally work with large sets of products. Sarwar et al. also mention the 
synonymy limitation, which occurs because correlation-based systems would 
see no match between different product names that refer to similar objects. 
Finally, they comment on the scalability limitation: that is, the computational 
cost of the nearest-neighbor algorithms grows with the number of customers 
and also the number of products, which are both very large in most recom-
mender systems. In order to solve these limitations, Sarwar et al. propose an 
SVD-based approach for recommender systems [15] that is briefly introduced 
in the next section.

Sarwar et al.’s Proposal

For the sake of simplicity, this approach will hereinafter be referred to as 
Sarwar’s approach. Let W be a matrix of ratings where every Wij corresponds 
to the rating given by the ith-user to the jth-product. In the case where W 
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contains missing ratings, these missing entries must first be filled in somehow 
(otherwise the SVD could not be applied).

Sarwar et al. propose to fill in the missing ratings with the corresponding 
column average (namely, product or item average), since this gives better 
results than using the row average (customer or user average) [15]. Then the 
entries are normalized by subtracting the corresponding row average. Once 
the data matrix W has no missing ratings, the SVD is computed, given the 
decomposition: W = uΣVt. The best rank‑r approximation to W is obtained by 
keeping only the r largest singular values of Σ(Σr). Accordingly, the dimensions 
of u and V are also reduced and the matrix Wr = urΣrVr

t is the closest rank‑r 
matrix to W. More details about the SVD can be found in the Appendix.

Finally, the predicted rating Wij of the ith-customer to the jth-product is 
obtained with the following expression:

 
W w u Vij i r r i r r

t

j
= + ( ) ( )Σ Σ1 2 1 2/ / ,

 
(1)

where w\i is the ith-row average of W.
A disadvantage of this approach is that the computational cost is very high. 

Due to this fact, with concrete data sets the number of customers and products 
must be reduced. In the current paper, Sarwar’s approach is implemented 
by using the aforementioned thin SVD (see Appendix for details), in order to 
reduce its computational cost [15].

Summary

Experimental results show that Sarwar’s approach, which is based on SVD, 
performs better than collaborative filtering techniques when the training data 
set is very sparse [15]. Furthermore, the SVD-based approach provides better 
on-line performance than collaborative filtering techniques [15]. On the other 
hand, collaborative filtering techniques perform slightly than the SVD-based 
approach when there are enough training data (more than 50%) [15].

Proposed Approach

This section proposes an adapted factorization technique to predict missing 
rates in recommender systems. Concretely, the Alternation technique is used to 
find the best low-rank matrix approximation of the matrix of ratings W [18].

Given a matrix of ratings Wc × p, where c and p are the numbers of users and 
products, respectively, the goal of the Alternation technique is to find the factors 
Ac × r and br × p that minimizes the expression Wc × p – Ac × rbr × pF

2, where r is the 
rank of the data matrix. Hereinafter, the size of the matrices is not specified, 
for the sake of simplicity. In the case of missing ratings in W, the expression 
to minimize is:

 
W Abij ij F

− ( )
2

,
 

(2)
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where i, j corresponds to the index pairs where W is defined.
The product Ab is the best rank-r approximation of the matrix W in the 

sense of the Frobenius norm [9]. Although the aim is the same as with SVD, 
the Alternation makes it possible to deal with missing data and, additionally, 
has a far smaller computational cost. As with SVD, A and b are r dimensional 
representations of customers and products, respectively.

The Alternation technique is a two-step algorithm that starts with one 
random factor (A0 or b0) and computes one factor at a time, until the product 
of the factors Ab converges to W. A filled matrix Wimputed is obtained with the 
product of these factors: Wimputed = Ab. The algorithm is summarized below:

Alternation algorithm: Given a matrix of ratings Wc × p, take a random c × r matrix 
A0 (analogously with a random r × p matrix b0) and repeat steps 1–2 until the 
product Akbk converges to W:

Compute bk from Ak – 1: 

 
b A A A Wk k

t
k k

t= ( ) ( )− −
−

−1 1
1

1  
(3)

Compute Ak from bk: 

 
A Wb b bk k

t
k k

t= ( )−1

 
(4)

Solution: Wimputed = Akbk is the best rank-r approximation to W.

