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Abstract. In this paper we propose a novel non-linear discriminative
analysis technique for manifold learning. The proposed approach is a dis-
criminant version of Laplacian Eigenmaps which takes into account the
class label information in order to guide the procedure of non-linear di-
mensionality reduction. By following the large margin concept, the graph
Laplacian is split in two components: within-class graph and between-
class graph to better characterize the discriminant property of the data.
Our approach has been tested on several challenging face databases and
it has been conveniently compared with other linear and non-linear tech-
niques. The experimental results confirm that our method outperforms,
in general, the existing ones. Although we have concentrated in this pa-
per on the face recognition problem, the proposed approach could also
be applied to other category of objects characterized by large variance
in their appearance.

1 Introduction

In recent years, a new family of non-linear dimensionality reduction techniques
for manifold learning has emerged. The most known ones are: Kernel Princi-
pal Component Analysis (KPCA) [1], Locally Linear Embedding (LLE) [2, 3],
Isomap [4], Supervised Isomap [5], Laplacian Eigenmaps (LE)[6, 7]. This fam-
ily of non-linear embedding techniques appeared as an alternative to their linear
counterparts which suffer of severe limitation when dealing with real-world data:
i) they assume the data lie in an Euclidean space, and ii) they may fail when
the number of sample are too small. Opposite, the non-linear dimensionality
techniques are able to discover the intrinsic data structure by exploiting the
local topology, instead of general one. They attempt to optimally preserve the
local geometry around each data sample while using the rest of the samples to
preserve the global structure of the data.

The main contribution of our work is represented by a Discriminant LE
(D-LE) algorithm, which exploits the class label information for mapping the
original data in the embedded space. The use of labels allows us to split graph
Laplacian associated with the data in two components: within-class graph and



2 B. Raducanu et al.

between-class graph. Our proposed non-linear approach benefits from three im-
portant properties: (1) it is parameterless; (2) estimates adaptively the neigh-
borhood around a sample, by exploiting the statistical significance of the data;
and (3) it is discriminative - by using an objective function that simultaneously
maximizes the local margin between heterogenous samples and pushes the ho-
mogeneous samples closer to each other.

These properties represent a significant advantage over other spectral-graph
based manifold learning techniques because they require the setting of several
parameters: (i) the width of the Gaussian Kernel, (ii) the size of neighborhood
for non-full mesh graphs, and (iii) the blending parameter for combining two
objective functions (e.g., the difference criterion used by a variant of Linear Dis-
criminant Analysis). Therefore, all existing methods either fix these parameters
in advance or perform tedious validation in order to select the best value for
these parameters.

The combination between locality preserving property (inherited from the
classical LE1) and the discriminative property (due to the large margin con-
cept) represents a clear advantage for D-LE, compared with other non-linear
embedding techniques, because it finds a mapping which maximizes the dis-
tance between data samples from different classes at each local area. In other
words, it maps the points in an embedded space where data with similar labels
fall close to each other and where the data from different classes fall far apart.

The adaptive selection of neighbors for the two graphs represents also an
added value to our algorithm. It is well known that a sensitive matter affect-
ing non-linear embedding techniques is represented by the adequate choice for
neighborhood size. Setting a too high value for this parameter would result in
a loss of local information, meanwhile a too low value could result in an over-
fragmentation of the manifold (problem known as ’short-circuiting). For this
reason, setting an adequate value for this parameter is crucial in order to confer
the approach topological stability.

The rest of the paper is organized as follows. Section 2 reviews some related
work on manifold learning techniques. In section 3 we review, for the sake of
completeness, the classical Laplacian Eigenmaps algorithm. Section 4 is devoted
to the presentation of our new proposed algorithm. Section 5 presents some
experimental results obtained on four face databases. Finally, section 6 contains
our conclusions and guidelines for future work.

