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Abstract Research in computer vision is advancing by the availability of good datasets that
help to improve algorithms, validate results and obtain comparative analysis. The datasets
can be real or synthetic. For some of the computer vision problems such as optical flow
it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor
real scenarios directly by any sensor, although it is possible to obtain ground-truth data of
real scenarios in a laboratory setup with limited motion. In this difficult situation computer
graphics offers a viable option for creating realistic virtual scenarios. In the current work we
present a framework to design virtual scenes and generate sequences as well as ground-truth
flow fields. Particularly, we generate a dataset containing sequences of driving scenarios.
The sequences in the dataset vary in different speeds of the on-board vision system, different
road textures, complex motion of vehicle and independent moving vehicles in the scene.
This dataset enables analyzing and adaptation of existing optical flow methods, and leads
to invention of new approaches particularly for driver assistance systems.

Keywords Ground-truth optical flow - Synthetic sequence - Algorithm validation

1 Introduction

Computer Vision has got applications in different fields of life. The research in computer
vision is always motivated, as well as supported by the benchmarking dataset with ground-
truth information. The availability of ground-truth information makes the dataset very useful
for the evaluation of different methods. Generally, ground-truth can be obtained by manual
labelling and/or sophisticated equipments such as for detection, recognition and segmen-
tation tasks. Optical flow technique is an important approach in motion estimation that is
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useful in many fields such as action recognition, surveillance, image compression, robot
navigation, driver assistance systems to mention a few. In spite of the fact that the research
on optical flow started more than three decades ago, the seminal methods were just proposed
in 1981 [10, 12]. There are many advances in this field since then and it has got momentum
since several years from now. This is mainly due to the availability of datasets with ground-
truth flow information as well as due to the large increase in computational power. The
availability of dataset challenges the existing state of the art methods and promotes research
to propose newer methods. Also it allows the evaluation of existing methods. Another bene-
fit is that the ground-truth data satisfies the need of the learning based approaches. Particular
to the optical flow, there are issues in obtaining ground-truth optical flow of real scenar-
ios. There is no such direct sensor to obtain ground-truth information with a good accuracy
in real scenarios unless performed in a restricted laboratory environment. It can be possi-
ble in a laboratory environment for limited motion using hidden texture [6], but for natural
outdoor scenes, there is no way at present to have ground-truth optical flow with good accu-
racy. In such a scenario, the alternate viable solution is to have synthetic datasets. Hence, the
developments in the area of computer graphics have given the advantage of creating such
synthetic datasets facilitating the validation of computer vision algorithms.

The safety is one of the top priority while driving. Although there are improvements in
vehicular technology and infrastructures that increases the safety of human and vehicles, the
main cause of accidents are the human errors. Advanced driver assistance systems (ADAS)
is an upcoming area where many computer vision techniques have potential to tackle chal-
lenging situations. Motion is an important input for many of the ADAS. The optical flow as
a motion estimation technique has an important role in ADAS. There are several variations
in a driving scenario affected by environments such as urban, highway, countryside where
the vehicle is being driven, types of road (well structured, differently textured), weather
conditions, and daylight conditions. There exist no sensor to directly acquire ground-truth
flow field along with the image sequences and it is not possible to obtain accurate ground-
truth by other ways such as by using depth sensors. The alternative way for this situation
is to create virtual scenarios using 3D designing tools. The advantage to go with synthetic
sequences is that one can create all the possible different environments and scenarios as
mentioned before in the case of driving. Although there exist a question that how realistic
are these synthetic ones compared to real ones, one can thrive to integrate realism into vir-
tual scenes with the latest advances in computer graphics. Actually, there are some work
in this direction, for instance recently in [15] the authors did an attempt to create realistic
synthetic scenarios. They show that it is possible to create more realism by varied lighting
conditions, varied material properties and by exploiting state of the art in computer graphics.

