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ABSTRACT: This article presents an adaptation of a factorization

technique to tackle the photometric stereo problem. That is to

recover the surface normals and reflectance of an object from a set of
images obtained under different lighting conditions. The main contri-

bution of the proposed approach is to consider pixels in shadow and

saturated regions as missing data, in order to reduce their influence
to the result. Concretely, an adapted Alternation technique is used to

deal with missing data. Experimental results considering both syn-

thetic and real images show the viability of the proposed factoriza-

tion-based strategy. VVC 2011 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 21, 115–119, 2011; Published online in Wiley Online Library

(wileyonlinelibrary.com). DOI 10.1002/ima.20273
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I. INTRODUCTION

Photometric stereo (Woodham, 1980) aims at estimating the surface

normals and reflectance of an object by using several intensity

images obtained under different lighting conditions. The general

assumptions are that the projection is orthographic, the camera and

objects are fixed, and the moving light source is distant from the

objects. Hence, it can be assumed that the light shines on each point

of the scene from the same angle and with the same intensity.

The starting point of the photometric stereo problem is that the set

of images produced by a Lambertian object, under arbitrary lighting,

can be approximated by a low-dimensional linear subspace of images

(Basri et al., 2007). Concretely, a Lambertian object produces a 3D

subspace of images (Shashua, 1997). This linear property suggests to

use factorization techniques to model the image formation and to

recover each of the factors that contribute to it. Images are reshaped to

columns, and the grey-level intensity image at each pixel is stacked

into each row, generating thus a measurement matrix. The singular

value decomposition (SVD) (Golub and Van Loan, 1989) is in general

used to factorize the matrix and obtain thus a low-rank matrix approx-

imation of this measurement matrix. Most photometric stereo

approaches assume that images do not have shadows nor saturated

regions (e.g., Zhang et al., 2003), which correspond to points with

very low and high intensity values, respectively. This assumption is

enforced since these points do not follow a Lambertian model.

Although if there are only a few of them the Lambertian model is a

good approximation, their presence can bias the obtained results.

Hence, some approaches propose methods to reject them or tend to

reduce their influence on the results.

Hayakawa (1994) presents a photometric stereo approach for esti-

mating the surface normals and reflectance of objects, which is similar

to the factorization method presented in (Tomasi and Kanade, 1992)

for the shape and motion estimation. This approach factorizes the

measurement matrix with the SVD. Furthermore, Hayakawa proposes

to classify shadows and illuminated data, by using an intensity thresh-

old. The idea is to select an initial submatrix, whose entries do not cor-

respond to pixels in shadow. Then, the surface normals and reflectance

of pixels in shadow are estimated by growing a partial solution

obtained from the initial submatrix. Unfortunately, this is in general a

quite expensive task. In addition, the SVD has a high computational

cost when dealing with large matrices, which are common in this

application. Epstein et al., (1996) present an approach based on Haya-

kawa (1994) for learning models of the surface geometry and albedo

of objects. It is also based on the SVD. They point out that in (Haya-

kawa, 1994) the linear ambiguity obtained by using the SVD is not

always properly solved. To amend that ambiguity, they introduce the

integrability constraints, which are used to ensure that the set of recov-

ered surface normals forms a consistent surface. Yuille et al. (1999)

propose another SVD-based method to recover the surface normals

and reflectance of an object. In addition, they present an iterative

method to reject shadows.

In a recent paper, Shim et al. (2008) construct a subspace model

of the reflectance functions from an existing face database. Their

approach is not based on factorization, but on the expectation-maxi-

mization (EM) algorithm, which is used to solve the lighting, pose

and reflectance functions.

Argyriou and Petrou presents a recursive photometric stereo

algorithm that allows to deal with shadows and highlights in

(Argyriou and Petrou, 2008). The idea of their algorithm is to iden-

tify areas where most of the light directions give unreliable pixels

(shadows and highlights) and to apply it only to reliable pixels.
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Results show that obtained surfaces are better when shadows and

highlights are identified. They assume the light positions known,

which is not always a realistic assumption.