One of the main advantages of this two-step algorithm is that the updates 
of A given b (analogously b given A) can be done by solving a least-squares 
problem for each row of A independently (analogously each column of b). 
Therefore, missing entries in W correspond to omitted equations (note that 
products (3) and (4) are computed only considering known entries in W). The 
Alternation algorithm considering rows of A and columns of b independently 
is presented below.

Alternation algorithm, row‑column formulation: Given a matrix of ratings Wc × p, 
take a random c × r matrix A0 (analogously with a random r × p matrix b0) and 
repeat steps 1–2 until the product Akbk converges to W:

Given Ak – 1, compute the columns of bk independently:

 
b A A A wj

k
t

k k
t j= ( ) ( )− −

−
−1 1

1
1 ,

 
(5)

where b j is the jth-column of bk, and w j is the jth-column of W. Note that only 
the known entries in w j and the corresponding rows in Ak – 1 are used.
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Given bk, compute the rows of Ak independently:

 
a w b b bi i

k
t

k k
t= ( )−1

,
 

(6)

where ai is the ith-row of Ak, and wi is the ith-row of W. Only the known entries 
in wi and the corresponding columns in bk are used.

Solution: Wimputed = Akbk is the best rank-r approximation to W.

The Alternation technique converges to a global minimum when W is full 
or has a low percentage of missing ratings. With a large amount of missing 
ratings in W, the algorithm may fail to converge. Concretely, the Alternation 
technique gives a good rank-r approximation to W, while the number of known 
entries at each row/column is at least r. Initially missing ratings are wrongly 
estimated otherwise. This is due to the fact that at each step of the Alternation 
algorithm, the number of unknown entries (each row of A or column of b) 
is r. The number of equations to compute these unknowns is the number of 
known elements in the corresponding row of W when A is computed (or the 
corresponding column when b is computed). If the number of equations is 
smaller than the number of unknowns, a pseudo-inverse can be computed, 
but, in general, the result will not be the global minimum of the least-squares 
problem. Actually, in order to obtain good results, the number of equations 
should be higher than the number of unknowns.

In the particular case of recommender systems, matrices tend to have a high 
percentage of missing ratings, due to the large number of users and items. 
In preliminary attempts, the classical Alternation technique was applied to 
predict missing entries in the matrix of ratings. The problem was that, without 
using any prior knowledge, some predicted ratings take very large values. 
The proposed adapted factorization technique uses the fact that the ratings 
given by the users lie in an initially known range of values: [m, m], where 
m and m are the minimum and maximum ratings, respectively. The idea of 
the adapted factorization technique consists in enforcing that the obtained 
predicted ratings (entries in Wimputed) lie in this known interval. Hence, large 
predicted ratings are avoided.

At each step of the Alternation algorithm, the rows of A (columns of b, 
respectively) are first normalized by using the norm of each row of A (or 
column of b), respectively. Thus, the resulting rows and columns can be 
thought of as unitary vectors. Note that with the normalization steps added 
to the Alternation algorithm, each entry of the imputed matrix (Wimputed)ij can 
be interpreted as the scalar product between the ith-unitary row of A and the 
jth-unitary column of b. That is:

 
W a bimputed ij i j ij( ) = = cos ,α

 
(7)

where ai and bj are the ith-unitary row of A and the jth-unitary column of b, 
respectively, and αij could be interpreted as the angle between them (if they 
were considered as vectors).

03 julia.indd   95 10/13/2009   10:33:25 PM



96     JuLIà, SAppA, LumbrErAS, SErrAt, AnD LópEz

Therefore, if no restrictions were added, the entries of Wimputed would take 
values in the interval [–1, 1]. However, the aim is to achieve that the predicted 
ratings in Wimputed lie in the [m, m] interval, as the initially known ratings in W. 
Hence, the initially known ratings of W should be transformed in order to be 
interpreted as the scalar product of two vectors. The following transformation 
is applied to the matrix W:

 

ˆ cos .W
W m
m m

=
−
−













π
 

(8)

Since the cosine function is not linear, the angles will be recovered from the 
corresponding arccosine function. Therefore, an interval where the cosine is in-
vertible has been defined: note that, by using the transformation (8), the cosine 
is applied to values in the [0, π] interval, where it is an invertible function.

