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Leveraging U-Net and selective
feature extraction for land cover
classification using remote sensing
Imagery
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In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as

the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt
introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features
and adjust more effectively to variations in spatial resolution, thereby enhancing the model’s ability
to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset,
composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.
The approach achieves notable improvements over the baseline U-Net, with gains of 5.312% in Overall
Accuracy (OA) and 8.906% in mean Intersection over Union (mloU) when using the RGB configuration.
With the RG-NIR configuration, these improvements increase to 6.928% in OA and 6.938% in mloU,
while the RGB-NIR configuration yields gains of 5.854% in OA and 7.794% in mloU. Furthermore, the
approach not only outperforms other well-established models such as DeepLabV3, DeepLabV3+, Ma-
Net, SegFormer, and PSPNet, particularly with the RGB-NIR configuration, but also surpasses recent
state-of-the-art methods. Visual tests confirmed this superiority, showing that the studied approach
achieves notable improvements in certain classes, such as lakes, rivers, industrial areas, residential
areas, and vegetation, where the other architectures struggled to achieve accurate segmentation.
These results demonstrate the potential and capability of the explored approach to effectively handle
MSI and enhance LCC results.

Keywords Image segmentation, Semantic segmentation, Multispectral imaging, Land cover classification,
Remote sensing, Computer vision

Land Cover Classification (LCC) is an approach to map and categorize the variety of physical covers found
on the Earth’s surface!=. Through LCC, areas are delineated based on their predominant attributes, ranging
from dense forests and expansive water bodies to bare lands and urban constructions?, offering a schematic
representation that illustrates the interaction between physical and biological elements>®. This classification aids
in understanding how various land types are distributed, which is crucial in applications such as city planning,
food security, ecological conservation, climate monitoring, sustainable development, resource management,
among others”®.

Currently, LCC is primarily conducted through artificial intelligence methods, specifically computer vision®.
Within the realm of computer vision techniques, semantic segmentation stands out as the most commonly
applied technique in this area®. Semantic segmentation involves the process of partitioning digital images into
distinct segments!'®!!. This is achieved by assigning each pixel of an image to a specific semantic category'?,
based on the unique characteristics it shares with others in its cluster. This precision at the pixel level allows
for a detailed understanding of each component within complex images'®. Consequently, it enables a richer
interpretation of the landscape, providing more meaningful and actionable insights into the spatial arrangement
and physical characteristics of various land types'.

As stated above, computer vision-based segmentation methods have proven effective for LCC; however, much
of the research relies on data in the visible spectrum (RGB)'*. This type of imagery has often proven insufficient
for achieving precise classification'®. In this regard, the integration of Multispectral Imagery (MSI) has gained
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attention. MSI is a type of imagery that captures a wider range of wavelengths®!?, encompassing parts of the

electromagnetic spectrum beyond the visible range!”"!8. This type of imagery allows for a more comprehensive
view of the landscape and enhances the ability to distinguish between different structures!?, thereby improving
the overall accuracy and reliability of LCC.

MSI typically requires specialized equipment to capture the broader range of electromagnetic wavelengths?.
Additionally, for LCC, aerial perspectives are generally employed, as they provide the extensive coverage
necessary to analyze large land areas effectively®. These requirements have naturally led to the utilization of
remote sensing techniques to gather multispectral data’. According to the United States Geological Survey,
remote sensing is the method of identifying and monitoring the physical attributes of an area by measuring the
radiation it reflects and emits from a distance. This is typically achieved using specialized cameras equipped
with various sensors that are integrated into satellites and aircraft?'. This technology not only facilitates the
acquisition of MSI but also expands the scope of observation, allowing the monitoring of large and inaccessible
areas, which consequently enhances the detail and comprehensiveness of LCC studies.

Despite significant advances in the field of LCC, achieving accurate segmentation and classification of
semantic information remains an open challenge??. Additionally, the continuous evolution of image acquisition
technologies has significantly increased the volume and complexity of data available for analysis?®, which
represents another major hurdle in this field. U-Net?* is a well-known architecture in the field of semantic
segmentation, renowned for its effective and efficient processing capabilities. It features a symmetric encoder-
decoder design complemented by skip connections, that allows for precise localization and detailed pixel
classification. Due to this, U-Net has been widely adopted for remote sensing and LCC tasks!®.

Although U-Net is a notable architecture in semantic segmentation, its application in remote sensing often
involves dealing with intricate datasets. Due to this, various researchers have explored modifications to U-Net
to enhance its capabilities. A common modification is the improvement of the encoder component. This is
typically achieved by integrating other architectures used as feature extractors. Well-known image classification
architectures such as ResNet, DenseNet, or Inception are commonly employed®?>~?’; however, these models,
while robust, are somewhat dated and may not sufficiently address the challenges presented by the modern
and dynamic landscapes of Earth’s surface. Therefore, exploration of new refinements that better meet current
demands is required.

Based on the above, this work employs a modified U-Net architecture for LCC using MSI. Specifically, we
explore the application of SK-ResNeXt as the encoder in U-Net to enhance feature extraction capabilities. SK-
ResNeXt combines elements of ResNeXt and Selective Kernel Networks (SK Networks), integrating the multi-
path architecture and cardinality of ResNeXt with the adaptive receptive fields of SK convolutions. ResNeXt’s
design, centered around increasing cardinality, allows for improved learning capacity without significantly
increasing computational complexity, making it well-suited for complex feature extraction. SK Networks, on
the other hand, introduce a dynamic selection mechanism that enables the network to choose the most suitable
kernel size for each input, providing flexibility in capturing diverse spatial scales. By blending these strengths,
SK-ResNeXt captures rich, multi-scale features more effectively than traditional backbones like ResNet or
Inception, which lack both the parallel path architecture and adaptive kernel size selection. Therefore, the
motivation for using SK-ResNeXt lies in its superior ability to extract complex features effectively, adapting to
the spatial variability and spectral richness characteristic of LCC tasks, and ultimately enhancing segmentation
performance on multispectral remote sensing data.

For evaluation, the Five-Billion-Pixels dataset has been employed. Released in 2023, this dataset is designed
to challenge and benchmark current segmentation methodologies due to its extensive range of precisely
annotated pixels. It features four channels and spans 24 diverse categories, offering a robust platform for testing
the effectiveness and precision of LCC models under varied and complex scenarios. Additionally, the impact of
various combinations of the spectral bands provided by the Five-Billion-Pixels dataset is analyzed to determine
how different spectral inputs affect the accuracy and precision of the classification results. This not only tests the
adaptability of the modified U-Net to large-scale data challenges but also contributes to bridging the existing gap
in the field by offering insights into enhanced LCC methodologies. Extensive comparisons were conducted with
other methods to thoroughly evaluate the performance of this segmentation approach.

The main contributions of this work are summarized as follows:

1. Assessing the effectiveness of the U-Net architecture with an SK-ResNeXt backbone for large-scale LCC
using the Five-Billion-Pixels multispectral dataset.

2. Analyzing how different combinations of spectral bands influence the accuracy and detail of LCC results.

3. Establishing a benchmarking framework for assessing the effectiveness of segmentation techniques in large-
scale, multi-category land cover datasets.

