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bstract. This paper presents an efficient technique for linking
dge points in order to generate a closed-contour representation. It

s based on the consecutive use of global and local schemes. In
oth cases it is assumed that the original intensity image, as well as

ts corresponding edge map, are given as inputs to the algorithm.
he global scheme computes an initial representation by connecting
dge points minimizing a global measure based on spatial informa-

ion (3D space). It relies on the use of graph theory and exploits the
dge points’ distribution through the given edge map, as well as

heir corresponding intensity values. At the same time spurious edge
oints are removed by a morphological filter. The local scheme fi-
ally generates closed contours, linking open boundaries, by using
local cost function that takes into account both spatial and topo-

ogical information. Experimental results with different images, to-
ether with comparisons with a previous technique, are
resented. © 2007 SPIE and IS&T. �DOI: 10.1117/1.2731799�

Introduction
dge detection is the first and most important stage of hu-
an visual process.1 During the last few decades, several

dge-point detection algorithms were proposed. In general,
hese algorithms are based on partial derivatives �first and
econd derivative operators� of a given image. Hence, the
esulting edge maps are composed by a set of edge points
rranged over the boundaries of the different regions con-
ained in the image. Additionally, edge maps usually con-
ain gaps as well as false edge points generated by noisy
ata. Although useful, edge points alone generally do not
rovide meaningful information about the image content,
o a high-level structure is required �e.g., to be used by
cene understanding algorithms�. From a given edge map
he most direct high-level representation consists of com-
uting closed contours—linking edge points by proximity,
imilarity, continuation, closure, and symmetry. Something
hat is very simple and almost a trivial action for the human
eing becomes a difficult task when it should be automati-
ally performed.
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Broadly speaking, two different approaches for linking
edge points have been proposed in the literature: �1�
perceptual-based approaches �e.g., Refs. 2–4� and �2�
general-purpose approaches �e.g., Refs. 5–7�. The former
ones are based on finding salient closed boundaries by us-
ing Gestalt’s law of perception. These approaches are de-
signed to solve a specific grouping problem, such as group-
ing edge points into smooth closed contours, under quite
constrained scenarios. They produce acceptable results on
images for which their assumptions hold. On the contrary,
the latter ones are able to handle any kind of images. No
prior knowledge about the number of objects contained in
the scene is required, nor is a constraint about maximum
length of the gaps2 nor about smoothness continuity8 im-
posed. It should be noticed that the main target of general-
purpose approaches is to compute closed-contour represen-
tations by linking edge points, which could be useful for a
further high-level processing. Since only edge-point posi-
tions are used, computed boundaries do not necessarily cor-
respond to a boundary between two regions. The current
paper falls into this second category.

Notice that although perceptual-based approaches and
general-purpose approaches pursue the generation of a
closed-contour representation, their underlying philosophy
is significantly different, since they tackle different goals
and applications. In general, perceptual-based approaches
incorporate mid-/high-level cues to link edges, while
general-purpose approaches could be understood as low-
level edge-linking methods that would need a further pro-
cessing to generate high-level descriptions.

Several general-purpose techniques have been presented
for linking edge points in order to recover closed contours.
According to the way edge map information is used, they
can be divided into two categories: �1� local approaches,
which work over every single edge point, and �2� global
approaches, which work over the whole edge map at the
same time. Alternatively, hybrid approaches that combine
both techniques, or use not only edge map information but
also enclosed information �e.g., color�, can be found.6,9,10 In

general, most of the techniques based on local information
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ely on morphological operators applied over edge points.
he former works on edge-point linking by using morpho-

ogical operators to compute closed boundaries by thinning
urrent edge points.11 However, common problems of thin-
ing algorithms are that, in general, they distort the shape
f the objects and big gaps cannot be properly closed. In
rder to avoid these problems, Ref. 12 introduces the use of
orphological operators together with chamfer maps. Ex-

erimental results using simple synthetic-like images, with
losely spaced unconnected edges, which do not contain
purious nor noisy edge points, are presented.