The Alternation technique is applied to the transformed matrix W{, given 
a filled matrix of predictions: W{imputed. Finally, the following transform should 
be applied:

 
W

W
m m mimputed

imputed
=

( )
−( ) +

arccos
.

π  
(9)

Hence, the values in Wimputed lie in [m, m], as the values from the initial 
missing data matrix W. Recall that the arccosine can be applied because it is 
invertible in the interval [0, π].

The proposed adaptation of the Alternation focused on the prediction task 
in recommender systems is summarized in the following steps (differences 
with respect to the classical Alternation technique correspond to steps 1, 3, 5, 
7, and 9, highlighted with italic type):

Adapted factorization algorithm: Given a matrix of ratings Wc × p:

Apply the transformations summarized in (8), which give W{

Take a random c × r matrix A0

normalize the rows of A0

Compute bk from Ak – 1: 

 
b A A A Wk k

t
k k

t= ( ) ( )− −
−

−1 1
1

1
ˆ

 
(10)

normalize the columns of bk

Compute Ak from bk: 

 
A Wb b bk k

t
k k

t= ( )−ˆ 1

 
(11)

normalize the rows of Ak

Repeat steps 4–7 until the product W{imputed = Akbk converges to W{
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Apply the transformations summarized in Equation (9)

Solution: The matrix Wimputed contains the predicted ratings.

Rank Selection

As mentioned above, the prediction task in recommender systems can be 
reduced to find a low-rank matrix approximation of the data matrix. The 
particular dimension—that is, the rank value that gives the best predicted 
ratings—is not known a priori and cannot be directly computed when work-
ing with missing data.

Sarwar et al. point out that the goodness of the obtained predicted ratings 
depends on the selected rank value (r) of W [15]. In particular, they search 
for a rank value large enough to capture all the important information in 
the matrix, but small enough to avoid overfitting errors. Their experiments 
show that the overall performance of the SVD-based prediction algorithm 
significantly changes for a wide range of values of r [15]. The current paper 
presents results obtained by considering a reduced range of rank values. It 
will be seen further on that the predicted ratings obtained with [15] are similar 
in the studied range of ranks.

Brand proposes to use the rank value as a measure of the complexity of the 
model in the incremental SVD [3]. The objective is to maximize the probability 
of a correct generalization, while minimizing the complexity of the model. 
Furthermore, Brand claims that user ratings have poor repeatability from day 
to day. Therefore, a good low-rank approximation of the data has higher prob-
ability of generalization than a medium-rank model that perfectly reconstructs 
the data. His experiments show that the incremental SVD, with rank r = 4 
or r = 5, predicts the missing ratings better than matrices with higher rank. 
Brand points out that the higher the singular values are, the more constrained 
the imputation is by previous inputs, and therefore, the better the estimated 
SVD. With only a few ratings, the SVD has small singular values. In general, 
in those cases, a smaller rank will give better predicted ratings.

It should be remarked that results obtained with the Alternation technique 
highly depend on the selected rank value. That is, if W has a rank r and the 
Alternation technique is used to approximate it by a rank r’ matrix, being r’ > r, 
noise is added to the data during the process, in order to achieve a higher rank 
matrix. Consequently, the missing entries are wrongly filled in. On the contrary, 
if the matrix is approximated by a rank r’ matrix, with r’ < r, information is 
lost during the process. The missing entries are again wrongly filled in. Hence, 
the goodness of the predicted ratings, obtained with the Alternation, depends 
on the used rank value. Further on, it will be shown that using the proposed 
adaptation of the Alternation for recommender systems, the best predicted 
ratings are obtained, in general, for r = 4 or r = 5, as in [3]. In extreme cases, 
with a large amount of missing ratings, r = 3 or r = 2 is enough.