Related work
Given U-Net’s strong performance, it has become a widely studied architecture, especially in LCC tasks.
Moreover, substantial prior research has explored various modifications to its components, particularly the
encoder, to more effectively leverage the information provided by MSI in complex segmentation scenarios.
One of the most common options for replacing the encoder in U-Net is with Residual Networks (ResNets
ResNet is a Convolutional Neural Network (CNN) whose key innovation lies in the incorporation of residual
connections?’. These connections help to mitigate gradient vanishing and reduce information loss as data flows
through the network®®, making it possible to train deeper networks and extract rich feature representations.
Consequently, ResNet is frequently used as a backbone for U-Net in LCC tasks. For instance, Ni et al.>! and Cao
et al.>? both employ U-Net with the lightweight ResNet18 as the encoder backbone for segmenting RG-NIR
images into six classes. Fan et al.*®> use a ResNet50 as a feature extractor for RGB-NIR imagery to map urban
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areas in China across eight classes, while Giil et al.** adopt a similar approach, using ResNet50 for RG-NIR

segmentation into six classes. Increasing the encoder complexity, Ismael et al.*® replace U-Net’s backbone with a
ResNet101 for RG-NIR segmentation across six classes.

In addition to ResNet variants, some studies have explored the use of ResNeXt as an encoder for U-Net
in LCC tasks. ResNeXt, an evolution of ResNet, introduces cardinality through parallel paths in each residual
block, allowing multiple pathways to process different aspects of the input, thus enhancing feature extraction
capacity without significantly increasing parameter complexity®®. Fan et al.’” implement this approach in RG-
NIR segmentation for six classes using ResNeXt50 as the backbone. Jinsong et al.*® and Li et al.*® apply a similar
model but increase the encoder’s capacity by using ResNeXt101 to further improve U-Net’s feature extraction
capabilities, also for RG-NIR segmentation across six categories.

The use of techniques beyond ResNet has also been explored in U-Net encoders. For instance, Cui et al.’
investigate the use of DenseNet as an encoder for U-Net to segment RGB-NIR images into eleven classes. In
this case, DenseNet’s dense connections improve gradient flow across all layers, enhancing parameter efficiency
and feature extraction capabilities?’. However, recent trends have shifted towards advanced approaches, such
as Vision Transformers (ViTs). The ViT adapts the Transformer architecture, widely used in natural language
processing, for vision tasks by dividing images into patches treated as token sequences®!. This structure enables
ViT to capture global relationships within the image through self-attention mechanisms*?, excelling at identifying
large-scale patterns without relying on convolutions. For example, Barr*® employ ViT to enhance the U-Net
encoder, combining it with the original encoder by first processing the input through CNN layers, followed by
transformer layers, creating a rich feature representation. This approach is used for RGB-NIR segmentation
across six land cover classes. Similarly, Zhang et al.* replace the U-Net encoder with a ViT variant, the Swin
Transformer®®, for RG-NIR segmentation into six classes. This approach leverages the Swin Transformer’s
sliding windows to partition the image into local patches, allowing it to model long-range spatial dependencies
and simultaneously obtain hierarchical features. Additionally, Fan et al.*® and He et al.*’ also utilize the Swin
Transformer, integrating it in parallel with U-Net's CNN encoder to enhance feature extraction. Both approaches
are tested on RG-NIR images with six land cover classes.

As evidenced in the literature, research on enhancing, modifying, or replacing the encoder in U-Net is an
area of significant interest and has been widely explored. Over time, these improvements have made U-Net
more adaptable and increasingly capable of handling the challenges posed by LCC and MSI. However, certain
considerations, limitations, and challenges remain unaddressed. First, for models to be used in real-world
applications, they must be trained and evaluated on large and diverse datasets. The related work shows that
many studies evaluate their approaches on datasets with relatively few classes. While these datasets allow for
testing new encoder integrations, they may not fully capture the variability and complexity of real-world land
cover, where classification requirements are considerably more nuanced. As a result, approaches tested on such
limited datasets may face challenges when applied to broader LCC tasks.

Additionally, although many studies have integrated effective encoders such as ResNet, DenseNet, or
even Transformers, certain limitations in terms of accuracy and efficiency remain. Architectures like ResNet
can perform well in specific scenarios, but they may face challenges when handling datasets with numerous
classes, particularly when these include multiple spectral bands beyond typical RGB. Furthermore, although
advanced architectures like ViTs demonstrate strong performance in feature extraction, they require calculating
relationships across all positions, which leads to high computational complexity and increased time and resource
costs for training and inference. As Fan et al.’’ point out, despite efforts to optimize Transformer efficiency,
processing high-resolution remote sensing images with these models still incurs considerable computational
costs, limiting their practical applicability.

These findings suggest that the continuous exploration of new encoder modifications is essential to enhance
the adaptability and accuracy of U-Net-based models, especially for complex MSI datasets. LCC increasingly
demands segmentation models that balance high feature extraction capabilities with computational efficiency.
Therefore, work focused on exploring new modifications and improvements in this area remains an open
research challenge for developing robust models capable of meeting real-world demands.

Methods

Dataset description

For this study, the Five-Billion-Pixels dataset® is utilized. This large-scale land cover classification dataset consists
of over 5 billion manually annotated pixels derived from 150 high-resolution Gaofen-2 satellite images. These
images cover more than 50,000 square kilometers across over 60 administrative districts in China. The dataset
is categorized into 24 distinct classes, including artificial, agricultural, and natural land cover types, providing a
diverse and comprehensive representation of real-world terrestrial objects, as shown in Fig. 1. Five-Billion-Pixels
can be considered an extension of the well-known GID dataset*®, providing rich category diversity, extensive
geographical coverage, and high spatial resolution of 4 m. These features make it a novel and challenging
resource for advancing research in data-driven methodologies related to land cover classification. The images in
the dataset include four spectral bands: Blue (0.45-0.52 pym), Green (0.52-0.59 pm), Red (0.63-0.69 pm), and
NIR (0.77-0.89 ptm), with an image resolution of 68007200 pixels. The dataset is available in both 8-bit and
16-bit formats. In addition to the images and masks, the dataset provides coordinate information and is freely
accessible.

Model description

U-Net overview

U-Net, shown in Fig. 2, is a U-shaped CNN architecture built on an encoder-decoder paradigm*”*°. This
architecture features two symmetric pathways: a contraction path (encoder) that compresses the spatial resolution
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Fig. 1. Example images of the Five-Billion-Pixels dataset used in this work. The dataset consists of 24 classes,
plus an additional ‘unlabeled’ class annotated with black color.
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Fig. 2. U-Net architecture structure.

of feature maps while capturing the image context, and an expansion path (decoder) that progressively restores
the spatial resolution to construct the segmented output*”-*°. U-Net is distinguished by its use of skip connections
that concatenate feature maps from the encoder with each up-sampled feature map from the decoder at
corresponding stages®>2. This integration allows U-Net to merge low-level features from the encoder with high-
level features from the decoder, enhancing the precision of the segmentation®!. Initially designed for medical
image segmentation®?, U-Net has been effectively adapted to other fields, where it maintains robust performance,
establishing itself as a standard in various segmentation tasks, such as remote sensing segmentation!.

SK-ResNeXt overview

SK-ResNeXtisa CNN architecture that combines the strengths of ResNeXt>* and SK Networks. This architecture
was developed to address the challenge faced by CNNs in achieving a balance between depth and computational
efficiency. In other words, SK-ResNeXt was designed to attain enhanced accuracy without excessively increasing
computational complexity. To fully understand the design principles and the benefits of SK-ResNeXt, it is
necessary to delve into its foundational components and comprehend the synergy between them.