This article presents an adaptation of a factorization technique

to decompose the matrix that contains the grey-level intensity

image data, into the surface and light source matrices. Concretely,

the Alternation technique, which has been widely used in the com-

puter vision framework (e.g., Guerreiro and Aguiar, 2003; Hartley

and Schaffalitzky, 2003), is used. The novelty of our proposal is

that pixels in shadow and saturated regions are considered as miss-

ing data. Thus, results are not influenced by them.

The rest of the article is organized as follows. Section II introduces

the Lambertian reflectance model and the formulation of the photo-

metric stereo problem. The factorization-based technique adapted to

the photometric stereo problem is presented in Section III. Experimen-

tal results with synthetic and real images are given in Section IV.

Finally, concluding remarks are summarized in Section V.

II. FORMULATION

The image intensity at the pixel (u, v) depends on the optical proper-

ties of the surface material (albedo), the surface shape, and the spectral

distribution of the incident illumination. The reflectance characteris-

tics of a given surface can be represented by a reflectance function /
of three unit vectors: surface normal n 5 (nx, ny, nz)

t, light-source

direction m 5 (mx, my, mz)
t, and viewer direction v 5 (vx, vy, vz)

t. Fig-

ure 1 shows the geometric reflectance model for image generation in

the viewer-oriented coordinate system. Using the reflectance function

/, the following equation describes the image-generation process:

i ¼ t/ðn;m; vÞ; ð1Þ

where t contains the light source intensity at each image.

The most used reflectance model is the Lambertian model, which

states that materials absorb and reflect light uniformly in all directions.

Assuming that the image projection is orthographic and that there is

only a distant point light source, the viewer direction and the light

source direction can be considered to be constant over the image

plane. The Lambertian model is given by the following equation:

iðu; vÞ ¼ t/ðu; vÞ ¼ trðu; vÞnðu; vÞm; ð2Þ

where r(u, v) is the albedo at the (u, v) pixel, n(u, v) is its surface
normal, and m contains the light direction at each image. The

albedo at each point on the object r(u, v) describes the fraction of

light reflected at that point.

Let I be a measurement matrix containing the grey-level inten-

sity image data at p pixels through f frames in which only the light

source is moving. Assuming a Lambertian reflectance model, this

matrix can be factorized as:

I ¼ RNMT; ð3Þ

where

Rpxp ¼
r1 0

. .
.

0 rp

2
64

3
75 ð4Þ

is the surface reflectance matrix that contains the surface reflectance

at each pixel p,

Npx3 ¼ n1 n2 n3½ �t¼
n1x n1y n1z

..

. ..
. ..

.

npx npy npz

2
64

3
75 ð5Þ

is the surface matrix (n represents the surface normal at each pixel

p),

M3xf ¼ m1 m2 m3½ � ¼
mx1 � � � mxf

my1 � � � myf

mz1 � � � mzf

2
4

3
5 ð6Þ

is the light-source direction matrix (m represents the light-source

direction at each frame f), and

Tfxf ¼
t1 0

. .
.

0 tf

2
64

3
75 ð7Þ

is the light-source intensity matrix that contains the light-source in-

tensity at each frame f. Using these definitions, the surface matrix S
and the light-source matrix L are defined as follows:

Spx3 ¼ RN; L3xf ¼ MT ð8Þ

Hence, the measurement matrix can be decomposed as:

I ¼ SL ð9Þ

This decomposition can be obtained by using factorization techni-

ques. In general, the SVD is used to recover the surface matrix S
and the light-source matrix L, from intensity images obtained under

varying illumination.

III. FACTORIZATION TECHNIQUE ADAPTED TO
PHOTOMETRIC STEREO PROBLEM

A common assumption in most photometric stereo approaches is that

images do not contain shadows nor saturated regions, which corre-

spond to points with very low and high intensity values, respectively.