The present experimental results and comparisons were performed consid-
ering a range of different rank values. First, the error considering each rank 
value was computed. Then the rank with a minimum error was selected. Ac-
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tually, a similar procedure was carried out in [3] and [15]. The case r = 1 is not 
considered, since it makes no sense to project the data onto a 1-dimensional 
subspace.

Data Sets

The data sets used in the experiments will now be introduced. Concretely, 
three different public data sets are considered.

The first data set is the one provided by the MovieLens recommender 
system (www.movielens.umn.edu), a Web-based research recommender 
system. One of its data sets  consists of 100,000 ratings (discrete values from 
1 to 5) by 943 users of 1,682 movies. A user-movie matrix W, formed by 943 
rows and 1,682 columns, is constructed (see the obtained matrix in Figure 1, 
just as an example). Each entry Wij represents the rating (from 1 to 5) of the 
ith-user on the jth-movie. This data set is also used in [3] and [15]. Since the 
goal is to study the goodness of the obtained predicted ratings, some entries 
are randomly removed and used to study their recovered values. These en-
tries will hereinafter be referred to as the test data set. The rest of the entries 
used to recover the data will be referred to hereinafter as the training data set. 
Concretely, five different training and test data sets, split into 80,000 training 
and 20,000 test cases, are also given at www.movielens.umn.edu. The initial 
matrix of ratings has 93.69 percent of missing data, whereas using any training 
data set, a matrix of 94.95 percent of missing data is obtained.

The second data set was obtained from BookCrossing, a service where 
book lovers all around the world exchange books and share their experiences 
with others (www.bookcrossing.com). Ziegler et al. collect data from 278,858 
members of BookCrossing, referring to 271,379 different books [19]. A total 
of 1,157,112 ratings are provided. These ratings take implicit (0) and explicit 
(from 1 up to 10) discrete values. The data set used in [19] is available at www.
informatik.uni-freiburg.de/~cziegler. If all available data were used, the ob-
tained matrix of ratings would be extremely sparse (concretely, it would have 
a percentage of missing ratings of about 99.9968%). The present experiments 
consider a smaller matrix with a higher density of known ratings. In particular, 
it is required that each user rates a minimum of books. At the same time, only 
books rated by a minimum of users are considered. Different minimum values 
will be considered in the experiments, as presented below.

Finally, the last data set used in the experiments was obtained from Jester, 
an on-line joke recommender system: http://eigentaste.berkeley.edu. The 
complete data set is publicly available at www.ieor.berkeley.edu/~goldberg/
jester-data. Concretely, 4.1 million continuous ratings (from –10 to 10) of 100 
jokes from 73,421 users are provided. In this case, different users (rows) are 
selected randomly, given a matrix with smaller dimensions. The data set is 
presented by Goldberg et al. with a collaborative filtering algorithm based 
on principal component analysis (PCA) to obtain the predicted ratings in the 
Jester recommender system [8]. In particular, the authors propose to project the 
data into the eigenplane with the PCA. Then the projected data are clustered 
by using recursive rectangular clustering. When a new user asks for recom-
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mendations, the ratings the user gives are projected onto the eigenplane. Then 
the representative cluster of the user is found. Finally, the recommendations 
are computed from the ratings collected in the cluster.

Experimental Results

The predicted ratings obtained with the proposed adapted factorization ap-
proach will now be compared with the ones given by the SVD-based method 
presented in [15]. The latter method was selected based on the fact that it 
overcomes the performance of standard collaborative filtering techniques when 
dealing with very large and sparse matrices (see [15] for more details).

For the comparison, the mean absolute error (mAE) is used as a measure 
of goodness of the recovered values. This is the measure of goodness used in 

Figure 1. Matrix of ratings from the MovieLens data set, W943 x 1682, 
white entries correspond to unknown ratings; each row and column 
correspond to a customer and a movie respectively. The percentage 
of missing ratings is about 94.05%.<<iS iT PoSSiBLE To SuPPLy A 
cLEAnER FiguRE?>>
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most of the approaches proposed in the literature for the prediction task in 
recommender systems, and it is defined as follows:

 
mAE

n
p Wij ij

i j
= −∑1

,
,
 

(12)

where i, j correspond to the indexes of the artificially removed entries in W 
(test data set), n is the number of these removed entries, and pij is the obtained 
predicted rating for the entry Wij. The lower the MAE, the more accurate are 
the predicted ratings.