2 Related work

During the last few years, a large number of approaches have been proposed
for constructing and computing an embedded subspace by finding an explicit
or non-explicit mapping that projects the original data to a new space of lower
dimensionality. These methods can be classified by their linearity. The non-
linear methods such as Locally Linear Embedding (LLE), Laplacian Eigenmaps,

1 By classical Laplacian Eigenmaps we refer to the algorithm introduced in [6].
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Isomap, Hessian LLE (hLLE) [8] focus on preserving the geodesic distances
which reflect the real geometry of the low-dimensional manifold. LLE formu-
lates the manifold learning problem as a neighborhood-preserving embedding,
which learns the global structure by exploiting the local symmetries of linear re-
constructions. Isomap extends the classical Multidimensional Scaling (MDS) [9]
by computing the pairwise distances in the geodesic space of the manifold. Essen-
tially, Isomap attempts to preserve geodesic distances when data are embedded
in the new low dimensional space. Based on the spectral decomposition of graph
Laplacian, Laplacian Eigenmaps actually try to find Laplacian eigenfunction on
the manifold.

The non-linear embedding methods have been successfully applied to some
standard data sets and generated satisfying results in dimensionality reduction
and manifold visualization. However, these approaches does not take into ac-
count the discriminant information that is usually available for many real world
problems. Therefore, the application of these methods can be very satisfactory in
terms of dimensionality reduction and visualization but can be fair for the tasks
of classification. In [5], the authors propose a supervised version of Isomap. This
version replaces pairwise Euclidean distances by a dissimilarity function that
increases if the pair is heterogeneous and decreases otherwise.

The classical linear embedding methods (e.g., PCA, LDA, MDS, Maximum
Margin Criterion (MMC)[10]) are demonstrated to be computationally efficient
and suitable for practical applications, such as pattern classification and visual
recognition. Recent proposed methods attempted to linearize some non-linear
embedding techniques. This linearization is obtained by forcing the mapping
to be explicit, i.e., performing the mapping by a projection matrix. For exam-
ple, Locality Preserving Projection (LPP) [11–13] and Neighborhood Preserving
Embedding (NPE) [14] can be seen as a linearized version of LE and LLE, re-
spectively. The main advantage of the linearized embedding techniques is that
the mapping is defined everywhere in the original space. However, since the em-
bedding is approximated to a linear process, these methods ignore the geodesic
structure of the true manifold. All these linear methods cannot reveal the perfect
geometric structure of the non-linear manifold.

In [15], the authors exploit label information to improve Laplacian Eigen-
maps. The proposed improvement affects the computation of the affinity matrix
entries in the sense that an homogeneous pair of neighbors will have large val-
ues and heterogeneous pairs of neighbors will have a small value. Although, the
authors show some performance improvement, the proposed method has two
drawbacks. First, there is no guarantee that the heterogenous samples will be
pushed away from each other. Second, the method has at least three param-
eters to be tuned. [16] proposed a linear discriminant method called Average
Neighbors Margin Maximization (ANMM). This technique associates to every
sample a margin that is set to the difference between the average distance to
heterogenous neighbors and the average distance to the homogeneous neighbors.
The linear transform is then derived by maximizing the sum of the margins in
the embedded space.
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3 Review of Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality reduction techniques
that aims to preserve the local structure of data [6]. Using the notion of the graph
Laplacian, this non-supervised algorithm computes a low-dimensional represen-
tation of the data set by optimally preserving local neighborhood information
in a certain sense. We assume that we have a set of N samples {yi}N

i=1 ⊂ R
D.

Define a neighborhood graph on these data, such as a K-nearest-neighbor or ε-
ball graph, or a full mesh, and weigh each edge yi ∼ yj by a symmetric affinity
function Wij = K(yi;yj), typically Gaussian:

Wij = exp(−‖yi − yj‖2

β
) (1)

where β is usually set to the average of squared distances between all pairs.
We seek latent points {xi}N

i=1 ⊂ R
L that minimizes 1

2

∑
i,j ‖xi − xj‖2 Wij ,

which discourages placing far apart latent points that correspond to similar
observed points. If W ≡ Wij denotes the symmetric affinity matrix and D is the
diagonal weight matrix, whose entries are column (or row, since W is symmetric)
sums of W, then the Laplacian matrix is given L = D − W. It can be shown
that the objective function can also be written as (A similar derivation is given
in section 4.2):

1

2

∑
i,j

‖xi − xj‖2 Wij = tr(ZT LZ) (2)

where the N × L matrix Z is given by Z = [xT
1 ; . . . ;xT

N ]. The ith row of Z
provides the vector xi—the embedding coordinates of the sample yi.