As discussed above, driving scenarios involve varied complexities due to motion of on-
board camera, dynamic scene with independently moving vehicles and other additional
factors in the environment. There are several of such characteristics that need to be ana-
lyzed to develop a good optical flow method in driving scenarios. For example, change in
road texture influences the optical flow accuracy. To do such a study one needs to have
image sequences of the same structural scene but with different road textures. In reality, it
is very difficult to create such one and impossible to generate ground-truth optical flow of
good accuracy. The other best solution is to have synthetic sequences generated and then
obtaining ground-truth will also be easier. The existing datasets do not provide any of such
sequences. In this work we are proposing a framework to generate such sequences along
with the ground-truth flow fields. The most important contribution is the generated dataset
of sequences with different speeds, different textures with added complexity. This is the first
work on this kind of dataset in the ADAS domain. Moreover we are proposing a framework
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that can be used to generate any kind of sequences of complex scenarios and being able to
generate ground-truth optical flow. The research community can improve and develop new
datasets according to their own requirements.

The paper is organized as follows. Next section describes existing optical flow datasets,
their applicability and drawbacks. The proposed framework is presented in Section 3 fol-
lowed by the technique of generating ground-truth optical flow in Section 4 and dataset
generated in Section 5. The generated ground-truth optical flow is validated by back-
projecting images. Also our dataset is compared with state of the art synthetic driving
sequences. Further a simple analysis of effectiveness of different optical flow algorithms on
our dataset is also performed. This analysis and validation is provided in Section 6. Then,
the paper is concluded with Section 7.

2 Related work

There are several datasets for optical flow (e.g., [6-9, 11, 18]) available to the research
community for algorithm validation, evaluation and comparison. One of the most well
known dataset is Middlebury [6], which contains both real and synthetic sequences. The
ground-truth for real sequences are generated with hidden texture in a controlled labora-
tory environment. Most of the contributions in optical flow are evaluated on this dataset
[1], which contains limited scenarios and image pairs have small displacements. One of
the first performance evaluation work has been done in [7] while presenting a few syn-
thetic sequences with an evaluation methodology. The sequences are very simplistic. Later
McCane et al. [14] introduce several complex synthetic sequences and also compared sev-
eral optical flow methods. A real sequence is provided by Liu et al. [11]. In this work the
authors also present dense ground-truth data. They annotate an image into different lay-
ered segments and compute optical flow using existing methods for each layers seperately.
Obviously this process adds several errors into the ground-truth. This dataset do not involve
much realistic characteristics that one can expect in driving scenarios. Few real sequences
were proposed by Otte and Nagel [16]. These sequences are also simplistic with geometry,
texture and small displacements.

A big challenge when a real dataset with realistic scenarios need to be obtained lies on
the difficulty in obtaining ground-truth optical flow. Recently, Geiger et al. [9] have pro-
posed a new real dataset of driving scenarios containing large displacements, specularity,
shadows and different illuminations. They have also provided sparse ground-truth flow field
with a density of around 50 %. This dataset is referred to as KITTI. Although this dataset
is obtained from real data, the main limitation lies in the sparseness of the data. It does not
provide dense ground-truth and the ground-truth is not accurate due to errors in the regis-
tration of laser scanner point clouds to the image plane. One can observe that the camera
has a wide angle, but the images are not well focussed in all the regions. The work in [18]
introduces few synthetic sequences of driving scenarios with ground-truth optical flow. This
dataset is referred to as EISATS. The ground-truth flow fields in these sequences do not
show the occlusion areas when there are moving vehicles. Also a set of simple sequences
are provided by [13]. In this work the authors attempt to find the best suitable optical flow
algorithm based on the flow confidence at every pixel.

Considering the drawbacks of the existing datasets, recently Butler et al. [8] presented
a large synthetic dataset from the animated short film Sintel. This dataset is referred to as
MPI-Sintel. They have incorporated several complexities such as motion blur, defocus blur,
shading and atmospheric effects. The dataset contains the same image sequences with three
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Fig. 1 Snapshot of a 3D design in Maya

levels of complexities. This dataset is expected to be a new benchmark for optical flow
research [2]. The datasets [6, 8, 9] have separate training and evaluation sets. The evaluation
set does not provide ground-truth flow data to the public for the purpose of evaluation. One
can think that the state of the art methods that give the best results on Middlebury dataset can
also perform similarly on KITTI dataset and MPI-Sintel. However, by analyzing the KITTI
flow evaluation [3] and Sintel evaluation [2] one can realize that such a statement is wrong
due to the difficulties of the particular datasets. This proves that a diverse collection of
datasets will take forward research to new levels. Among the existing datasets, the sequences
from [9, 18] are intended for ADAS applications.