Figure 1. Geometric reflectance model for image generation in the

viewer-oriented coordinate system.
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This is due to the fact that these points do not follow a Lambertian

model. This article proposes to consider those points as missing

entries in I, to reduce their influence to the results. Because the SVD

cannot be used with missing data, an adaptation of the Alternation

technique (e.g., Guerreiro and Aguiar, 2003; Hartley and Schaffa-

litzky, 2003) is used. The algorithm is summarized below:

Algorithm.

1). Set a lower and an upper threshold to define the shadows

and saturated regions, respectively. Namely, rl and ru.

2). Define the following set

:X ¼ ði; jÞjrl < Iði; jÞ < ruf g ð10Þ
Only entries in I corresponding to pairs (i, j) [ X are used dur-

ing matrix factorization. That is, shadows and saturated

regions, which correspond to pairs (i, j) =2 X, are considered as

missing data in I.

3). Apply the Alternation technique to I: the algorithm starts

with a px3 random matrix S0 (analogously with a 3xf random
L0) and repeats the next two steps until the product SkLk con-
verges to I:
(i) compute Lk,
(ii) compute Sk from Lk: Sk 5 ILk

t(LkLk
t)21

Remark that these products are computed only considering entries

I(i, j) such that (i, j) [ X.

Solution. S contains the surface normal and reflectance, L contains

the light source direction and intensities, and the product SL is the

best rank-3 approximation to I.
However, as in the SVD case (Hayakawa, 1994), the obtained

decomposition is not unique, since any invertible matrix Q with

size 33 3 gives the following valid decomposition:

I ¼ SL ¼ ŜQQ�1L̂ ð11Þ

Therefore, at the end of the algorithm, one of the two constraints

proposed in (Hayakawa, 1994) is used to determinate the matrix Q:

1. The relative value of the surface reflectance (C1) is constant

or known in at least six pixels. The matrix Q can be com-

puted with the following system of p equations:

:ŝkQQ
tŝtk ¼ C1; k ¼ 1; . . . ; p ð12Þ

where ŝk is the kth-vector of Ŝ and C1 is the value of the surface

reflectance.

2. The relative value of the light-source intensity (C2) is con-

stant or known in at least six frames. Here, P 5 Q21 can be

obtained by solving the following system:

:l̂tkP
tPl̂k ¼ C1; k ¼ 1; . . . ; f ð13Þ

where l̂k is the kth-vector of L̂, and C2 is the value of the light-

source intensity.

If the values C1 or C2 are not known a priori, they are assumed

to be 1. That is, the constraints (12) and (13) impose a constant re-

flectance at every pixel and a constant light-source intensity at ev-

ery image, respectively. Therefore, in these situations, the reflec-

tance and light-source intensity can be recovered only up to a

constant.

IV. EXPERIMENTAL RESULTS

The aim at this Section is to show that results are improved when

pixels in shadow and saturated regions are considered as missing

entries in I. Hence, results obtained by taking the full matrix I are
compared with the ones obtained when those particular entries are

considered as missing data.

A. Synthetic Data. For the experiments with synthetic data, a

sphere is generated in Matlab by assuming a center and a radius

value. The surface normals at each point of the sphere can be easily

computed and, by multiplying them with different light source

directions, a matrix of intensities I is obtained. Different light

source directions are obtained by simulating a trajectory and avoid-

ing positions of the light source behind the object. A total of 46

images, 713 71 pixels each, are generated, given rise to a measure-

ment matrix of 5041 3 46 elements. Since only the entries corre-

sponding to nonbackground pixels are considered, the final matrix

contains 1941 3 46 elements.

Figure 2 (top) shows the recovered reflectance and surface nor-

mal at each point, if all data are considered. In a second experiment,

points in saturated regions and shadow are considered as missing

data and removed from the input matrix (I). Saturated regions are

defined by pixels whose intensity is higher than ru 5 250, while

shadows correspond to non illuminated pixels (the product SL is

negative or 0, i.e., rt 5 0). With such thresholds, a matrix with

20% of missing data is obtained. The recovered reflectance and sur-

face normal at each point are shown in Figure 2 (bottom).