To begin, ResNeXt builds upon the ResNet architecture but replaces the simple, single-path design of
ResNet with multiple parallel paths, similar to those employed in Inception models*. This structure allows the
network to learn a broader and more diverse set of features. The key innovation of this is the cardinality, a factor
representing the number of parallel transformation paths within each block of the network®®’. Cardinality acts
as a third dimension alongside depth and width, enabling scalable complexity in the network’s architecture®.
Unlike the traditional approach of increasing depth and width, which often leads to excessive computational
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Fig. 4. Dual-branch selective kernel convolution.

complexity®®*, cardinality offers a more refined strategy. By increasing the number of parallel paths, ResNeXt

enhances the network’s learning capacity without a proportional increase in complexity. This design facilitates
the extraction of complex features while maintaining relatively low computational resource consumption. This
is accomplished through a split-transform-merge strategy, shown in Fig. 3, that divides the input into multiple
parallel paths. In each path, a transformation based on a common structural design is applied. Finally, the
outputs from each path are merged.

SKNet, meanwhile, address the limitation of fixed receptive field sizes in standard convolutional layers by
introducing a mechanism that allows the network to adaptively adjust its receptive field size based on the input
data®. This mechanism relies on the use of Selective Kernel (SK) convolutions, which serve as the fundamental
building blocks of the entire architecture. Each SK convolution unit contains multiple branches with different
kernel sizes that are subsequently fused®!. More specifically, each SK convolution is implemented through a
split-fuse-select strategy®>. In this design, the input is split and passed through multiple branches comprising
convolutional layers with varying kernel sizes. The outputs from these branches are then combined, typically
via element-wise operations. Finally, an attention mechanism evaluates and selects the kernel size most relevant
to the given input®. An example of this mechanism can be observed in Fig. 4, which illustrates a dual-branch
approach. This allows the architecture to enhance its ability to model complex patterns more effectively.

While ResNeXt enhances model capacity through the use of cardinality, it still relies on fixed receptive field
sizes in its convolutions. SKNet introduces adaptability in receptive fields but does not incorporate the concept
of cardinality. SK-ResNeXt integrates these two architectures to leverage the strengths of both. In this combined
model, the fixed-size convolutions within the ResNeXt bottleneck blocks are replaced with SK convolutions,
effectively incorporating SK units into the parallel paths of the ResNeXt architecture. The network thus preserves
the cardinality from ResNeXt, allowing multiple SK units to operate in parallel, and the use of SK units enables
each path to adaptively select the most appropriate receptive field size. This combination results in a network
capable of capturing rich, multi-scale features from complex visual data while maintaining computational
efficiency, leading to improved generalization and effectiveness in various computer vision applications.

Encoder integration

Based on the principles discussed above, integrating SK-ResNeXt as the encoder in U-Net is motivated by the
specific demands of LCC tasks using MSI. In this context, SK-ResNeXt’s combination of cardinality and adaptive
receptive fields is particularly advantageous. The ability to dynamically adjust receptive field sizes allows the
model to capture fine-grained spectral details across multiple scales, which is crucial for accurately distinguishing
varied land cover types. Additionally, SK-ResNeXt’s multi-path design facilitates the extraction of a broader
set of features, enhancing the model’s ability to differentiate complex patterns in multispectral data. Thus, this
integration is expected to yield a segmentation model that can leverage MSI’s rich information effectively,
improving segmentation performance and adaptability without significantly increasing computational demands.
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Integrating SK-ResNeXt into the U-Net architecture involves replacing the standard encoder of U-Net
with the SK-ResNeXt model. This integration capitalizes on the advanced feature extraction capabilities of
SK-ResNeXt while maintaining the efficient decoding and up-sampling mechanisms of the U-Net. In this
integration, the encoder is constructed using SK-ResNeXt blocks, as shown in Fig. 5, where each block comprises
SK convolutional units that replace the fixed-size convolutions found in traditional U-Net encoders. These SK
units allow the network to adjust its receptive field sizes dynamically, enabling the extraction of richer and
more diverse features at multiple scales. The encoder thus benefits from the ability to model complex patterns
within the visual data more effectively. The skip connections between the encoder and decoder are maintained
to ensure that spatial information is preserved throughout the network. Outputs from the SK-ResNeXt blocks
at various stages of the encoder are connected directly to corresponding layers in the decoder. The decoder
remains unchanged, continuing to perform up-sampling and feature reconstruction to generate the final output.
This results in a model that can capture complex, multi-scale features more effectively, leading to improved
segmentation performance without substantially increasing computational complexity.

Evaluation metrics

In LCC tasks, several metrics are commonly employed to assess the performance of models. In this study,
we have selected three metrics that are widely recognized and employed in similar studies within the field of
semantic segmentation®~%’. Below, we detail each metric and explain its application in evaluating the precision
and reliability of our classification results.

Overall accuracy

The Overall Accuracy (OA) is a metric that measures the proportion of pixels correctly identified in an image'
serving as an indicator of a semantic segmentation model’s general performance. A higher OA signifies better
performance, with more pixels correctly identified according to their true classifications. Mathematically it is
defined as shown in Eq. (1):

6,68
>

B TP+ TN
T TP+TN+FP+FN’

OA ey

where TP represents the true positives, TN the true negatives, FP the false positives, and FN the false negatives.

Intersection over union

The Intersection over Union (IoU) provides a ratio from 0 to 1 that measures the overlap between the model’s
predictions and the actual data®, with 0 indicating no overlap and 1 indicating perfect congruence. A high IoU
score suggests that the model effectively captures all relevant pixels in both presence and absence, mirroring the
ground-truth closely®. This metric is calculated as shown in Eq. (2):

|AN B

IoU =
YT AuB

)

where |A N B| represents the intersection, or the count of pixels accurately identified as part of the target class
by both the prediction and the ground-truth; and |A U B, the union, includes all pixels labeled as the target
class in either the predicted or actual data.
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Fig. 5. High-level diagram of the U-Net architecture modified with an SK-ResNeXt encoder utilized in this
research.
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Mean intersection over union

The mean Intersection over Union (mIoU) expands on the IoU metric by calculating an average of IoU scores for
each class within a dataset®®°. This method provides a balanced measure of a model’s segmentation performance
across diverse class types. mIoU is defined as shown in Eq. (3):

C
1
mloU = & Z; IoU;, 3)

where C represents the number of classes, and IoU; is the IoU score for the @ — th class. mIoU ranges from 0
to 1, where higher values close to 1 denote more precise segmentation capabilities across the entire spectrum of
categories in the dataset.

Implementation details and procedure

For the experiments, we integrated a 50-layer SK-ResNeXt with a cardinality of 32 into the U-Net architecture.
The implementation was carried out entirely in Python using the PyTorch framework, utilizing code from its
vision models library as the foundation. The dataset, originally consisting of large tiles, was cropped into 256 x
256 patches to facilitate processing. After patching, it was split into 80% for training and 20% for evaluation. To
enhance the diversity of the training data and improve model generalization, data augmentation techniques were
applied, including random horizontal flips, random vertical flips, and random rotations ranging from 0 to 360
degrees. The training was conducted over a maximum of 120 epochs, with the best model saved at each epoch
based on the lowest loss. This number of epochs is consistent with that used by the authors of the dataset they
employed in their experiments. Adam optimizer was used with a learning rate of 5 x 10™*, cross-entropy as the
loss function, and a batch size of 128. The hardware setup consisted of four Nvidia A100 SXM4 40GB GPUs, 64
CPU cores, and 128 GB of RAM.