A real-time edge-point linking algorithm and its VLSI
rchitecture, capable of producing binary edge maps at the
ideo rate, are presented in Ref. 13. It is based on local
nformation and, as stated by the authors, has two major
imitations. First, it does not guarantee producing closed
ontours; in fact in every experimental result presented in
hat paper, there are open contours. Second, the edge-point
inking process is sensitive to user-defined parameters—
hreshold values.

In Ref. 7, a more elaborate edge-point linking approach,
ased only on local information, is proposed. Initially, an
terative edge-point thinning is applied. Thus, small gaps
re filled and endpoints are easily recovered and labeled.
inally, endpoints are linked by minimizing a cost function
ased on local knowledge. The proposed cost function
akes into account the Euclidean distance between the edge
oints to be linked �2D distance� and two reward
oefficients—�1� if the points to be linked are both end-
oints; and �2� if the direction associated with the points to
e linked is opposite. The values of these two reward co-
fficients are experimentally determined. Since this tech-
ique is proposed for linking points, similarly to Ref. 13, it
oes not guarantee to produce closed contours.

Unlike previous approaches, algorithms based on global
nformation need to study the whole edge-point distribution
t the same time. In general, points are represented as nodes
n a graph and the edge-point linking problem is solved by
inimizing some global measure. For instance, Ref. 5 pre-

ents an edge-point linking scheme as a graph search prob-
em. A similar scheme was previously introduced in Ref.
4. The methodology consists of associating to every edge
oint its corresponding gradient—magnitude and direction.
hus, the initial edge map becomes a graph with arcs be-

ween nodes, ideally unveiling the contour directions. A
earch algorithm, such as A*, is used later for finding the
est path among the edge points. Although the results pre-
ented in Ref. 5 are promising, the large number of image-
ependent parameters, which have to be tuned by the user,
iscourages its use.

In turn, hybrid approaches usually enrich edge-point in-
ormation with additional sources such as color, region de-
criptions, or surface geometry. An edge-point linking ap-
roach by merging spatial edge-point information and
egions resulting from adaptive Bayesian color segmenta-
ion is presented in Ref. 6. Initially, a color-based segmen-
ation split the original image into a set of contiguous re-
ions. Later regions are merged and labeled. Finally,
oundaries of the obtained regions constitute the linked
dge map. On average, the execution time of this hybrid
pproach is on the order of a few minutes on a Sparc 20. A

imilar approach, in the sense that edge points are linked

ournal of Electronic Imaging 023009-
according to generated regions, is proposed by Ref. 10.
This technique is intended for processing range images and
is based on the assumption that any contour gap can be
closed by dilating the input edge map. Thus, a single dila-
tion operation followed by region verification is applied
until all regions are labeled. The problem is that, as the
dilation is performed in all directions, thin regions are li-
able to disappear, due to the fusion of the contours enclos-
ing them.

In Ref. 15, a fast technique that is free of user-defined
parameters, and combines global and local information is
presented. It is closely related to the previous
approaches5,14 in the sense that graph theory is also used to
compute the best set of connections that interrelate edge
points. In contrast to the previous ones, it is devised to
generate closed contours from a range image’s edge points,
instead of classical intensity images. Initially, edge points
are linked by minimizing a global cost function. At the
same time, noisy data are easily removed by means of an
efficient morphological filter. It does not have to go through
the whole list of points contained in the input edge map, but
only over those points labeled as endpoints—points linked
once. In a second stage, closed contours are finally obtained
by linking endpoints using a local cost function.

Other approaches, different from those presented above
but related to the topic tackled in this paper, are focused on
extracting the external contour of an object �object’s bound-
ary� but not on extracting the contour of every single region
from the given image. These approaches try to link edge
points according to local measures of continuity and
smoothness, with no a priori information about the object
shape. These techniques include several well-known algo-
rithms from different fields �deformable models, con-
strained clustering, and data ordering�; see Ref. 16 for fur-
ther details.