As ground truth of all factors are known in these experiments

with synthetic data, the obtained error in each case can be computed

(i.e., reflectance (eR), normals (eN), light direction (eM), and inten-

sity (eT)). Concretely, the root mean square error (rms) is used as a

measure of goodness:

e ¼ GT� Rk kFffiffiffi
n

p ð14Þ

where GT and R are the ground truth and recovered factors, respec-

tively, n is the number of elements in R, and k�kF is the Frobenius

Figure 2. Synthetic images: (a) recovered reflectance; (b), (c), and

(d) x, y, and z coordinates of the recovered surface normals; (top) full
data case; (bottom) missing data case.

Table I. Synthetic images: obtained errors for all recovered factors in both

full and missing data cases.

Known data eR eN eM eT

100% data 0.079 0.096 0.075 20.677

80% data 7.547e-016 7.493e-016 5.094e-016 3.139e-013
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Figure 3. (top) A set of original images; (middle) and (bottom) images recovered by the product of the resulting factors and images obtained

by subtracting the recovered images from the original ones in the full and missing data case, respectively.

Figure 4. Real images: (top) (a) recovered reflectance; (b), (c), and (d) x, y, and z coordinates of the recovered surface normals; (middle) two
views of the surface obtained by using the recovered normals; (bottom) a set of original images containing saturated points (top row) and images

recovered by the product of the resulting factors (bottom row).



norm (Golub and Van Loan, 1989). As the Alternation depends on

the initialization, 100 attempts are carried out for each hypothesis

and the mean of the obtained errors is given.

Table I presents the errors obtained in both experiments and for

all recovered factors. It can be seen that all factors are better recov-

ered when pixels in shadow, and saturated regions are considered as

missing entries and removed from the given input matrix (I).
Figure 3 gives a comparison between the original images (Fig. 3

(top)) and those recovered by the product of resulting factors

(middle row, top side: full data case; bottom row, top side: missing

data case). Images obtained by subtracting the recovered images

from the original ones are presented in the bottom side of middle

and bottom row. It can be seen how pixels in shadows and saturated

ones bias the results (full data case). This problem is solved when

these pixels are not considered (missing data case) for computing

factors L and S by the Alternation technique.

B. Real Data. To validate results obtained with synthetic data, a

single experiment considering real data is presented. In particular,

images from the Yale data base (http://cvc.yale.edu) are used in this

experiment. Images are captured using an illumination rig, which is

fitted with 64 computer controlled strobes. Extreme cases, in which

almost all pixels of the image are in shadow, are not considered in

this experiment, only 46 images are used to build the matrix I.
The images have a size of 4043 260 pixels each, which give a mea-

surement matrix of 65,246 3 46 elements. In this particular sequence,

only saturated pixels (ru 5 255) are considered as missing entries.

This is due to the fact there is a large number of points in shad-

ows. Hence, if both shadows and saturated regions were considered

as missing entries (and removed from the matrix I), some rows of I
would contain only few known entries (less than three in most

cases), and the factorization technique could not be applied to those

particular points.

The matrix I contains 18% of missing data when saturated pixels

(ru 5 255) are considered as missing entries. Figure 4 (top) shows

the recovered reflectance and surface normal at each point. The sur-

face of the studied object can be obtained by using the recovered

normals (Kovesi, 2005) (Fig. 4 (middle)). Finally, Figure 4 (bottom)

gives a comparison between the original images (top row) and those

recovered by the product of resulting factors, when saturated pixels

are considered as missing data (bottom row). It can be seen that sat-

urated regions are considerably improved in the recovered images.

V. CONCLUSIONS

This article proposes an adaptation of the Alternation technique to

tackle the photometric stereo problem. The goal is to obtain the nor-

mal and reflectance surface of an object from a given set of images

obtained under varying illumination.

The main contribution of this article is a technique that avoids

biased results by removing entries (i.e., points in shadows and satu-

rated regions) from the given measurement matrix. Experimental

results with synthetic and real images show the viability of the pro-

posed approach, as well as improvements on the results.
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