The impact of different combinations of spectral bands was evaluated in three configurations: starting
with the basic RGB, then replacing the blue band with NIR (RG-NIR), and finally adding the NIR band to the
complete visible set (RGB-NIR). These combinations were chosen because they are commonly used in similar
studies®**®-7! in the field of LCC and MSI. To handle the varying number of channels, we modified the first layer
of the architecture to accommodate the desired input configurations. For comparison, we also trained U-Net,
PSPNet, DeepLabV3, DeepLabV 3+, SegFormer, and Ma-Net architectures using a variety of encoders, including
ResNet50, VGG16, MobileNetV2, and MobileNetV3 under the same training parameter settings mentioned
above.

Results and discussion

To begin the analysis of results, Table 1 presents the segmentation metrics of all models trained with various
encoder and band combinations. Additionally, it includes three efficiency indicators to provide a comprehensive
assessment of the models’ computational performance.

Starting with the computational efficiency, the training times show that PSPNet models with the MobileNetV2
encoder require theleastamount of training time, never exceeding three hours across all three band combinations.
This is even lower than SegFormer, the second fastest model in training time, which also stayed under three
hours but consistently took slightly longer than PSPNet. Conversely, the models that take the longest to train
are the DeepLabV3 models with the ResNet50 encoder, with times exceeding 4.3 hours. Regarding U-Net +
SK-ResNeXt50, which is the main focus of this study, these models exhibit training times over 4 hours; however,
it is important to highlight that despite having an encoder that is clearly more advanced than the others, it does
not report the highest training times. In fact, when compared to the vanilla U-Net, which is the most direct
natural reference, the training times of U-Net + SK-ResNeXt50 show little differences. Specifically, for the RGB
combination, it takes 0.527 hours more; for RG-NIR, 0.176 hours more; and it is even faster for RGB-NIR,
taking 0.182 hours less. This demonstrates that the SK-ResNeXt50’s design effectively balances advanced feature
extraction capabilities with computational efficiency. This is especially significant for large-scale applications and
environments with limited computational resources, as it demonstrates that this approach does not necessarily
imply prohibitive training costs.

Continuing with the inference times, the PSPNet, Ma-Net, and vanilla U-Net models demonstrate the
fastest inference speeds, predominantly around 0.003 seconds, except for the specific case of PSPNet with the
VGG16 encoder and RGB combination, which registers 0.004 seconds, a minimal difference. DeepLabV3 and
DeepLabV3+, with their various encoders, exhibit intermediate inference times ranging from 0.005 to 0.008
seconds. The U-Net + SK-ResNeXt50 approach registers relatively high inference times, measuring 0.010
seconds for the RGB and RG-NIR combinations and reaching 0.011 seconds for RGB-NIR. However, SegFormer
proves to be the slowest model in terms of inference, slightly above U-Net + SK-ResNeXt50. Specifically, this
approach records 0.012 seconds for RGB and RG-NIR, and 0.013 seconds for RGB-NIR, with the latter being the
slowest inference time among all approaches analyzed. Although U-Net + SK-ResNeXt50 is slightly slower than
the other models, it is important to note that these inference times do not represent a significant disadvantage, as
the absolute differences are minimal and do not noticeably impact performance in practical applications.

Moving on to the epoch in which the best model was achieved, this indicator provides insight into how quickly
models converge to an optimal performance level. In turn, this allows an assessment of resource efficiency, as
a model that converges faster requires less training time to reach its peak performance, which is favorable in
terms of resource savings. In this regard, a certain parity is observed between U-Net + SK-ResNeXt50 and
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Model Encoder Band combination | OA (%) | mIoU (%) | Training time (hours) | Inference time (seconds) | Epoch best model
RGB 79.010 | 53.161 4.129 0.010 113
U-Net SK-ResNeXt50 | RG-NIR 79.533 | 53.255 4.066 0.010 115
RGB-NIR 80.561 | 54.394 4.283 0.011 109
RGB 75.025 | 48.814 3.602 0.003 118
- RG-NIR 74.380 | 49.800 3.890 0.003 117
RGB-NIR 76.106 | 50.461 4.465 0.003 117
RGB 78.859 | 52.740 3.395 0.006 116
ResNet50 RG-NIR 78279 | 52.547 3.212 0.006 116
RGB-NIR 77.522 | 52.208 3.539 0.006 115
UrNet RGB 78.417 | 52.814 3.326 0.009 119
VGG16 RG-NIR 78.157 | 52.699 3.223 0.009 117
RGB-NIR 78.482 | 52.921 3.552 0.006 120
RGB 78.654 | 52.369 3.375 0.010 120
MobileNetV2 | RG-NIR 78.022 | 51.930 3.512 0.009 120
RGB-NIR 76.798 | 50.121 3.802 0.010 119
RGB 79.669 | 53.484 3.443 0.005 118
ResNet50 RG-NIR 79.866 | 53.730 3.154 0.005 120
RGB-NIR 79.970 | 54.008 3.473 0.006 120
RGB 79.144 | 51.906 2.840 0.005 120
DeepLabV3+ | MobileNetV2 | RG-NIR 78.145 | 51.136 2.854 0.006 120
RGB-NIR 79.337 | 51.949 3.083 0.006 118
RGB 78.925 | 52.271 3.465 0.006 120
MobileNetV3 | RG-NIR 79.566 | 52.475 3.516 0.006 120
RGB-NIR 79.350 | 52.170 3.626 0.006 118
RGB 76.436 | 48.875 2.920 0.003 119
ResNet50 RG-NIR 75238 | 47.372 2.999 0.003 120
RGB-NIR 77.418 | 50.213 3.126 0.003 120
RGB 77.483 | 50.236 3.292 0.004 118
PSPNet VGG16 RG-NIR 78.067 | 50.629 3.147 0.003 119
RGB-NIR 77.719 | 50.075 3.183 0.003 120
RGB 75.739 | 46.193 2.580 0.003 119
MobileNetV2 | RG-NIR 76.159 | 46.371 2.610 0.003 115
RGB-NIR 76.493 | 46.695 2.959 0.003 120
RGB 75.623 | 48.006 3.789 0.003 115
ResNet50 RG-NIR 77.403 | 50.281 3.648 0.003 117
RGB-NIR 78.556 | 52.110 3.985 0.003 119
RGB 78.732 | 51.241 3.689 0.003 118
Ma-Net VGG16 RG-NIR 77.871 | 51.132 3.477 0.003 115
RGB-NIR 77.938 | 51.019 3.776 0.003 112
RGB 79.313 | 50.883 3.552 0.003 120
MobileNetV2 | RG-NIR 78.329 | 50.722 3.544 0.003 120
RGB-NIR 78.858 | 50.783 3.888 0.003 120
RGB 79.940 | 54.106 4.308 0.006 120
ResNet50 RG-NIR 79.154 | 53.764 4.376 0.006 120
RGB-NIR 79.880 | 53.890 4.613 0.006 120
RGB 78.682 | 51.843 3.724 0.008 118
DeepLabV3 MobileNetV2 | RG-NIR 78.825 | 51.795 3.895 0.006 118
RGB-NIR 79.111 51.957 3.965 0.006 120
RGB 79.100 | 51.962 3.570 0.006 120
MobileNetV3 | RG-NIR 79.071 | 51.954 3.620 0.006 118
RGB-NIR 79.163 | 52.345 3.779 0.006 119
RGB 71.334 | 42.381 2.682 0.012 108
SegFormer - RG-NIR 71.716 | 43.100 2.684 0.012 119
RGB-NIR 72.794 | 44.264 2.976 0.013 111