Experimental results from different data sets are presented separately due 
to their different natures. For instance, the percentage of available data and 
the size of the matrices are different in each data set. Another characteristic 
that should be taken into account is that the ratings can take discrete or con-
tinuous values.

It should be highlighted that the approach proposed in [15] is about 10 
times more expensive than the proposed adapted factorization approach. It 
would be even more expensive if the classical SVD were used instead of the 
thin SVD.

MovieLens Data Set

In this data set, ratings take integer values from 1 to 5 and the percentage 
of missing data is about 94.05 percent. With so large an amount of missing 
data, experiments considering different percentages of missing data would 
not give significant conclusions. Five different training/test sets, provided at 
www.movielens.umn.edu, are used in the experiments, and the mean of all 
the training/test sets is given. Different rank values are tested (from 2 up to 
20), and the one for which the mAE is minimum is chosen.

The mean of the obtained results in the five training/test data sets for each 
rank value is plotted in Figure 2. The minimum error (mAE) obtained with 
the proposed adapted factorization approach (denoted as ALT in the plots) 
is smaller than the one obtained with Sarwar’s approach [15] (denoted SVD 
in the plots), as can be seen in Figure 2 (left). Concretely, with the adapted 
factorization approach, the smallest mAE value is obtained in the rank-4 
case, and its value is 0.7703. With Sarwar’s approach, the minimum error 
(mAE = 0.7772) is obtained in the rank-16 case. Results presented in [15] are 
a little bit different—the obtained mAE is about 0.7400 for the rank-14 case. 
This difference is possibly due to different training/test splits. Note that these 
mAE values mean that errors of about ±1 are obtained in the prediction task. 
As pointed out by Brand, this is very accurate, since the difference may reach 
±2 values if the user is asked on different days [3].

Unfortunately, Brand’s source code, which also works with the MovieLens 
data set, is not available [3]. Therefore it was necessary to rely on the reported 
results. The mAE obtained with [3] is 0.7914, which is slightly higher than 
the one obtained with the proposed adapted factorization technique. Again, 
this difference may be due to the training/test set used. Brand claims that the 
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approach gives predicted ratings as least as good as those with [15], but for 
a smaller rank value.

From the present results, one may conclude that the data space can be re-
duced to a 4-dimensional subspace, as was also concluded by Brand, who also 
studied this data set [3]. Sarwar et al. found that a 14-dimensional subspace 
is needed in order to capture all the variance in the data [15]. In fact, in their 
approach, the mAE does not change much considering different dimensions, 
as is shown in Figure 2 (left). The computational cost for both approaches is 
depicted in Figure 2 (right). As can be seen, the proposed method is clearly 
faster for all tested rank values.

BookCrossing Data Set

The matrix of ratings obtained with the BookCrossing data set is even sparser 
than in the previous experiment. Concretely, it has a percentage of missing 
data of about 99.9968 percent. In order to obtain a matrix with more density 
of data, users who rated fewer than 20 books are discarded, and only books 
rated by at least 200 users are considered. Since books and users are discarded 
at the same time, the above conditions do not means that every row and col-
umn has more than 20 and 200 known entries, respectively. In fact, with these 
two conditions, the number of considered users (rows) and books (columns) 
is 17,197 and 193, respectively, and the percentage of missing data is about 
98.5094 percent. Again, five different training/test data sets are generated. 
Concretely, the test data set contains 0.4906 percent of known data, while the 
training data set contains only 1 percent of known data.

Figure 3 (left) shows the obtained mAE values, considering different rank 
values when a matrix with a 98.5094 percent of missing data is considered. As 
can be seen, the minimum error is obtained with the proposed adapted factor-
ization approach, for r = 2. Concretely, mAE = 3.5811. The minimum error is 
also achieved for r = 2 with Sarwar’s approach, but in this case mAE = 3.7535. 