The matrix Z is the solution of the optimization problem:

min
Z

tr(ZT LZ) s.t. ZT DZ = I, ZT Le = 0 (3)

where I is the identity matrix and e = (1, . . . , 1)T . The first constraint elimi-
nates the trivial solution Z = 0 (by setting an arbitrary scale) and the second
constraint eliminates the trivial solution e (all samples are mapped to the same
point). Standard methods show that the embedding matrix is provided by the
matrix of eigenvectors corresponding to the smallest eigenvalues of the general-
ized eigenvector problem,

Lz = λDz (4)

Let the column vectors z0, . . . , zN−1 be the solutions of (4), ordered according
to their eigenvalues, λ0 = 0, . . . , λN−1. The eigenvector corresponding to eigen-
value 0 is left out and only the next eigenvectors for embedding are used. The
embedding of the original samples is given by the row vectors of the matrix Z,
that is,

yi −→ xi = (z1(i), . . . , zL(i))T (5)

where L < N is the dimension of the new space. From equation (4), we can ob-
serve that the dimensionality of the subspace obtained by Laplacian Eigenmaps
is limited by the number of samples N .
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Fig. 1. Discriminant Laplacian Eigenmaps embedding for the face recognition problem.

4 Discriminant Laplacian Eigenmaps

While the LE may give good results for non-linear dimensionality reduction,
it has not been widely used and assessed for the tasks of classification. Indeed,
many experiments show that the recognition rate in the embedded space is highly
depending on the choice of the neighborhood size in the reconstructed graph.
Choosing the ideal size in advance can be a very difficult task. Moreover, the
introduced mapping by LE does not exploit the discriminant information given
by the labels of data. In this section, we present our Discriminant LE algorithm
which has three important characteristics: (1) it is parameterless; (2) the neigh-
borhood size is adaptive in the sense that this size is depending on the local
density and similarity between data samples; and (3) the obtained embedding
respects both discriminant and geometrical structure in data. In order to encode
the similarity between two samples yi and yj , we use Pearson’s coefficient (nor-
malized cross-correlation). Let pij denotes Pearson’s coefficient associated with
the pair yi and yj . Furthermore, we map Pearson’s coefficients to the interval
[0, 1] by using the following:

p̄ij =
pij − min

1 − min

where min is the minimum of pijs over the whole data set.

4.1 Two graphs and adaptive neighborhood size

In order to discover both geometrical and discriminant structure of the data
manifold, we split the global graph in two components: the within-class graph
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Gw and between-class graph Gb. Let l(yi) be the class label of yi. For each
data point yi, we compute two subsets, Nb(yi) and Nw(yi). Nw(yi) contains
the neighbors sharing the same label with yi, while Nb(yi) contains the neigh-
bors having different labels. We stress the fact that unlike the classical LE, our
algorithm adapts the size of both sets according to the local sample point yi and
its similarities with the rest of samples. To this end, each set is defined for each
sample point yi and is computed in two consecutive steps. First, the average
similarity of the sample yi is computed by the total of all similarities with the
rest of the data set (Eq. (6)). Second, the sets Nw(yi) and Nb(yi) are computed
using Eqs. (7) and (8), respectively.

AS(yi) =
1
N

N∑
k=1

p̄ik (6)

Nw(yi) = {yj | l(yj) = l(yi), p̄ij > AS(yi)} (7)

Nb(yi) = {yj | l(yj) �= l(yi), p̄ij > AS(yi)} (8)

Equation (7) means that the set of within-class neighbors of the sample
yi, Nw(yi), is all data samples that have the same label of yi and that have a
similarity higher then the average similarity associated with yi. There is a similar
interpretation for the set of between-class neighbors Nb(yi). From Equations
(7) and (8) it is clear that the neighborhood size is not the same for every
data sample. This mechanism adapts the set of neighbors according to the local
density and similarity between data samples in the original space.

Each of the graphs mentioned before, Gw and Gb, is characterized by its
corresponding affinity (weight) matrix Ww and Wb, respectively. The matrices
are defined by the following formulas:

Ww,ij =
{

p̄ij if yj ∈ Nw(yi) or yi ∈ Nw(yj)
0, otherwise

Wb,ij =
{

p̄ij if yj ∈ Nb(yi) or yi ∈ Nb(yj)
0, otherwise

It is easy to show that the affinity matrix, W, associated with the Laplacian
Eigenmaps graph can be written as:

W = Ww + Wb

4.2 Optimal mapping

One dimensional case Now consider the problem of mapping the within-class
graph and between-class graph to a line so that connected points of Gw stay as



