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Abstract

This paper presents a new method for person-
specific face shape estimation under varying head pose
of a previously unseen person from a single image. We
describe a featureless approach based on a deformable
3D model and a learned face subspace. The proposed
approach is based on maximizing a likelihood mea-
sure associated with a learned face subspace, which
is carried out by a stochastic and genetic optimizer.
We conducted the experiments on a subset of Honda
Video Database showing the feasibility and robustness
of the proposed approach. For this reason, our ap-
proach could lend itself nicely to complex frameworks
involving 3D face tracking and face gesture recognition
in monocular videos.

1. Introduction

Offline or online computed 3D face shapes can be
used in many applications such as face recognition [3,
5], 3D face pose tracking [10], and facial expression
recognition [12]. Model-based applications exploiting
monocular vision systems (the face model is given by
a 3D mesh or a range model) need to personalize the
face model of the person utilizing the system in order
to achieve an accurate estimation. This holds true even
with simple 3D models such as cylinders and ellipsoids.
Recently some researchers proposed the use of special
sensors such as a travelling camera or a 3-D scanner
in order to build personalized facial shapes [2]. These
shape models are then used for art production or for
3D face detection and recognition. Such systems suf-
fer from several shortcomings. Some of the shortcom-
ings can be alleviated by using stereo vision sensors.
In [6], the authors propose to infer side-view shape pa-

rameters from one single frontal image using learned
statistical correlation between the frontal-view param-
eters and the side-view parameters. The facial points
(MPEG-4 points) and the frontal view parameters (rel-
ative distances) are extracted from the frontal image us-
ing some heuristics and prior knowledge.

The mainstream for shape estimation relies on ex-
tracting and matching some salient facial features such
as the locations and local statistics of the eyes, nose, and
mouth in one or more views. Thus, feature-based shape
estimation not only require the extraction of the facial
features but also requires a frontal view of the face.
Feature-based approaches suffer from self-occlusions
and drifting. A solution to overcome the drawbacks
of feature-based approaches is given by holistic ap-
proaches (appearance-based approaches), which try to
analyze the whole facial appearance [4, 8]. For exam-
ple, Active Appearance Models (AAMs) were mainly
used for 2D model fitting and tracking. In this paper,
we present a new method for specific face shape esti-
mation under varying head pose of a previously unseen
person from a single image. Although the shape estima-
tion is the main focus, our approach is intrinsically re-
lated with 3D head pose estimation, since they are both
included in the proposed mathematical framework.

The proposed holistic approach estimates both the
face shape control parameters as well as the 3D pose pa-
rameters by registering the input texture (warped region
of the image) to a statistical face texture. Compared to
AAMs methods our proposal has two advantages. First,
there is no need to compute a Jacobian matrix neither
offline nor online. Second, while AAMs merge both the
inter and intra-person shape variabilities, our method
separates these variabilities, and therefore the proposed
method can be easily and efficiently used for initializing
a real time 3D face tracker and facial expression recog-
nizer in videos (both the personalized 3D model and its



3D pose are computed for the first frame in the video
sequence). However, it is not clear how these tasks can
be performed with AAMs.

Our approach does not use neither 2D AAM nor 3D
AAM. The only similarity with AAMs is the use of a
statistical facial texture model based on Principal Com-
ponent Analysis (PCA). The remainder of the paper is
organized as follows. Section 2 describes the face mod-
elling aspects. Section 3 presents the proposed holis-
tic approach for the simultaneous estimation of the 3D
pose and shape. Section 4 presents some experimental
results. Section 5 concludes the paper.

2. Modelling faces

A deformable 3D mesh In our study, we useCandide
3D face model [1]. This common 3D deformable wire-
frame model accounts for person specific shape varia-
tion as well as for facial animation. The 3D shape of this
wireframe model (triangular mesh) is directly recorded
in coordinate form. It is given by the coordinates of its
n 3D vertices. Thus, the shape up to a global scale can
be fully described by the3n-vectorg; the concatenation
of the 3D coordinates of all vertices. The vectorg is
written as:

g = g + Sτ s + A τa (1)

whereg is the standard shape of the model,τ s andτ a

are shape and animation control vectors, respectively,
and the columns ofS and A are the Shape and Ani-
mation Units. Both matrices are provided byCandide
model package. A Shape Unit provides a means of de-
forming the 3D wireframe so as to be able to adapt eye
width, head width, eye separation distance, etc (see Fig-
ure 1). Thus, the termSτ s accounts for shape variabil-
ity (inter-person variability) while the termA τa ac-
counts for the facial animation (intra-person variabil-
ity). With this model, the ideal neutral face configura-
tion is represented byτa = 0. In this study, we assume
that the images are depicting quasi-neutral faces. Thus,
the expression for the deformable mesh becomes:

g = g + Sτ s (2)

The shape modes were created manually to accom-
modate the subjectively most important changes in fa-
cial shape. In the model package, the number of modes
associated with facial Shape Units matrixS (inter-
person variability) is twelve. However, for the purpose
of our study which deals with the automatic image-
based extraction of the control vectorτ s only six com-
ponents are considered as the most significant indica-
tors of the perceived person-dependent facial shape in a
given near frontal facial image. These components are:

Head height, vertical position of the eye brows, vertical
position of the eye, eyes separation distance, vertical
position of the nose, vertical position of the mouth. The
remaining components are set to nominal values.

Figure 1. Effects of some facial shape control pa-
rameters on the deformable 3D model (standard shape,
mouth width, eyes width, eyes vertical position, eye
separation distance, head height).