In the current work, we propose to adapt Ref. 15 in order
to process intensity images. Range image processing tech-
niques can be customized to work with 2D images consid-
ering intensity values as depth values. For instance, mesh
modeling algorithms, developed for representing 3D im-
ages, have been extended to the 2D image field for different
applications.17–19 In the same way, we propose to adapt the
contour closure technique presented in Ref. 15 in order to
handle intensity images.

In general, adaptation of 3D image processing algo-
rithms to the 2D image field has been carried out by repre-
senting the pixels of a given intensity image I�u ,v� in a 3D
space �u ,v , I�u ,v��. However, in the particular case we are
tackling in this paper, the adaptation of Ref. 15 to the in-
tensity image domain requires not only the assumption of
intensity values as depth values but also specific changes in
the original technique in order to reach the best perfor-
mance. In this context, �1� new cost functions that are pro-
posed are specifically intended for handling intensity im-
ages; �2� the originally proposed noisy data filtering
approach is modified in order to avoid problems with high
textured regions.

The remainder of this paper is organized as follows.
Section 2 briefly presents the technique proposed in Ref. 15
to highlight the required changes to handle intensity im-
ages. Experimental results with several images, as well as

comparisons with a previous technique by using a publicly

Apr–Jun 2007/Vol. 16(2)2
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vailable algorithm,5 are presented in Section 3. Finally,
onclusions and further improvements are given in Section
.

Proposed Approach
et I be a 2D array representing an intensity image with R

ows and C columns, where each array element I�r ,c� �0
r�R and 0�c�C� is a value defined as 0� I�r ,c�
255. In order to use the approach proposed in Ref. 15, the

rst assumption is to consider intensity values as depth val-
es; so every pixel in I becomes a point in 3D space:
x ,y ,z�= �r ,c , I�r ,c��. Let E be the edge map, correspond-
ng to I, computed by some edge-point detector. Each ele-

ent E�r ,c� is a Boolean indicating whether or not the
orresponding image pixel is an edge point. Although in the
urrent implementation edge maps were computed by using
he Canny edge detector,20 the proposed technique can be
sed with other edge detector algorithms �see Ref. 21 for a
etailed comparison of different edge detector algorithms�.
n addition to the edge points computed by the chosen al-
orithm, edge points uniformly distributed through the first
nd last rows and columns are added. Added edge points
re useful for detecting a region boundary when it touches
n image’s border; actually, the idea of imposing edge
oints through the image border has already been used22 for
egmenting moving objects in video sequences.

Assuming both arrays, I and E �see Fig. 1�, are given as
nputs, the proposed technique consists of two stages. The
rst stage links edge points by minimizing a global mea-
ure. Computed connections are filtered later by means of a
orphological operator. Notice that by using a global ap-

roach, all edge points are linked, avoiding threshold defi-
ition problems usually related to local approaches �e.g.,
umber of connections per edge points, maximum dis-
ance�. The second stage works locally and is only focused
n points labeled as endpoints. Both stages are further de-
cribed ahead.

.1 Global Scheme: Graph-based Edge-Point
Linking and Noisy Data Filtering

t this stage a set of connected polylines linking all the
nput edge points, by minimizing the sum of linking costs,
s computed. In order to compute that set of polylines, and
ollowing the proposal presented in Ref. 15, a partially con-

ig. 1 �a� Input intensity image, I. �b� Input edge map, E, computed
y Canny.
ected graph � is used instead of working with a fully

ournal of Electronic Imaging 023009-
connected one.* Additionally, this helps to reduce the CPU
time considerably. Since this partially connected graph
should link nearest-neighbor edge points, a 2D Delaunay
triangulation of edge points contained in E is computed.23

The resulting 2D triangular mesh M is defined by a set
�P ,S�, where P= �E�i,j� ,E�f ,g� , . . . ,E�u,v�� corresponds to
edge points in the aforementioned edge map E, and S
= �S1 ,S2 , . . . ,Sn� corresponds to segments linking two edge
points �e.g., S1= �E�i,j� ,E�u,v���. Additionally, every segment
is associated with a linking cost value computed as indi-
cated below.