Table 1. Quantitative results for all models according to their band combinations. Training time is measured
for 120 epochs.
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SegFormer as the models that converge the fastest. U-Net + SK-ResNeXt50 stands out particularly with the RG-
NIR and RGB-NIR combinations, converging at epochs 115 and 109, respectively. This indicates that U-Net +
SK-ResNeXt50 effectively leverages the non-visible bands to accelerate convergence, highlighting its adaptability
in utilizing multispectral information for enhanced feature extraction. SegFormer, on the other hand, shows the
fastest convergence with the RGB combination, reaching it at epoch 108, ahead of U-Net 4+ SK-ResNeXt50’s 113
epochs. The comparison with other models shows that U-Net 4 SK-ResNeXt50 has clear advantages in learning
efficiency, as it requires fewer computational resources to reach its optimal performance. This is especially
evident when comparing this approach to others, such as Ma-Net + MobileNetV2 or DeepLabV3 + ResNet50,
whose best models were achieved in the final epoch of training, reflecting that these models converge more
slowly and may require extended training periods to reach their peak. Additionally, compared to U-Net, its most
direct reference, U-Net + SK-ResNeXt50 also converges a few epochs earlier, demonstrating that integrating SK-
ResNeXt50 as the U-Net encoder does not impose a computational cost that compromises efficiency.

Examining the segmentation performance (Table 1), we observe that, overall, the U-Net + SK-ResNeXt50
approach outperforms models such as PSPNet, Ma-Net, and U-Net with various encoder configurations in
terms of both OA and mIoU. Specifically, compared to the vanilla U-Net, U-Net + SK-ResNeXt50 achieves OA
improvements of 5.312% for the RGB combination, 6.928% for RG-NIR, and 5.854% for RGB-NIR. Similarly,
in terms of mIoU, it demonstrates enhancements of 8.906% for RGB, 6.938% for RG-NIR, and 7.794% for RGB-
NIR. These figures highlight a significant performance gain of the U-Net + SK-ResNeXt50 over its baseline,
especially considering the relatively modest increase in training time discussed earlier. Compared to DeepLabV3
and DeepLabV3+, particularly with ResNet50 as encoder, U-Net + SK-ResNeXt50 exhibits improvements as
well. Specifically, with the RGB-NIR band combination, U-Net + SK-ResNeXt50 achieves a 0.935% and 0.715%
increase in mIoU over DeepLabV3 and DeepLabV3+, respectively, and a 0.853% and 0.739% increase in OA.
This configuration of U-Net + SK-ResNeXt50 with RGB-NIR bands stands out as the best across all models,
encoders, and band combinations evaluated. SegFormer exhibits the lowest performance in our experiments,
possibly due to its greater architectural complexity, which may require further fine-tuning or adjustments to
fully capture the spatial and spectral details needed for effective LCC. U-Net + SK-ResNeXt50 demonstrates
substantial improvements over SegFormer, with over a 10% increase in OA and a more than 20% improvement
in mIoU across all band combinations. Overall, the results demonstrate that U-Net + SK-ResNeXt50 is a
robust and superior approach compared to other models, particularly when using multispectral data. These
improvements in accuracy more than compensate for the slight increase in inference time observed earlier.

Examining the overall impact of the different spectral band combinations in terms of OA and mIoU, we observe
that while the inclusion of the NIR band generally has a positive effect on the results, this effect is not consistently
observed across all cases. For example, in the case of U-Net with a ResNet50 encoder, the best performance in
terms of OA and mloU is achieved with the standard RGB combination. In this scenario, replacing the blue
band with NIR results in a decrease of 0.735% in OA and 0.366% in mIoU. Furthermore, adding NIR to the RGB
bands leads to an even greater decrease, with reductions of 1.695% in OA and 1.009% in mIoU. A similar pattern
is observed with U-Net employing a MobileNetV2 encoder. In other cases, an alternating trend is noted where
replacing the blue band with NIR does not produce improvements, but adding NIR to the complete set of visible
bands does enhance performance. This behavior is evident in most cases, indicating that the most consistent
improvements occur with the four-channel combination (RGB-NIR). In the case of U-Net + SK-ResNeXt50, a
progressive improvement is observed with the incorporation of the NIR band. Specifically, using the RG-NIR
combination yields an improvement of 0.662% in OA and 0.177% in mIoU over the RGB configuration. Notably,
the addition of NIR to the full set of visible bands results in the best performance, with enhancements of 1.963%
in OA and 2.319% in mIoU compared to RGB alone. This improvement is likely attributable to the design of
the SK-ResNeXt encoder, which is specifically engineered to enhance feature extraction. Unlike less advanced
encoders, the cardinality and adaptability of SK-ResNeXt enable it to more effectively leverage the additional
information provided by the NIR band, facilitating the extraction of richer features and consequently improving
segmentation outcomes.

For a more detailed analysis regarding the impact of spectral bands, Table 2 presents the IoU results for
each of the 24 classes in the dataset. In this case, we have focused on the models and encoders that showed the
best overall performance (Table 1). The table shows that U-Net + SK-ResNeXt50 dominates in several classes,
especially when using RGB-NIR, where it demonstrates the most notable improvements. For example, in the
class Park, an IoU of 17.129% is observed, representing an improvement of 32.906% over the second-best result of
12.888% reported by DeepLabV3 with a ResNet50 encoder. This improvement is justified by the high reflectance
of vegetation in the NIR band and the ability of the SK-ResNeXt encoder to better exploit this information,
leading to enhanced differentiation of cover types. A similar pattern is observed in the category Squa, a type
of area where vegetation is also often present, achieving 12.750% compared to 8.981% by DeepLabV3+ with a
ResNet50 encoder. In other classes such as Fish, Pond, Snow, Stadium, Road, Rura, Natu, Arti, and Indu, U-Net
+ SK-ResNeXt50 with RGB-NIR also demonstrates superior performance. Although in some classes U-Net +
SK-ResNeXt50 using RGB-NIR does not report the best numbers, it consistently maintains a minimal difference,
which, combined with its significant advantage in specific classes, confirms the superiority shown in the overall
metrics.