A Discriminative Non-Linear Manifold Learning 7

close together as possible while connected points of Gb stay as distant as possible.
Let z = (x1, x2, . . . , xN )T be such a map. Note that here every data sample is
mapped to a real value. For the one dimension case, it is easy to see that the
matrix of embedded data Z (introduced in Eq. (2)) reduces to the vector z. A
reasonable criterion for choosing a good map is to optimize the following two
functions under some constraints:

min
1

2

∑
i,j

(xi − xj)
2 Ww,ij (9)

max
1

2

∑
i,j

(xi − xj)
2 Wb,ij (10)

Minimizing function (9) on within-class graph imposes a heavy penalty if neigh-
boring samples yi and yj are mapped far apart while they are actually in the
same class. Maximizing function (10) imposes a heavy penalty if neighboring
samples yi and yj are mapped close together while they actually belong to dif-
ferent classes. The physical interpretation of optimizing (9) and (10) for face
recognition is as follows. For each face image, it pulls the neighboring images
of the same person towards it as near as possible, while simultaneously pushing
the neighboring images of different people away from it as far as possible.

By simple algebra formulation, function (9) can be written as
1

2

∑
i,j

(x2
i Ww,ij + x2

j Ww,ij − 2xi Ww,ij xj)

=
∑

i

x2
i Dw,ii −

∑
i,j

xi Ww,ij xj

= zT Dw z − zT Ww z (11)

= zT Lw z

One can notice that the above function is similar to the function (2). However,
this function only contains the Laplacian matrix, Lw associated with the within-
class graph Gw.

Similarly, the function (10) can be reduced to:

1
2

∑
i,j

(xi − xj)2 Wb,ij = zT Lb z

We aim to find the optimal map z by simultaneously optimizing criteria (9 )
and (10).

These two objective functions can be combined into one single objective
function:

max
zT Lb z

zT Lw z
(12)

The above problem has a closed form solution given by solving the following
generalized eigenvalue problem:

Lb z = λLw z (13)

Therefore, the optimal map z is simply the generalized eigenvector of (13)
corresponding to the largest eigenvalue.
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Multi dimensional case In this case, each data sample yi is mapped into a
vector xi. The aim is to compute the embedded coordinates xi for each data
sample. The derivation of the optimal mapping follows the same steps described
above. The objective functions are:

min
1

2

∑
i,j

‖xi − xj‖2 Ww,ij (14)

max
1

2

∑
i,j

‖xi − xj‖2 Wb,ij (15)

Since 1
2

∑
i,j ‖xi − xj‖2 Ww,ij = tr(ZT Lw Z), and 1

2

∑
i,j ‖xi − xj‖2 Wb,ij =

tr(ZT Lb Z), the objective function becomes:

max
tr(ZT Lb Z)

tr(ZT Lw Z)
(16)

where Z contains the unknown latent vectors xi in its rows.
It is worthwhile to point out that the trace ratio optimization problem (16)

can be replaced by the simpler yet inexact ratio trace form, i.e.:

max tr[(ZT Lw Z)−1(ZT Lb Z)] (17)

which can be optimally solved by the generalized eigenvalue problem (13). Let
the column vectors z1, z2, · · · , zL be the generalized eigenvectors according to
their eigenvalue: λ1, λ2, · · · , λL. Then, Z = [z1, z2, · · · , zL].

Fig. 2. Some samples in Extended Yale data set.

Fig. 3. Some samples in PF01 data set.
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Fig. 4. Some samples in PIE data set.

5 Experimental results

In this section, we report the experimental results obtained from the application
of our proposed algorithm to the problem of face recognition.

Face recognition is one of the most studied problems and a large literature
has been devoted to this issue [17]. Face recognition represents an intuitive and
non-intrusive method of recognizing people. Facial image data are often complex
to understand and difficult to process due to their high variability in appear-
ance. For this reason, it is mandatory to discover a meaningful low dimensional
structure hidden in high dimensional observation data space [18]. Therefore,
appearance-based face recognition was usually preceded by a given transform-
based dimensionality reduction technique [19].

5.1 Face data sets

In this study, four face data sets are considered:

1. The UMIST face data set2. The UMIST data set contains 575 gray images
of 20 different people. The images depict variations in head pose.