Figure 2. (left) MAE considering different rank values; (right) 
computational cost in seconds.
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A matrix of rank 2 predicts the missing ratings better than a matrix with a 
higher rank with only a 1 percent of known data.

Note that the error is larger in this case than in the experiments with the 
MovieLens data set. However, since the ratings lie in different ranges, another 
measurement should be defined. Goldberg et al. propose the use of the normal-
ized mean absolute error (nmAE) to compare errors obtained from different 
data sets (7). The nmAE is defined as:

 
nmAE

mAE
m n

=
−

,
  

(13)

where m and m are the maximum and minimum values in the range of rat-
ings, respectively. The results obtained with the proposed adapted factoriza-
tion approach and both data sets can be compared using this new measure 
of error: in the case of the MovieLens data set, mAE = 0.7703, which gives an 
nmAE = 0.1926, while in the case of the BookCrossing data set, the obtained 
mAE is 3.5811, which gives an nmAE = 0.3581. Effectively, the error with this 
second data set is higher than with the MovieLens one. Recall that with this 
second data set, the percentage of missing data is higher.

Different matrices of ratings are tested in a similar experiment requiring a 
smaller number of ratings per book. Books from the original matrix that were 
rated by fewer than 150 users are discarded. Hence, in this experiment, the 
number of considered users and books is 21,026 and 354, respectively, and 
the percentage of missing data is about 99.0465 percent. Thus, the obtained 
matrix has larger dimensions and more missing data. Concretely, the test 
data set contains 0.1535 percent of data, while the training data set contains 
only 0.8 percent of data. The obtained mAE values in this case are plotted in 
Figure 3 (right). Note that the minimum mAE is obtained with the proposed 
adapted factorization approach, for r = 2; its value is 3.4051. The minimum 
error with Sarwar’s approach is obtained for r = 12, which corresponds to an 
mAE = 3.7215; similar results are obtained for any rank value.

Figure 3. obtained MAE considering different rank values; (left) A 
matrix of ratings with 98.5094% of missing data; (right) A matrix of 
ratings with 99.0465% of missing data.

03 julia.indd   102 10/13/2009   10:33:26 PM



IntErnAtIonAL JournAL oF ELECtronIC CommErCE     103

Jester Data Set

The ratings in this data set take continuous values from –10 up to 10. The 
obtained matrix contains ratings given by 73,421 users to 100 jokes, and the 
percentage of missing data is about 52 percent.

Different percentages of missing data are generated by randomly removing 
data (concretely, 60%, 70%, 80%, and 90%). The removed entries form the test 
data sets, while the rest of the data form the training data sets. Again, five dif-
ferent training/test data sets are considered in each experiment. Only 18,000 
users from the total of 73,421 are randomly selected for the experiments, as 
in [8].

Figure 4 shows the error value (mAE) obtained considering different per-
centages of missing data and different rank values (from 2 to 20). As can be 
seen, in the case of Sarwar’s approach, the obtained mAE is quite similar for 
any rank value. Concretely, the minimum mAE is achieved with r = 14 and 
r = 12, with 60 percent and 70 percent of missing data. Working with percent-
ages of missing data of about 80 percent and 90 percent, the minimum mAE is 
obtained with r = 3 and r = 2, respectively. It can be appreciated in Figure 4 that 
in the case of the adapted factorization approach, the mAE value depends on 

Figure 4. obtained MAE values for different rank values and different 
percentages of missing ratings: (a) 60%; (b) 70%; (c) 80%; (d) 90%.
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the rank value. The minimum mAE is obtained for r = 5, while the percentage 
of missing data is below 90 percent; in the case of 90 percent of missing data, 
the minimum mAE is obtained with r = 4, as can be seen in Figure 4(d).

The obtained mAE values are similar to the ones presented by Goldberg 
et al., who studied the same data set. Unfortunately, no comparison can be 
performed with [8], since the authors do not provide accurate information 
about the percentage of missing data they considered, nor the used rows (they 
selected 18,000 rows randomly).