The other models exhibit a less consistent performance when the NIR band is included, with results varying
across classes and band configurations, and failing to achieve the same level of improvement as U-Net + SK-
ResNeXt50 with RGB-NIR. For instance, Ma-Net with MobileNetV2 shows a decrease in IoU from 2.348%
in RGB to 1.147% in RGB-NIR for the Park class, indicating that the additional band does not enhance
performance for this architecture; instead, it appears to introduce noise that negatively impacts its accuracy.
Similarly, DeepLabV3+ with ResNet50 displays this pattern in the Park class, dropping from an IoU of 8.746%
in RGB to 7.078% in RGB-NIR, and even further to 6.139% in RG-NIR. SegFormer also shows a decrease
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Model Bands Indu |Padd | Irri Dryc |Gard |Arbo |Shru |Park |Natu |Arti River | Urba
RGB 40.959 | 36.273 | 57.470 | 43.288 | 8.170 |48.605 | 3.122 | 5.453 | 28.985 | 16.304 | 53.615 | 52.973

U-Net RG-NIR | 40.706 | 36.410 | 63.080 | 46.500 | 16.911 | 54.324 | 10.256 | 12.757 | 29.035 | 18.724 | 49.104 | 56.360
RGB-NIR | 43.919 | 34.866 | 58.475 | 40.438 | 10.020 | 49.915 | 8.854 |7.630 |32.734 |17.072 | 55.794 | 52.973
RGB 45.148 | 38.478 | 64.177 | 38.581 | 16.798 | 54.533 | 7.853 | 8.746 | 33.896 | 19.172 | 60.045 | 57.761

DeepLabV3+ (ResNet50) | RG-NIR | 43.506 | 38.497 | 62.885 | 46.444 | 16.335 | 54.123 | 8.801 | 6.139 | 31.273 | 18.339 | 59.857 | 57.122

RGB-NIR | 45.890 | 41.401 | 63.014 | 50.464 | 21.398 | 54.846 | 8.640 | 7.078 | 32.688 | 18.880 | 58.802 | 57.735

RGB 43.473 | 31.299 | 60.053 | 44.157 | 11.700 | 51.026 | 5.490 | 2.348 | 34.028 | 17.597 | 52.940 | 56.603

Ma-Net (MobileNetV2) RG-NIR | 42.540 | 36.102 | 62.718 | 38.286 | 15.526 | 49.713 | 6.177 | 2.952 | 30.795 |20.314 | 58.670 | 56.091

RGB-NIR | 39.407 | 33.540 | 64.138 | 38.044 | 18.201 | 48.424 | 4.044 | 1.147 | 32.160 |15.845 | 59.201 | 55.175

RGB 45.392 | 39.515 | 63.540 | 40.529 | 20.101 | 56.472 | 7.636 | 12.354 | 34.737 | 18.835 | 58.904 | 57.817

DeepLabV3 (ResNet50) RG-NIR | 44.163 | 39.549 | 63.829 | 46.319 | 18.805 | 54.907 | 7.832 | 10.459 | 31.325 | 17.955 | 59.477 | 57.938

RGB-NIR | 44.201 | 38.490 | 63.907 | 43.168 | 17.438 | 55.979 | 7.968 | 12.888 | 33.000 | 18.981 | 59.476 | 57.738

RGB 41.783 | 35954 | 62.250 | 28.212 | 11.226 | 51.738 | 5.659 | 6.034 | 30.563 | 11.199 | 51.992 | 55.375
PSPNet (VGG16) RG-NIR | 41.155 | 35.188 | 62.422 | 46.133 | 13.220 | 53.377 | 6.677 |2.572 | 28.391 |9.717 | 52.747 | 54.849
RGB-NIR | 39.117 | 35.067 | 58.956 | 43.207 | 15.205 | 52.049 | 6.375 | 10.039 | 28.893 | 15.199 | 53.307 | 55.640
RGB 33.621 | 21.934 | 51.796 |21.737 | 6.872 | 47.123 | 3.323 | 1.000 |24.354 | 2.515 |40.164 | 47.359
SegFormer RG-NIR | 31.144 | 28.257 | 54.425 | 26.189 | 5.358 | 45.575 | 2.020 | 0.907 | 18.482 |3.925 |42.427 |48.451
RGB-NIR | 32.618 | 29.341 | 54.922 | 28.211 | 5.991 |49.873 | 2.258 | 1.003 | 23.846 |4.051 |46.089 |49.103
RGB 45595 | 41.061 | 64.510 | 38.333 | 14.292 | 55.176 | 6.716 | 9.993 |29.924 | 17.672 | 60.561 | 58.145

U-Net (SK-ResNeXt50) RG-NIR | 44.810 | 38.836 | 63.750 | 38.954 | 18.700 | 55.005 | 7.871 | 13.213 | 34.387 | 20.251 | 60.697 | 57.688

RGB-NIR | 45.632 | 38.619 | 63.865 | 50.147 | 19.926 | 55.478 | 8.131 | 17.129 | 35.279 | 21.971 | 60.284 | 58.074

Model Bands Lake |Pond |Fish |Snow |Bare |Rura |Stad |Squa |Road |Over |Rail | Airp
RGB 58.715 | 11.237 | 39.992 | 9.690 | 18.611 | 46.407 | 13.414 | 6.109 | 51.748 | 35.008 | 16.033 | 21.408

U-Net RG-NIR | 70.668 | 17.836 | 47.993 | 13.265 | 25.357 | 48.627 | 15.665 | 5.713 | 52.391 | 30.123 | 18.144 | 15.620
RGB-NIR | 69.854 | 16.263 | 50.346 | 11.646 | 24.493 | 44.496 | 12.469 | 2.916 | 53.159 | 37.100 | 17.507 | 16.662
RGB 77.016 | 18.216 | 54.754 | 11.685 | 25.978 | 49.307 | 26.062 | 10.250 | 54.290 | 44.287 | 19.489 | 27.265

DeepLabV3+ (ResNet50) | RG-NIR | 76.939 | 17.255 | 53.584 | 14.277 | 25.515 | 47.709 | 29.965 | 7.709 | 54.115 | 43.602 | 21.744 | 26.758
RGB-NIR | 78.558 | 18.727 | 54.428 | 16.077 | 28.170 | 50.044 | 30.382 | 8.981 | 53.819 | 42.258 | 20.768 | 23.741
RGB 71.777 | 9.089 | 50.474 | 7.135 | 18.395 | 44.886 | 15.366 | 0.000 | 51.462 | 31.985 | 17.173 | 19.386
Ma-Net (MobileNetV2) RG-NIR | 71.501 | 10.481 | 45.422 | 5.265 |26.498 | 46.280 | 15.965 | 0.000 | 50.175 |32.749 | 19.419 | 21.406
RGB-NIR | 70.394 | 7.308 | 44.087 | 7.591 | 18.951 | 46.521 | 11.563 | 0.000 | 51.184 | 33.466 | 22.580 | 21.836
RGB 77.640 | 17.100 | 52.256 | 16.649 | 30.144 | 49.633 | 34.739 | 9.725 | 54.655 | 44.336 | 22.771 | 28.290
DeepLabV3 (ResNet50) RG-NIR | 77.961 | 17.299 | 52.288 | 12.745 | 27.888 | 49.796 | 27.286 | 7.080 | 53.415 | 43.019 | 20.477 | 28.326
RGB-NIR | 77.623 | 19.994 | 47.993 | 13.360 | 31.631 | 48.734 | 31.621 | 8.075 | 53.797 |43.969 | 21.215 | 28.759

RGB 74.583 | 12.279 | 45413 | 6.762 | 20.861 | 46.389 | 19.587 | 4.882 | 50.426 | 37.012 | 16.830 | 14.956
PSPNet (VGG16) RG-NIR | 73.703 | 15.069 | 44.536 | 5.316 |21.116 | 46.905 | 23.744 | 4.893 | 50.528 |37.934 | 21.011 | 16.130
RGB-NIR | 72.869 | 12.977 | 46.469 | 6.486 | 21.800 | 44.603 | 26.722 | 7.443 | 50.914 | 36.297 | 17.094 | 19.524
RGB 67.126 | 9.938 | 24.297 | 0.111 | 13.265 | 36.131 | 2.914 | 0.670 |41.505 | 13.983 | 4.277 |9.719
SegFormer RG-NIR | 67.382 | 12.723 | 29.437 | 3.776 | 13.783 | 39.080 | 4.650 | 1.551 |42.706 |15.556 | 6.919 | 11.653
RGB-NIR | 68.743 | 12.443 | 31.375 | 1.183 | 13.719 | 39.177 | 3.663 | 1.184 |44.012 | 15.050 | 9.096 | 5.981
RGB 74.961 | 16.918 | 47.786 | 9.278 | 27.613 | 48.640 | 28.240 | 8.420 | 54.663 | 42.205 | 27.517 | 35.636