In contrast to Ref. 7, where a linking cost only consid-
ering the Euclidean distance in the edge map is used, we
propose a new cost function that also takes into account
information from the intensity image space. Furthermore,
we introduce the idea of using information related to those
pixels traversed by the segments. Hence, two major advan-
tages are reached. First, it prevents linking neighbors points
in the edge map, which could belong to different regions in
the intensity image. In other words, using only point posi-
tions in the edge map7 could derive wrong results. Second,
it avoids breaking/cutting real boundaries by using infor-
mation related to traversed points. The proposed linking
cost function is defined as follows:

LC�i,j�,�u,v� = ��i, j� − �u,v�� � �1 + �I/�I� , �1�

where �1+�I /�I� can be assumed as a weighting factor; �I

represents the standard deviation of the intensity values as-
sociated with the set of pixels defining the segment Sk,
which links points E�i,j� and E�u,v�, both included. �I corre-
sponds to the mean intensity value of that set of pixels.
Points defining Sk are easily computed by using Bresen-
ham’s algorithm.24 The main idea of this weighting factor is
to avoid linking edge points with a similar intensity value
but through an area with different intensity values. The
variance of the intensity values of points defining Sk is
scaled by �I in order to obtain a weighting value relative to
the intensity of that area. Hence, the proposed linking cost
takes into account more information than those presented in
Refs. 7 and 15. At the same time, added CPU time for
obtaining the set of points defining a straight line or com-
puting their mean and standard deviation values could be
disregarded.

Finally, the shortest path in � that links all the edge
points is extracted by computing the minimum spanning
tree �MST� of �. The MST of � is the acyclic subgraph of
� that contains all the nodes and such that the sum of the
costs associated with its segments is minimum. In the cur-
rent implementation, Kruskal’s algorithm has been used to
compute the MST.25 Notice that the MST of the Delaunay
triangulated input edge points gives the same result as if it
were computed over a fully connected graph of those
points.

Figure 2 �top� shows the triangular mesh and its corre-
sponding MST, computed from Fig. 1; the input edge map,
Fig. 1�b�, contains edge points computed by the edge
detector20 as well as those added over the first and last rows
and columns. Notice that the resulting MST, Fig. 2�b�, con-

*In order to avoid confusion, a graph will be referred to as edge points and segments

instead of as nodes and edges as usually referred to in the literature.

Apr–Jun 2007/Vol. 16(2)3
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ains short branches connected with the main path. A short
ranch is a branch of the tree defined by a few segments;
his number of segments is not known beforehand and de-
ends on the image to be processed. It is automatically
omputed as explained below. Short branches are generated
y linking information redundancy and noisy data. So, be-
ore finishing this global stage, and taking advantage of
dge-point connections, structured as single segments, a
orphological filter is applied. The filter is a kind of open-

ng algorithm and consists of performing iteratively ero-
ions followed by the corresponding dilations; the latter is
pplied as many times as the erosion. In brief, the opening
lgorithm considers segments of the tree’s branches as ba-
ic structuring elements �like pixels in an intensity image�.
ctually, the filtering algorithm is only performed over

hose segments linked from only one of their defining
oints—referred to as end segments. In the illustration pre-
ented in Fig. 3, since four iterations are performed during
he erosion process �the stopping criterion is presented be-
ow�, branches defined by less than four segments are re-

oved �in this particular illustration two short branches are
emoved, one defined by two segments and the other by
hree segments�.

ig. 2 �a� Triangular mesh of the edge points presented in Fig. 1�b�.
b� Minimum spanning tree. �c� Filtered MST—opening algorithm.
d� Final linked edge-point representation.
Fig. 3 Filtering process: opening algorithm.