3 Synthetic sequence generation framework

The objective of the current work is to generate synthetic sequences along with ground-truth
flow fields. We present a framework to generate sequences in a driving scenario considering
three particular cases: i) on-board vision system in a vehicle with different speeds; ii) roads
with different textures; iii) scenarios with independently moving vehicles. For analyzing the
influence of speed on optical flow accuracy, we need to have image sequences of the same
scene, but the on-board vision system vehicle moving with different speeds. Similarly, for
analyzing the impact of texture, we need image sequences of the same scene (i.e., surround-
ing scene structure) but with just different textures. In reality, it is impossible to have such
scenarios by default and also to generate ground-truth optical flow in real life. Hence, in the
current work we propose a framework similar to the one presented in [13]. We use Maya! to
develop a 3D scene. We have built a synthetic 3D urban scenario that consists of a straight
road and buildings around it with appropriate textures. A camera assumed to be fixed in a
vehicle referred to as on-board camera moves along the road in the model. The images are
rendered using in-built Maya software with production quality. All the images are rendered
with a resolution of 640x480 pixels. Figure 1 shows a snapshot of the 3D urban scenario
designed in Maya.

! www.autodesk.com/maya
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For case 1) the on-board camera moves at different speeds along the same path straight
along the road and the images are rendered. Some of the rendered images are shown in
Fig. 2. The top-left is the first image which is common to all the sequences. Second row-left
is the second image in a sequence and bottom-left is the second image of another sequence
of higher speed. In ADAS scenarios, the road surface covers a major part in the images taken
through vehicle’s camera. The flow vectors computed from this surface are more reliable as
there could be more inaccuracies in other areas of the image due to occlusions, specularities
etc. For case ii) to analyze texture influence particularly, only road texture can be changed
very easily without disturbing the 3D design. Hence, for a given speed, several sequences

Fig. 2 Images from sequences of different speeds: (top-left) first frame common for all sequences;
(top-right) colormap used to show the flow fields; (left-column) second frames from the sequences of differ-
ent speeds in the increasing order (2nd and 3rd rows); (right-column) the ground-truth flow fields between
the respective first and second frames
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with different road textures are rendered. Figure 3 shows images with three different textures
on the road surface.

In 3D design, the designer has full control over all the things such as motion of camera,
lighting, textures and motion of different objects in the scene. With this capability, for case
iii) we have added two moving vehicles in the scene. One vehicle coming towards the on-
board camera vehicle and another coming from a cross road. To add complexity, pitch and
yaw variations to the on-board camera are also incorporated. The yaw is 0.25 degrees to the
left/right and the pitch is 0.25 degrees to the up/down. Rendered images from this sequence
are shown in Fig. 4. In all these above cases, the camera focal length is 35 mm and the
framerate is 24 fps.

4 Optical flow ground-truth

This section describes the generation of ground-truth flow fields. It is based on the well
known ray-tracing approach. Ray-tracing is basically a technique of tracing the path of a
light ray. It is being used in 3D computer graphics discipline to render photorealistic images.
The same idea has been used in the current work to estimate displacement vector of each
pixel. The complete information of designed 3D model enables us to use such a technique
to compute the distplacement vector. A pixel P in an image plane at time ¢ is traced to its
position in the 3D scene. Then this 3D point is projected back to the image plane at time

Fig. 3 (top-left), (top-right) and (bottom-left) frames with different texture from different sequences;
(bottom-right) Ground-truth flow field for all the pairs of images in (fop-left), (top-right) and (bottom-left),
all of them have the same scene geometry and same speed but with different textures

@ Springer



Multimed Tools Appl (2015) 74:3121-3135

3127

Fig. 4 (top) Two different image frames from a sequence with independently moving vehicles and different
egomotion. (bottom) Ground-truth flow fields between the above frames and to their next ones in the sequence

t + 1. Since we know the simulated camera motion in time, difference in pixel position at
different times on the image plane gives the displacement vector. Figure 5 depicts the ray-
tracing approach. A vector from P; to P,y is the flow vector at P; with respect to image at

time ¢.

t Image frames

Fig. 5 Ray-tracing to estimate displacement vector

t+1

Object
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Table 1 Different synthetic sequences

Sequence Number of frames
(For each of the four textures T1, T2, T3 and T4)