2. The Extended Yale Face Database B3. It contains 16128 images of 28 human
subjects under 9 poses and 64 illumination conditions. In our study, a subset
of 1800 images has been used. Figure 2 shows some face samples in the
Extended Yale Face Database B.

3. The PF01 face data set4. It contains the true-color face images of 103 peo-
ple, 53 men and 50 women, representing 17 various images (1 normal face, 4
illumination variations, 8 pose variations, 4 expression variations) per per-
son. All of the people in the database are Asians. There are three kinds of
systematic variations, such as illumination, pose, and expression variations
in the database. Some samples are shown in Figure 7.

4. The PIE face data set5 contains 41,368 images of 68 people. Each person
is imaged under 13 different poses, 43 different illumination conditions, and
with 4 different expressions. In our study, we used a subset of the original
dataset, considering 29 images per person. Some samples are shown in Figure
4.

2 http : //www.shef.ac.uk/eee/research/vie/research/
face.html

3 http : //vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/
ExtY aleB.html

4 http : //nova.postech.ac.kr/special/imdb/imdb.html
5 http : //www.ri.cmu.edu/projects/project 418.html
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5.2 Data preparation

Figure 1 illustrates the main steps of the application of D-LE to the problem
of face recognition. The initial face data set is projected on the embedded face
subspace using the D-LE algorithm, whose steps have been summarized by a
4 block-diagram (according to section 4). A face image is recognized using the
nearest neighbor (NN) classifier applied in this low dimensional space.

To make the computation of the embedding more efficient, the dimensionality
of the original data is reduced by applying random projections [20]. The main
goal of random projections is to reduce the dimensionality of the original face
data samples. It has a similar role to that of PCA yet with the obvious advantage
that random projections do not need any training data.

5.3 Visualization of the Embedding Process

Before presenting the quantitative evaluation of classification, it would be wor-
thy to visualize the obtained embedded face data. To this end, we visualize some
embedded samples using two methods: the classical LE and the proposed Dis-
criminant LE. Figure 5.(a) visualizes the embedding of faces associated with five
persons of the Extended Yale data set obtained with the classical LE. In this plot
only the first two dimensions were used. Figure 5.(b) visualizes the embedding
of the same five persons obtained with the proposed Discriminant LE. As can be
seen, the intra and extra person variabilities are best presented in the embedded
space obtained with the proposed D-LE.

5.4 Evaluation methodology

We have compared our method with six different methods, namely PCA, LDA,
ANMM, KPCA, Isomap and classical LE. For methods relying on neighborhood
graphs (Isomap and LE), several trials have been performed in order to choose
the optimal neighborhood size. The final values correspond to those giving the
best recognition rate.

For each face data set and for every method, we conducted two groups of ex-
periments for which the percentage of training samples was set to 30% and 50%
of the whole data set, respectively. The remaining data was used for testing.
The partition of the data set was done randomly. The best (average) perfor-
mance obtained by these algorithms, based on a 10-fold cross-validation strat-
egy, are shown in Table 1. The number appearing in parenthesis corresponds to
the optimal dimensionality of the embedded subspace (at which the maximum
recognition rate has been reported). We can observe that: i) the D-LE outper-
forms all other methods on three face data sets, ii) for UMIST face data set,
the D-LE was outperformed by ANMM, KPCA, and PCA methods. This can
be explained by the fact that the intra-class variability of UMIST set is due to
face pose only. Therefore, the affinity matrix Ww in the denominator of quotient
(16), ZT (Dw − Ww)Z, was not stable enough so the resulting embedding ob-
tained by maximizing this quotient was not as good as that obtained by KPCA
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Fig. 5. Embedded faces of five persons of Extended Yale face data set.

and ANMM methods, iii) on the other hand, in the case of the PIE data set, the
improvement brought by D-LE becomes very significant. This is due to the fact
that the intra-class variation in the case of PIE data set (due to light variation
and changes in facial expression) is high.
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For a given embedding method, the recognition rate was computed for several
dimensions belonging to [1, Lmax]. For most of the tested methods Lmax is equal
to the number of samples used except for LDA and ANMM. For LDA, the
maximum dimension is equal to the number of classes minus one. For ANMM
the maximum dimension is variable since it is equal to the number of positive
eigenvalues.6