ournal of Electronic Imaging 023009-
As presented in Ref. 15, the erosion process stops when
the number of end segments, removed at a given iteration,
keeps constant during at least the n previous iterations. The
criterion used to define this stopping condition is based on
the assumption that after n consecutive iterations without
changes in the number of removed segments, the erosion
process has finished removing short branches. In other
words, it has arrived to a stability point where segments
belonging to the main path are being processed. Although
initially we tried to use the same criterion for the intensity
image processing, it was noticed that in some cases it does
not work properly. Figure 6�d� illustrates the filtering result
obtained with this stopping criterion—it can be appreciated
that the filtering process removes not only segments from
the MST, associated with noisy data, but also region bound-
aries useful for further processing �e.g., recovering the dif-
ferent contours defining the image regions�. It is due to the
fact that the texture of an intensity image generally pro-
duces a large number of segments �e.g., trees in Fig. 7�b��;
this effect was not noticed in Ref. 15 since surfaces defin-
ing a 3D object are usually larger than those small details
appreciated in intensity images. Hence, in order to solve the
aforementioned problem, a new criterion is introduced to
stop the erosion process—avoiding fixing the number of
iterations beforehand.

The proposed stopping criterion is based on the ratio
between a global and a local slope, �=Sg /Sl. Sg
= �RES�1�−RES�n�� /n and Sl=RES�n−1�−RES�n�, where
RES represents the number of removed end segments in the
current �n�, the first �1� and the previous �n−1� iterations
respectively �see illustrations of dark and light triangles
presented in Fig. 4�. The stopping threshold has been set
experimentally as ��6.3. The use of the threshold, instead
of defining beforehand the number of iterations, allows
eroding end segments independently of the total amount of
removed segments at a given iteration. Moreover, notice
that although the shapes of the curves presented in Fig. 4
are similar in both plots, the number of segments processed
at every iteration is completely different. In none of the
processed images was the criterion presented in Ref. 15
reached while short branches were removed �see illustra-
tion in Fig. 6�d��. Finally, after ending the erosion process,
the same number of dilation iterations is carried out over
the end segments left. The filtering process consists of four
dilations applied after four erosions in the illustration pre-
sented in Fig. 3. Edge points defining those segments re-
moved during the filtering are also removed from the input
edge map E.

Before going to the next stage, a brief study of the fil-
tering capability of the proposed stopping criterion to re-
move noisy short branches is presented. It consists of
studying the robustness of the proposed criteria when the
input edge map is corrupted with noisy data. Noisy data are
added in the neighborhood of current edge points after re-
moving some of the original edge points. The remove/add
procedure works as follows. Initially, a set of r points is
randomly selected and removed from the input edge map.
The resulting edge map is now used for selecting a new set
of random points, a. Every point contained in a is used as a
center point of a 5�5 window, where a randomly selected
point is introduced. Figure 5 presents three illustrations of

the image used through the paper. The left column shows

Apr–Jun 2007/Vol. 16(2)4
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nput edge maps resulting after removing/adding data. In
hese examples r and a have been set to �119, 154�, �199,
20�, and �279, 273�, respectively, which correspond to
bout �3%, 5%�, �5%, 7%�, and �7%, 9%� of the total
mount of points contained in the input edge map at that
teration. The middle column depicts the corresponding

STs, while the right column presents the filtered MSTs
btained by using the proposed stopping criterion. Notice
hat a tradeoff between removing noisy segments and im-
ge features is reached by using the experimentally defined
topping threshold.

Fig. 4 End segments removed at different itera
are used to compute the ratio between the glo
threshold for stopping the erosion process. �
erosion—Fig. 6.

ig. 5 �left� Input edge maps corrupted with noisy data. �middle�

esulting MSTs. �right� Filtered MSTs.

ournal of Electronic Imaging 023009-
2.2 Local Scheme: Cost-based Closure
The outcome of the previous stage is a single tree, whose
branches go through almost all the input edge points �some
edge points were removed from the edge map during the
last filtering stage�. Figure 2�c� presents the result obtained
after filtering the MST of Fig. 2�b�. This representation
connects edge points without defining closed contours,
since it is a tree—the MST. Therefore, the objective at this
last stage focuses on closing open contours.