U-Net (SK-ResNeXt50) RG-NIR | 78.004 | 18.302 | 53.580 | 16.118 | 28.231 | 48.098 | 31.063 | 11.159 | 55.789 | 45.309 | 24.677 | 36.365
RGB-NIR | 76.868 | 20.071 | 51.764 | 17.465 | 30.937 | 50.048 | 32.905 | 12.750 | 55.774 | 44.505 | 24.543 | 32.638

Table 2. Evaluation results of IoU by class. The results shown correspond to the models with the best overall
performance (Table 1). The abbreviations for categories are specified as: Indu - industrial area, Padd - paddy
field, Irri - irrigated field, Dryc - dry cropland, Gard - garden land, Arbo - arbor forest, Shru - shrub forest,
Natu - natural meadow, Arti - artificial meadow, Urba - urban residential, Fish - fish pond, Bare - bare land,
Rura - rural residential, Stad - stadium, Squa - square, Over - overpass, Rail - railway station, Airp - airport.
Results are presented in percentages (%).

in performance, particularly in the Garden class, where it falls from 6.872% in RGB to 5.991% in RGB-NIR.
This trend is observed across multiple models, suggesting that they lack the ability to effectively leverage the
additional information provided by the non-visible band, which may result in suboptimal feature extraction or
the introduction of irrelevant spectral information.

Additionally, visual tests were conducted to practically assess the performance of the models. For this
purpose, we focused on the most representative models from each architecture family that demonstrated the
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best overall performance (Tabla 1). These tests were also performed for each combination of spectral bands,
allowing us to not only evaluate the models but also analyze how effectively they leverage, or fail to leverage, the
inclusion of the non-visible band.

Figure 6 shows the segmentation results using the RGB combination. In this figure, we observe that, overall,
the models struggle to approximate the ground-truth, displaying blurred edges and misclassifications. Notably,
SegFormer exhibits significant difficulties in accurately segmenting areas such as Overpass, Fish pond, and
Pond. These challenges are especially evident in the first row, where SegFormer performs the worst among
the models. PSPNet with the VGG16 encoder also demonstrates issues, as it struggles to accurately delineate
and capture categories such as Overpass and River, which other models handle more effectively. The vanilla
U-Net, DeepLabV3 with ResNet50, and Ma-Net with MobileNetV2 also face challenges in precisely delineating
the classes Fish pond and Pond. In contrast, U-Net + SK-ResNeXt50 shows a superior ability to handle these
classes, more effectively capturing those regions and achieving better differentiation. Additionally, U-Net + SK-
ResNeXt50 shows slight improvements in categories such as Bare land (fourth row) and Urban residential (fifth
row), and more effectively differentiates the Irrigated field from Unlabeled areas (third row). Nevertheless, as
previously mentioned, there remains room for improvement to reach the precision of the ground-truth.

Figure 7 presents the visual tests using the RG-NIR combination. In this case, certain improvements are
observed in the models’ ability to delineate specific regions. For instance, SegFormer shows better performance
with the Overpass (first row), though there is still room for improvement. The most notable enhancement is
seen in water-related categories. In the third row, all models segment the River almost perfectly, with only slight
irregularities and misclassifications in some pixels from the vanilla U-Net and DeepLabV3. However, when
multiple water bodies are involved alongside Unlabeled areas, the models tend to struggle. This is evident in the
fourth row, where DeepLabV3+, DeepLabV3, Ma-Net, PSPNet, and SegFormer often confuse the Pond with
the River. U-Net 4+ SK-ResNeXt50 stands out in the fourth and fifth rows, excelling in segmenting the Pond
and Lake and clearly distinguishing them from the River category. In these cases, U-Net + SK-ResNeXt50 is the
only model that nearly achieves complete segmentation of the Pond in the fourth row and the Lake in the fifth.

Figure 8 presents the tests conducted using the RGB-NIR combination. In this case, the inclusion of the NIR
band with RGB yields mixed effects across models. Some models, including U-Net, DeepLabV3+, DeepLabV 3,
Ma-Net, and SegFormer, experience declines in performance, particularly in the third, fourth, and fifth rows,
where distinguishing between different water bodies proves challenging. A similar pattern is observed in the
first row, where confusion between Fish Pond and Pond increases. This suggests that the shift to four-channel
processing, along with the additional spectral information, may introduce complexities for certain models,
making it difficult for them to effectively utilize the NIR band and potentially resulting in added noise. In this
scenario, U-Net + SK-ResNeXt50 demonstrates the best performance, reaffirming the numerical results by
effectively utilizing the additional spectral information. This approach shows the most notable improvements,
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Fig. 6. Comparison of visual results using RGB channels. The results shown correspond to the models with the
best overall performance (Table 1). The white dashed-line regions indicate the areas where the models show the
most notable differences.
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Fig. 7. Comparison of visual results using RG-NIR channels. The results shown correspond to the models with
the best overall performance (Table 1). The white dashed-line regions indicate the areas where the models show
the most notable differences.

DeepLabV3+ Ma-Net DeeplLabV3
(ResNet50) (MobileNetV2) (ResNet50)

PSPNet U-Net

SegFormer (SK-ResNeXt50)

e

| Hymaee—

Fig. 8. Comparison of visual results using RGB-NIR channels. The results shown correspond to the models
with the best overall performance (Table 1). The white dashed-line regions indicate the areas where the models
show the most notable differences.
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particularly in the delineation of Lake and River regions. It also differentiates and delineates areas such as Fish
ponds, Industrial zones, Urban residential areas, and Vegetation fields more effectively. This is especially evident
in the third and fifth rows, where it nearly achieves perfect segmentation of the scenes. Additionally, in the first,
second, and fourth rows, U-Net + SK-ResNeXt50 shows consistency and produces predictions that are closer to
the ground-truth compared to other models.

Table 3 illustrates the improvements achieved by U-Net 4 SK-ResNeXt50 over U-Net configurations employing
other encoders, across different band combinations. These percentages reflect the consistent advantages provided
by SK-ResNeXt50, particularly under the RGB-NIR configuration, where the improvements reach up to 5.854%
in OA and 7.794% in mIoU compared to the baseline U-Net. While the baseline U-Net relies on a straightforward
encoder with sequential fixed convolutional layers, SK-ResNeXt50 incorporates advanced mechanisms such as
parallel transformation paths and dynamic kernel selection. This allows it to isolate and amplify subtle spectral
variations, especially from NIR, which are often overlooked by simpler architectures. Additionally, the SK units’
ability to adjust receptive fields dynamically ensures that the network is better tuned to segment intricate class
boundaries and heterogeneous regions, areas where the baseline U-Net often underperforms.

When comparing SK-ResNeXt50 with ResNet50, it is evident that the additional architectural enhancements
of SK-ResNeXt50 yield significant benefits. For example, under the RGB-NIR configuration, SK-ResNeXt50
achieves improvements of 3.922% in OA and 4.187% in mIoU over ResNet50. These results highlight that
while ResNet50 offers strong performance due to its residual connections, it lacks the adaptive capabilities and
enhanced feature extraction provided by SK-ResNeXt50’s selective kernel mechanism and cardinality. The ability
to dynamically adjust receptive fields allows SK-ResNeXt50 to better leverage the NIR band, which appears to be
underutilized by the fixed receptive field sizes of ResNet50.