Speed S1 40
Speed S2 20
Speed S3 13
Speed S4 10

Complex sequences (For each of the four speeds)

The computed ground-truth flow fields for different speeds are shown in Fig. 2.
Figure 2 (top-right) is the colormap used to depict flow fields. The color indicates the direc-
tion and intensity indicates the magnitude. Figure 2 (middle-right) is the ground-truth flow
field between the frames in (fop-left) and (middle-left). Similarly, Fig. 2 (bottom-right) is
the ground-truth flow field between top-left and bottom-left. One can notice large blank
space at the bottom of Fig. 2 (bottom-right) that indicates occluded area that is larger at
a higher speed than the one at lower speed in (middle-right). The maximum displacement
in lower speed sequence is 8.31 pixels and that in higher speed sequence is 33.67 pix-
els. The ground-truth flow fields for differently textured image pairs are shown in Fig. 3
(bottom-right). Since the scene geometry is the same, the ground-truth flow fields for all

Fig. 6 Backward projection of a pair from S1T1 sequence in our sequnces; (leff) An image pair. (top-
right) Ground-truth flow field. (bottom-right) Synthesized image obtained by back-projecting frame two
(bottom-left) using the flow field (top-right)
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differently textured sequences are the same. Further ground-truth flow fields for two image
pairs from complex sequences with moving vehicles are shown in Fig. 4. Notice that the
flow field in Fig. 4 (bottom-left) has flow vectors at all pixels except the sky and occluded
pixels at the boundary, whereas the flow field in (bottom-right) does not have values at
the edge of moving vehicles depicting the occluded regions. Hence in synthetic sequence
generation one has full control of all the possible scenarios and it is very useful.

5 Dataset

Using the framework presented in the current work, we have generated four sequences of
different speeds. The sequence with higher speed has displacement four times the displace-
ment of the sequence with lowest speed. Then, we have also created four sequences of
different road textures for each speed. Hence we have generated sixteen sequences of differ-
ent combinations of speeds and textures. In the case of analysis of optical flow accuracy for
different speeds, if we generate equal number of frames for each speed, then the scene geom-
etry covered by the distance varies and it might affect estimated flow accuracy. Thus we
have generated frames for a constant distance and hence sequences of different speeds have
different number of frames. The generated sequences with different textures have different
textural properties, particularly in the increasing order of texture contrast. The third set con-
tains complex sequences with two independently moving vehicles; pitch and yaw motion of

MBI
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Fig. 7 Backward projection of a pair from complex-S4T4 sequence in our sequences; (leff) An image pair.
(top-right) Ground-truth flow field. (bottom-right) Synthesized image obtained by back-projecting frame two
(bottom-left) using the flow field (top-right)

@ Springer



3130 Multimed Tools Appl (2015) 74:3121-3135

Table 2 NRMSE for several pairs from EISATS and our sequences

Image pairs from our sequences NRMSE Image pairs from EISATS NRMSE
SIT1 0.0079 Pairl 0.0174
S4T4 0.0089 Pair2 0.0346
Complex S1T1 0.0100 Pair3 0.0139
Complex S4T4 0.0115 Pair4 0.0193

on-board camera gives an opportunity to study more dynamic scenes. These sequences are
also generated for different combinations of road textures and on-board camera speeds with-
out the constraint of constant distance covered. In this case, all the complex sequences have
ten frames. The number of frames in all the sequences generated in the proposed dataset
are depicted in Table 1. All the sequences generated with the proposed framework, together
with the corresponding ground-truth data, are available through our website [4].

6 Analysis and validation

As described in Sections 4 and 5, we have generated several sequences with different char-
acteristics of a driving scenario. In this section, we evaluate how good is the developed

Fig. 8 Backward projection of Pair2 in EISATS sequence; (left) An image pair. (fop-right) Ground-truth
flow field provided by EISATS. (bottom-right) Synthesized image obtained by back-projecting frame two
(bottom-left) using the flow field (top-right)
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dataset. For this, we examine the generated ground-truth optical flow. In order to evaluate
the accuracy, we consider several pairs of images from the generated sequences. For a given
pair, we back-project the second image using the ground-truth optical flow to match the first
frame. Figures 6 and 7 show two of such examples. Further, we calculate normalized-root-
mean-square-error (NRMSE) between the first image and the corresponding back-projected
one, considering only the region where the back-projected pixels exist. NRMSE for several
pairs from our sequences are shown in second column in Table 2. It is expected that NRMSE
should be lower near zero.