Open contours are characterized by edge points linked
once—endpoints. Since the previous filtering stage was car-
ried out over end segments, endpoints are easily identified;
there is no need to go through the whole list of edge points
to find those only linked once. Moreover, it is not necessary
to find a proper definition of endpoint, such as those pro-
posed in Ref. 26 or Ref. 27, where several variants are
introduced, since, as mentioned above, endpoints are only
linked once. For every endpoint a list of candidate points
from the filtered edge map is extracted. Notice that the list
of candidate points is directly obtained from the filtered
edge map; no information about the current connections is
used; therefore, endpoints and internal points are equally
considered—an internal point is a non-endpoint contained
in the MST. Furthermore, the proposed closure function
does not include reward factors �e.g., Ref. 7� since it could
affect the correct connections of particular topologies �e.g.,
tee-junction�. Finally, the point with the minimum closure
cost is chosen to link with the given endpoint, thus closing
the open contour. These stages are detailed below.

Given an endpoint E�i , j�, which belongs to the filtered
MST, its set of candidate edge points is selected by means
of an iterative process over a dynamic window, DW, cen-
tered at that point—DW�i±m,j±n�, where m= �1, . . . , t�; n
= �1, . . . , t�; t=s+	; and ��s�m� t�∨ �s�n� t��. During
the first iteration s is set to zero. Then after each iteration it
is increased by 	. The threshold 	 depends on the density of
edge points in the given edge map; similarly to Ref. 15, in

y the erosion process. Dark and light triangles
local slopes, at each iteration. It is used as a
se image erosion—Fig. 1. �b� Lenna image
tions b
bal and
a� Hou
the current implementation 	 was set to four.

Apr–Jun 2007/Vol. 16(2)5
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After extracting the set of candidate points from the cur-
ent iteration, a closure cost, CC, is computed. It represents
he cost of connecting each one of those candidates with the
iven endpoint E�i , j�. It is computed according to the fol-
owing expression:

C�i,j�,�u,v� =
LC�i,j�,�u,v�

Path Length�i,j�,�u,v�
, �2�

here LC�i,j�,�u,v� is the linking cost defined in Eq. �1�,
hich takes into account the distance between the points to
e linked as well as the mean and standard deviation of the
ntensity values of those pixels defining the straight line
etween �i , j� and �u ,v�; while PathLength�i,j�,�u,v� measures
he length of the path—the number of segments—linking
hose two points. In case no candidate points were extracted
rom the current window or the PathLength�i,j�,�u,v� values
rom those candidates to the given endpoint were equal to
r smaller than t, the size of DW is increased by 	, as well
s s and t and the process starts again by extracting a new
et of candidate points. The new set of candidate points
oes not contain those previously studied due to the fact
hat the new window is only defined by the outside band.
therwise, the point with the lowest closure cost is chosen

o be linked with the endpoint E�i , j�.
The closure cost function, Eq. �2�, adapted from the one

roposed in Ref. 15, merges intensity image information
rom both points to be linked and traversed points �numera-
or� together with topological information related to the
oundary that is being generated �denominator�.

Experimental Results and Comparisons

he proposed technique has been tested with different im-
ges. As mentioned, in all cases edge maps were computed
sing the Canny edge detector.20 Additionally, a set of edge
oints uniformly distributed over the image border �first
nd last rows and columns� was added. The CPU times to
ompute the different stages have been measured on a
.2-GHz Pentium IV PC with a non-optimized C code.

The illustrations used throughout the paper correspond
o an intensity image of 256�256 pixels �Fig. 1�a�� and an
dge map defined by 4784 points �Fig. 1�b��; its MST con-
ains 4783 segments and was computed in 0.57 s �Fig.
�b��. The opening algorithm filters 234 segments from the
omputed MST, giving rise to a representation with 4549
egments in 0.01 s �Fig. 2�c��. The 234 removed segments
orrespond to those linked with noisy data or redundant
dge points. Finally, 74 open contours were closed in
.11 s. This final representation contains 4623 segments,
ig. 2�d�.