Figures 6 and 7 illustrate the average recognition rate associated with Ex-
tended Yale, and PF01 data sets, respectively. The average recognition rate was
computed (over ten folds) by PCA, KPCA, Isomap, ANMM, LE, and D-LE. The
training/test percentage was set to 30%-70% for Extended Yale data set, and to
50%-50% for the PF01 data set. Since the maximum dimension for LDA is equal
to the number of classes minus one, the corresponding curve was not plotted. Its
rate was reported in Table 1. In [16], it is shown that the ANMM technique per-
forms equally to or better than the following linear methods: Maximum Margin
Criterion (MMC), Marginal Fisher Analysis (MFA), and Step non-parametric
maximum margin criterion (SNMMC). Thus, the comparisons shown in Figures
6 and 7 contain implicitly those methods.

The maximum dimension depicted in the plots was set to a fraction of Lmax,
in order to guarantee meaningful results. Moreover, we can observe that after a
given dimension the recognition rate associated with the three methods PCA,
KPCA, and Isomap becomes stable. However, the recognition rate associated
with LE and D-LE methods decreases if the number of used eigenvectors becomes
large—a general trend associated with many non-linear methods. This means
that the last eigenvectors do not have any discriminant information, lacking
completely of statistical significance.

In conclusion, the advantage of classification based on non-linear dimension-
ality techniques is that only a relative small number of dimensions are required,
compared with their linear counterparts (as it can be appreciated from Table
1). This is a very important result especially for the case when data lie in a
very high dimensionality space (like hyperspectral images, for instance) because
it allows a powerful compression of the data without any relevant loss of intrin-
sic information. Furthermore, they achieve very good results even with a small
number of training samples.

6 Conclusions and Future Work

We proposed a parameterless non-linear dimensionality reduction technique,
namely Discriminant Laplacian Eigenmaps (D-LE). Our algorithm benefits from
the following important properties: i) it estimates adaptively the neighbors around
a sample, by exploiting the statistical significance of the data; and ii) it is dis-
criminative - by using an objective function that simultaneously maximizes the
local margin between heterogenous samples and pushes the homogeneous sam-
ples closer to each other. For validation purposes, we applied our method to the

6 This dimension is bounded by the the dimension of the input samples.
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Fig. 6. Average recognition rate as function of the number of eigenvectors obtained
with Extended YALE data set. The training/test percentage was set to 30%-70%
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30%-70% UMIST Extended Yale PF01 PIE

PCA 88.08% (45) 72.06% (465) 33.00% (385) 30.76% (370)

LDA 85.35% (10) 88.00% (10) 62.16% (55) 63.38% (65)

ANMM 92.10% (88) 87.10% (139) 45.10% (169) 48.58% (162)

KPCA 89.82% (85) 70.04% (725) 34.91% (940) 39.25% (1030)

Isomap 84.11% (25) 73.69% (125) 31.39% (115) 36.47% (200)

LE 77.88% (40) 67.69% (185) 32.71% (170) 34.97% (330)

D-LE 89.15% (15) 97.38% (75) 69.21% (205) 89.28% (70)

50%-50%

PCA 94.44% (65) 81.73% (395) 43.62% (270) 39.25% (330)

LDA 90.27% (15) 95.94% (25) 80.40% (30) 60.33% (65)

ANMM 98.2% (73) 94.20% (135) 55.00% (164) 66.00% (164)

KPCA 95.79% (85) 79.40% (820) 41.53% (1180) 50.34% (1190)

Isomap 91.63% (45) 79.23% (165) 36.13% (330) 45.02% (210)

LE 86.52% (40) 74.00% (445) 36.44% (200) 42.09% (385)

D-LE 93.54% (15) 98.90% (125) 80.92% (205) 93.56% (85)

Table 1. Best recognition accuracy obtained with four face data sets. The training/test
percentage was set to 30%-70%, and 50%-50% for the top part and the bottom part,
respectively.

face recognition problem. The experimental results obtained on four face data
sets show that our approach outperforms many recent non-linear dimensionality
reduction techniques. The proposed method is based on maximizing a certain
local margin and is therefore intuitively related to the NN classifier that was
used in the current study. Future work will be concentrated on two directions.
First, we will investigate the generalization of the proposed method to other
classifiers, such as Support Vector Machines (SVM) or Sparse Representation
classifiers (SRC) [21]. Second, we will try to find for a given classification task
the best set of obtained eigenvectors using the feature selection paradigm.
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