As presented in Section 2, the EISATS dataset is the most appropriated one to per-
form comparisons with the proposed dataset. Hence, we took several pairs of images from
sequence-2 of set-2 in EISATS. The similar back-projection procedure has been performed
and NRMSE are computed. Figures 8 and 9 show two examples of back-projection from
the EISATS sequence. Quantitative results are presented in Table 2 in last column. Similar
to the results for our dataset the NRMSE is also not zero, as could be expected; actually in
the EISATS dataset errors are higher than in our sequences. One reason for higher errors in
EISATS could be the complex scene containing trees compared to the building blocks in our
case. By comparison, this analysis confirms that the generated ground-truth is of reasonable
accuracy.

The important characteristics of our dataset is that occluded areas (black region at the
boundary of moving vehicles in Fig. 7 (top-right) flow field) are identified while generat-
ing ground-truth flow vectors in those regions, whereas EISATS dataset does not give any

Fig. 9 Backward projection of Pair4 in EISATS sequence; (left) An image pair. (top-right) Ground-truth
flow field provided by EISATS. (bottom-right) Synthesized image obtained by back-projecting frame two
(bottom-left) using the flow field (top-right)
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Table 3 Average Angular Error (AAE) and Average End Point Error (EPE), computed as in [7] and [14],
for two pairs by different optical flow algorithms [14]

An image pair TV-L1[19] Classic+NL-Fast[17] PolarOF[5] MDP-Flow2[20]
from sequence

AAE EPE AAE EPE AAE EPE AAE EPE
SIT1 3.3133 0.2442  1.9884 0.0841 24817 0.1014 19697 0.0888
S4T4 1.4535 0.2746  0.9879 0.1261 1.1579  0.1402 0.7870 0.1292
Complex SIT1  3.8310 0.1625 2.6277 0.1185 3.6925 0.1544 25182 0.1206
ComplexS4T4  2.0844 0.5386 1.5853 0.1352 1.7304 0.1374 1.3722  0.1403

information about occluded areas. The drawback of this can be seen in Fig. 8 (bottom-right)
back-projected image. The moving vehicle boundary looks double at that position. These
kind of issues are taken care in the proposed dataset where occluded regions are accurately
identified.

On further curiosity that how would the state of the art optical flow methods perform on
our dataset, we have computed optical flow on the same selected pairs of images from our
sequences. We have considered four optical flow algorithms. Both average-angular-error
(AAE) and average-end-point-error (EPE) are calculated and are shown in Table 3. These
results reveal that the method MDP-Flow?2 [20], which is top-rank in Middlebury evaluation,

Fig. 10 Estimated optical flow fields by different methods on a an pair from Complex S4T4 sequence;
(top-left) TV-L1 [19]. (top-right) Classic+NL-Fast [17]. (bottom-left) Polar optical flow [5]. (bottom-right)
MDP-Flow2 [20]
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has little better performance to Classic+NL-Fast approach [17] considering AAE. Whereas,
considering EPE, Classic+NL-Fast has little better performance to MDP-Flow2. One can
also observe that there are significant changes in errors across all methods when there are
changes in complexity, texture and speed of the vehicle. This opens new questions about the
robustness of existing optical flow approaches with respect to the considered factors here.
There are plenty of other factors in driving scenarios which needs to be analyzed. Computed
flow fields from all of the four methods for the pair from Complex-S4T4 sequence are
shown in Fig. 10.

7 Conclusions

A framework to generate synthetic sequences using Maya is presented. The computation
of ground-truth flow fields corresponding to the generated sequence is also detailed in the
current work. This framework is used to generate sequences of driving scenarios. The sce-
narios include different speeds, different road textures, independently moving objects and
complex motion of the on-board camera. The generated ground-truth data are validated by
computing NRMSE and comparing them with the state of the art synthetic datasets of driv-
ing scenarios. We anticipate that the proposed framework and dataset will create interest
in the driving assistance systems community to explore and improve current optical flow
approaches. The obvious future goal tends towards incorporating more realism by motion
blur, material characteristics and atmospheric effects.
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