Other images were processed with the proposed ap-
roach. Figure 6�a� presents the input edge map corre-
ponding to an image of 512�512 pixels. Intermediate re-
ults, such as the Delaunay triangulation of input edge
oints and its MST, are also presented in Fig. 6. The final
losed-contour representation obtained after filtering the
ST with the proposed criterion is presented in Fig. 6�f�; it

ontains 17,900 segments and was computed in 27.41 s.
ook at those gaps on the shoulder, forehead, and top of the

at that are successfully closed in the final representation.

ournal of Electronic Imaging 023009-
Figures 7�a� and 7�b� show edge maps corresponding to
intensity images of 256�256 pixels �girl� and 512
�512 pixels �car�. The results from the global stage are
presented in Figs. 7�c� and 7�d�—filtered MST. Final re-
sults are given in Figs. 7�e� and 7�f�. Information regarding
CPU time for the different examples is presented in Table
1. In all examples, about 85% of the time is spent on the
triangular mesh and MST generation. There is room for
improvement since a non-optimized C code is used.

Since the proposed technique does not use as prior
knowledge the number of objects contained in the scene,
and high-level post-processing is not applied �e.g., color-/
texture-based region merging�, and no constraint about the
maximum length of gaps is imposed,2 notice that there is no
way to avoid single non-overlapped objects being con-
nected in the final solution. In other words, the proposed
technique is only intended for finding the best way to link
all the edge points; isolated objects will be connected to
some other object in the scene or to the image boundary.

Fig. 6 �a� Input edge points, 21,393 points. �b� Triangular mesh. �c�
Minimum spanning tree, 21,392 segments. �d� Filtered MST ob-
tained with the previous proposal,15 14,059 segments. �e� Filtered
MST obtained with the new proposal, 17,673 segments. �f� Final
closed contour representation �after filtering the MST with the new
proposal and closing open boundaries�, 17,900 segments.
Therefore, closed contours do not necessarily correspond to

Apr–Jun 2007/Vol. 16(2)6
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oundaries between two regions; they correspond to a rep-
esentation where every single edge point is linked with a
inimum total cost, ideally unveiling the different regions

f the image.
The proposed approach has been compared with a pub-

icly available algorithm based on a multiresolution, se-
uential edge-linking algorithm, M-SEL.5 Figures 8�a� and

ig. 7 �a� and �b� Input edge points �6,387 and 34,827 points�. �c�
nd �d� Filtered MST �5,568 and 24,106 segments�. �e� and �f� Final
losed-contour representation �5,724 and 24,457 segments�.

Table 1 CPU time �s�.

Global Scheme Local Scheme

Total
Time

Triangular Mesh
and

MST Generation Filtering
Contour
Closure

ouse 0.57 0.01 0.11 0.69

Lenna 23.76 0.82 2.83 27.41

Car 80.51 2.47 5.61 88.59

Girl 0.99 0.06 0.28 1.33
ournal of Electronic Imaging 023009-
9�a� present intensity images used to compare both tech-
niques. They are defined by 512�512 pixels and 512
�480 pixels, respectively. Figures 8�b� and 9�b� present
their corresponding edge maps computed by the Canny al-
gorithm and used as input by the proposed technique. Ex-
perimental results obtained with the proposed technique are
presented in Figs. 8�c� and 9�c�, respectively. Since Ref. 5
depends on a large number of user-tuned parameters—nine
parameters—three different representations were computed
to compare with the proposed technique. In the first case
the nine parameters were set with the values given by de-
fault with the downloaded code5 �Figs. 8�d� and 9�d��. In
the second and third experiments, only one of the param-
eters was changed while the others were set with the default
values. Figures 8�e� and 9�e� present results obtained by

Fig. 8 Comparison between the proposed technique and the one
presented in Ref. 5. �a� Input intensity image. �b� Edge map com-
puted by Canny. �c� Result obtained with the proposed technique.
�bottom� Edges computed and linked by Ref. 5, by using �d� the
default set of parameters; �e� the default set of parameters and set-
ting l=1; �f� the default set of parameters and setting s=2.