Although the obtained mAE seems to be higher than the one obtained with 
the MovieLens data set, the ratings lie in different ranges. The results are simi-
lar with both data sets if the nmAE proposed by Goldberg et al. is used [8]. 
In the case of the MovieLens data set, the values obtained with the proposed 
adapted factorization approach are as follows: mAE = 0.7704, which gives a 
nmAE = 0.1926, while in the case of the Jester data set, the mAE obtained with 
90 percent of the missing data is 3.8959, which gives an nmAE = 0.1948. There-
fore, the goodness of the predicted ratings is quite similar in both cases.

Summary

The preceding discussion shows that the proposed adapted factorization ap-
proach performs better than the SVD-based approach [15] in the three studied 
data sets. Additionally, it has a smaller computational cost. Collaborative 
filtering techniques would not give good results for data sets as large as the 
BookCrossing and the Jester data sets: On the one hand, the computational 
cost would be very high, and on the other, it would be very difficult to obtain 
good neighbors to compute the correlation coefficient, as pointed out in [15]. 
The performance of the collaborative filtering techniques in the MovieLens 
data set would depend on the percentages of the training and test data sets.

conclusions

This paper presents an adapted factorization approach to predict missing 
ratings in recommender systems. The key point is that the prediction task 
in recommender systems can be reduced to finding the best low-rank ap-
proximation to the matrix of ratings, namely the data matrix. The proposed 
adapted factorization approach gives the best low-rank matrix approximation 
to the data matrix. At the same time, unknown ratings are filled in with the 
product of the factors recovered by the proposed technique. In particular, the 
Alternation technique is adapted to predict missing ratings in recommender 
systems. Although Alternation is not a new approach, it has not been used 
to tackle this problem, as far as can be determined. Concretely, the proposed 
approach uses the fact that the ratings take values in a known interval. Like 
the SVD-based approaches, it uses not only the correlated customers in the 
prediction task, but also the noncorrelated ones.

The proposed adapted factorization approach is compared with the SVD-
based method presented in [15]. Three different public data sets, obtained from 
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three different recommender systems, are studied. Experimental results show 
that the proposed approach performs better than the approach presented in 
[15] in respect both to error value and to computational cost.

Finally, it should be highlighted that good results are obtained with the 
proposed adapted factorization approach, even with percentages of missing 
data of more than 90 percent.
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Appendix

Singular Value Decomposition (SVD)

This appendix summarizes the most useful properties of singular value de-
composition (SVD). More details can be found in [9].

Theorem

Given an m × n matrix W, there exists a decomposition of this matrix of the 
form:

 
W u Vm n m m p p m n

t
× × × ×= Σ ,

 (14)

where um × m = [u1, ..., um] and Vn × n = [v1, ..., vn] are two orthogonal matrices 
(i.e., utu = uut = Im and VtV = VVt = In, where Im is the m × m identity matrix) 
whose columns are the left and right singular vectors, respectively. Σp × p is a 
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diagonal matrix that contains all the singular values σi of W, being σ1 ≥ σ2 ≥ ... ≥ 
σp ≥ 0, p = min{m, n}. 

SVD and Rank of the Matrix

If the SVD of W is Wm × n = um × mΣp × pVt
m × n, and r is defined by:

 
σ σ σ σ1 1 0≥ ≥ > = = =+ r r p  (15)

then

rank(W) = r

null(W) = span{vr+1, ..., vn}

ran(W) = span{u1, ..., ur},

and W can be defined as:

 
W u vi i i

t

i

r
=

=
∑ σ

1
.
 

(16)

Hence, the r columns of u corresponding to the nonzero singular values 
span the column space, while the r columns of V span the row space of the 
matrix W.

SVD and Matrix Norms

The norm-2 and Frobenius norm have connections to the SVD. Concretely:

 W 2 1= σ  (17)

 
W p m nF p

2
1
2 2= + + = { }σ σ... , min , .

 
(18)

The Thin SVD

Given a matrix Wm × n, being m ≥ n, the thin SVD consists in computing only the 
n column vectors of u corresponding to the row vectors of Vt. That is:

 W u Vm n m n m n m n
t

× × × ×= Σ .  (19)

The remaining columns of u are not computed. This commonly used SVD 
is significantly faster than the full SVD.
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