In contrast to VGG16 and MobileNetV2, SK-ResNeXt50 also demonstrates superior performance. For
instance, in the RGB-NIR configuration, the improvement over VGG16 is 2.649% in OA and 2.783% in mIoU,
while over MobileNetV2, it reaches 4.899% in OA and 8.525% in mIoU. These figures highlight the limitations
of simpler encoders, which rely on fixed and less flexible mechanisms for feature extraction, making them
less capable of adapting to the additional spectral information provided by the NIR band. MobileNetV2, in
particular, appears to struggle to fully leverage this non-visible information, potentially due to its lightweight
design optimized for efficiency at the expense of adaptability.

These findings provide strong evidence that the integration of SK-ResNeXt50 into the U-Net architecture
offers significant advantages not only due to increased model capacity but also through its architectural ability
to dynamically respond to the complexities of LCC tasks. This supports the hypothesis that the combination of
cardinality and adaptive feature extraction mechanisms is particularly well-suited for leveraging the challenges
and opportunities presented by multispectral data in remote sensing.

To conclude, Table 4 presents a comparison of the performance of U-Net 4+ SK-ResNeXt50 with other state-
of-the-art approaches on the Five-Billion-Pixels dataset. Notably, U-Net 4+ SK-ResNeXt50 achieves both the
highest OA and mloU scores, indicating its balanced performance in terms of accuracy and segmentation
quality. Although U-Net + DPA and DeepLabv3 + DPA achieve competitive OA scores, they fall short in
mloU, suggesting potential limitations in fine-grained segmentation, particularly for complex boundaries
and heterogeneous regions. In contrast, models like Mix Transformer show promising mloU but struggle to
balance this with a high OA. Lower-performing models, such as GFCNet and SimCLR, which rely on contrastive
learning, exhibit significantly reduced scores in both metrics. This performance gap underscores the added value
of SK-ResNeXt50’s adaptive receptive field selection, which enhances its capability to handle multispectral data
with diverse spatial and spectral characteristics. U-Net + SK-ResNeXt50 effectively leverages this adaptability,
capturing intricate details across a wide range of land cover types, as evidenced by its superior mIoU score.

In summary, the results suggest that U-Net 4+ SK-ResNeXt50 not only improves upon traditional U-Net’s
limitations but also surpasses other recent innovations, offering a robust approach for high-resolution, LCC

SK-ResNeXt
improvement
Encoder RGB | RG-NIR | RGB-NIR | OA (%) | mIoU (%)
v 5.312 8.906
Baseline v 6.928 6.938
v 5.854 7.794
v 0.307 0.798
ResNet50 v 1.928 1.347
et v 3922 | 4.187
v 0.756 0.657
VGGl16 v 1.761 1.055
v 2649 | 2783
v 0.453 1.512
MobileNetV2 v 1.937 2.552
v 4.899 8.525

Table 3. Relative performance improvements of the proposed U-Net + SK-ResNeXt configuration compared
to various U-Net variations under different band combinations.
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Method OA (%) | mIoU (%)
U-Net + DPAS® 80.35 44.51
DeepLabv3+ + DPAS 79.87 42.12
Mix Transformer”? 73.10 50.24
GFCNet”? 65.44 21.84
FALSE™* 64.88 21.41
SimCLR”® 64.31 21.34
U-Net + SK-ResNeXt50 | 80.56 54.39

Table 4. Comparison of U-Net + SK-ResNeXt50 performance with other methods from current literature on
the Five-Billion-Pixels dataset.

tasks. Notably, it is the model that benefits most from the inclusion of the non-visible NIR band, unlike others
whose performance decreases with this additional spectral information. Therefore, the modifications to U-Net
enhance its adaptability to a wide range of land cover types and challenging conditions, ensuring consistent
segmentation quality without substantial computational costs or inference delays. This balance of accuracy,
adaptability, and efficiency positions U-Net + SK-ResNeXt50 as a highly promising model for complex remote
sensing applications, where both spectral depth and spatial precision are essential.

Conclusions and future work

In this work, we explore the application of SK-ResNeXt as an encoder within the U-Net architecture for LCC.
This modification aims to enhance the capabilities of U-Net, particularly its feature extractor, by incorporating
the cardinality and adaptive kernel size characteristics of SK-ResNeXt. These features provide U-Net with greater
flexibility in capturing multi-scale information and refining the segmentation process, improving its overall
performance in complex land cover classification tasks. To assess the performance of this approach, the Five-
Billion-Pixels dataset was used. This dataset consists of 150 large-scale RGB-NIR images, with more than 5
billion labeled pixels and 24 categories, offering a challenging benchmark for testing LCC models. Extensive
quantitative and qualitative evaluations were conducted, and the impact of different band combinations on the
segmentation process was analyzed. Additionally, the performance of this approach was compared with other
methods, including the original U-Net, DeepLabV3, DeepLabV3+, Ma-Net, PSPNet, and SegFormer using
various encoders such as ResNet50, VGG16, MobileNetV2, and MobileNetV3.

The quantitative results demonstrate that U-Net + SK-ResNeXt achieved remarkable performance in terms
of OA and mloU, surpassing the baseline vanilla U-Net. Specifically, the improvements were reported to be
5.312% with the RGB configuration, 6.928% with RG-NIR, and 5.854% with RGB-NIR in terms of OA. In terms
of mIoU, the improvements over the original U-Net are 8.905% using RGB, 6.938% using RG-NIR, and 6.506%
using RGB-NIR. Furthermore, the U-Net + SK-ResNeXt approach proves particularly effective at leveraging
multispectral information, as its performance with the four-channel combination (RGB-NIR) outperformes all
other architectures used for comparison. The visual tests also demonstrate the superiority of U-Net + SK-ResNeXt,
as it not only presents the fewest issues but is also the only approach that improves its segmentation results with
the inclusion of the non-visible band. In contrast, other approaches like DeepLabV3, DeepLabV3+, PSPNet,
Ma-Net, and SegFormer shows a decline in performance when this band is added. Specifically, the U-Net + SK-
ResNeXt approach, with the inclusion of the NIR band, enhances its ability to delineate, and accurately classify
cover types such as lakes, rivers, ponds, industrial areas, residential areas, and vegetation. This demonstrates
how the modification provides U-Net with better capabilities for effectively utilizing multispectral information.
Additionally, the proposed approach not only improves upon well-established segmentation models but also
outperforms other state-of-the-art methods in the field. This superior performance underscores its potential
as an advanced solution for complex LCC applications, demonstrating both effective use of multispectral
information and robust segmentation quality across diverse land cover types.

Future work could focus on further modifications to the U-Net architecture, such as enhancing the decoder,
which holds the potential to further improve the overall performance of U-Net. Additionally, exploring other
datasets with a broader range of spectral bands, such as shortwave infrared or red edge, or even extending this
approach to the hyperspectral domain, could provide valuable insights. Moreover, future experiments could
expand the comparative analysis by incorporating architectures that were not included in this study, offering a
more comprehensive evaluation of the approach’s performance across a wider range of models.

Data availability
The datasets generated during and/or analyzed during the current study are available in at: https://x-ytong.gith
ub.io/project/Five-Billion-Pixels.html.
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