Fig. 9 Comparison between the proposed technique and the one
presented in Ref. 5. �a� Input intensity image. �b� Edge map com-
puted by Canny. �c� Result obtained with the proposed technique.
�bottom� Representations computed with Ref. 5, by using �d� the
default set of parameters; �e� the default set of parameters and set-

ting l=1; �f� the default set of parameters and setting s=2.

Apr–Jun 2007/Vol. 16(2)7



s
p
w
r
d
m
t

e
C
a
i
n
i
�
i
i
s
o
h
w
t
d
i
i
r

a
c
a
a
t
t
6
o

4
T
c
i
l
t
m
a
a
t
i
i
o

T
t

Sappa and Vintimilla: Cost-based closed-contour representations

J

etting l=1. Finally, Figs. 8�f� and 9�f� show linked edge
oints computed by setting s=2 and the other parameters
ith the default values. No careful tuning of the nine pa-

ameters has been done, because no hints are given for
eciding their values in order to obtain optimal perfor-
ance. Moreover, the relationship among them makes the

uning process tedious.
In most of the cases, Ref. 5 generates closed loops of

dges instead of finding the right path among edge points.
omparative CPU times are given in Table 2. Notice that
lthough the CPU time required by the proposed technique
s on average more than twice the M-SEL time, the useful-
ess of the obtained representations is more than that. For
nstance, in none of the representations presented in Fig. 9
bottom� can the different regions contained in the given
mage—background, hair, face, arm, back—be discerned;
n the three cases, all of them are connected, defining a
ingle region that includes almost all the image’s pixels—
nly a few small regions defined by closed loops in the
ead are generated. On the contrary, the result obtained
ith the proposed technique, Fig. 9�c�, can be more useful

han those obtained with M-SEL for a high-level scene un-
erstanding algorithm since the given image is segmented
n different regions. This behavior can also be appreciated
n the results presented in Fig. 8 �bottom�, where different
egions are merged together.

Finally, although it was not possible to find a publicly
vailable implementation of Ref. 7, a visual and qualitative
omparison can be done since almost the same set of im-
ges presented in Ref. 7 were processed with the proposed
pproach. Notice, as highlighted above, that the proposed
echnique can successfully close gaps such as those on the
op of the hat, forehead, or vertical edges on the left of Fig.
�f�, while they remain open in Ref. 7, in addition to other
pen gaps or minor artifacts left in Ref. 7.

Conclusions and Further Improvements
his paper presents the use of global and local schemes for
omputing closed contours from edge points of intensity
mages. The global stage is based on graph theory while the
ocal one relies on values computed by a local cost func-
ion. Noisy and redundant edge points are removed by
eans of an efficient morphological operator. Although this

pproach has been initially proposed to handle range im-
ges, the different tests performed with the new cost func-
ions, together with the adaptation of the noisy data filter-
ng, proved that it is also useful for processing intensity
mages. Experimental results and comparisons with previ-

able 2 Comparison between M-SEL algorithm5 and the proposed
echnique �CPU time in s�.

Proposed
Technique

M-SEL
Algorithm
�default

parameters�

M-SEL
Algorithm

�l=1,
standard SEL�

M-SEL
Algorithm

�s=2�

Peppers 31.2 7.9 13.5 12.6

Paolina 18.5 5.3 8.8 9.7
us techniques show that the proposed technique is able to

ournal of Electronic Imaging 023009-
handle different kind of images; it does not require the prior
knowledge of the scene, nor parameters that have to be
carefully tuned.

Most of the effort on further work will be focused on
improving triangular mesh and MST generation, which are
the most expensive parts of the proposed approach. The use
of optimized code, as well as the joint generation of trian-
gular mesh and MST, could speed up the whole process.
Additionally, further work will include the study of more
elaborate cost functions. Finally, the use of smooth curve
fitting for representing currently computed closed contours
�i.e., piecewise linear interpolations� will also be consid-
ered.
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