In equation (1), the 3D shape is expressed in a local
coordinate system. However, one should relate the 3D
coordinates to the image coordinate system. To this end,
we should add the six degrees of freedom associated
with the 3D face pose. The mapping between the 3D
face model and the image adopts the weak perspective
projection model.

Thus, the state of the 3D wireframe model is given
by the 3D face pose parameters (three rotations and
three translations) and the shape control vectorτ s. This
is given by the 12-dimensional vectorb:

b = [θx, θy, θz , tx, ty, tz , τ
T
s

]T (3)

Shape-free facial patches A facial patch is repre-
sented as a shape-free image (geometrically normalized
rawbrightness image). The geometry of this image is
obtained by projecting the standard shapeg using a cen-
tered frontal 3D pose onto an image with a given res-
olution. The texture of this geometrically normalized
image is obtained by texture mapping from the triangu-
lar 2D mesh in the input image (see figure 2) using a
piece-wise affine transform.

(a) (b)

Figure 2. (a) an input image with correct fitting.(b)
the corresponding shape-free facial patch.



3 Shape and 3D head pose parameter es-
timation

3.1. Face subspace

The statistical facial texture model describes the ap-
pearance variation of the shape-free facial patchesx
(see figure 2.(b)). These patches are obtained from
the training images (individual snapshots or video se-
quences) by fitting the 3D deformable model to the face.
This fitting can be manual or automatic [1]. Using these
training patches one can easily build the face subspace.
For this purpose we use the Principal Component Anal-
ysis (PCA)—a well-known technique used for model-
ing face subspaces. We assume that we haveK shape-
free patches. Applying a PCA on the training patches
we can compute the mean and the principal modes of
variation. The use of linear subspace (PCA) can be jus-
tified by 1) the facial images are geometrically normal-
ized, and 2) the proposed method will be carried out
in a relatively constrained environment. However, cur-
rently we are investigating the use of non-linear mani-
fold learning techniques.

3.2. Optimization

Figure 3. The unknown parameters are estimated
by maximizing a likelihood measure taking into ac-
count the reconstruction error and the distance in fea-
ture space. The face subspace is linear.

The basic idea is to estimate the 3D face pose and
shape parameters, i.e. the vectorb, such that the associ-
ated shape-free patch will be as close as possible to the
facial sub-space. This can be carried out by maximizing
a certain likelihood measure. For this purpose, we use
the likelihood measure proposed in [9]:

p(x|b) ∝ exp

(
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(4)

wheree is the reconstruction error,λis are theM largest
eigenvalues given by the PCA,ξis represent the texture
projection onto the correspondingM eigenvectors, and
ρ⋆ is the arithmetic average of the remaining eigenval-
ues (in the complementary subspace). The reconstruc-
tion error is the distance between the original shape-
free texturex and its projection onto the PCA sub-
space. The above likelihood measure takes into account
two distances (i) the distance-from-feature-space, and
(ii) the distance-in-feature-space. These two distances
are illustrated in Figure 3. Maximizing this likelihood
is equivalent to minimizing theMahalanobisdistance
over the original textures. The unknown 3D face pose
and shape parameters (the vectorb) can be estimated by
seeking the maximum of the likelihood (4):

b = arg max
b

p(x|b) (5)

To this end, we use the Differential Evolution (DE) al-
gorithm [11] in order to maximize (4) with respect to the
3D face pose and shape parameters. The DE algorithm
is a practical approach to global numerical optimization
that is easy to implement, reliable and fast. The crucial
idea behind DE is a scheme for generating trial param-
eter vectors. Basically, DE adds the weighted differ-
ence between two population vectors to a third vector.
In our case, the initial population is randomly selected
between the lower and upper bounds defined for each
variable using uniform distributions. The distributions
associated with the translational part of the 3D face pose
are centered on the output of the 2D face detector [13].

4 Experimental results

Experiments were conducted to evaluate the perfor-
mance of the proposed fitting algorithm in image snap-
shots extracted from several video sequences of the
Honda video database [7]. The video sequences were
recorded in realistic conditions, with persons featur-
ing unconstrained in-plane and out-of-plane head move-
ments. The sequences are at least 15 seconds long and
are recorded at 15 frames per second. A subset of 20
video sequences (corresponding to 20 different persons)
has been retrieved for our experiments.

However, since our 3D model is based on Can-
dide model not all snapshots extracted from the videos
database can be used. Only those depicting 3D head
poses belonging to the interval[−40◦, +40◦] for the
pitch and yaw angles were considered. In total, we se-
lected for our experiments about 900 images. A PCA
model is built from a set of 500 shape-free templates,
belonging to 5 persons. The remaining persons were
used for test. We have found that PCA models with 20



principal components are usually enough for represent-
ing the face sub-space. More precisely, we found that
the retained variance is above 95% of the total variance.
Figure 4 illustrates the fitting results obtained with four
unseen persons. As can be appreciated, the face pose
and shape parameters (relative positions of eyebrows,
eyes, nose, and mouth) are correctly fitted on the face.

Figure 4. 3D face pose and person-specific shape es-
timation associated with four unseen persons.

Quantitatively speaking, we performed an evaluation
process taking into account both intra-person and inter-
person estimation accuracy. Ground-truth parameters
have been obtained manually. Table 1 depicts the aver-
age error of shape parameters in the first case. Due to
lack of space, we present the results of only 5 persons
from the total 15. The shape parameters are normalized,
i.e., each parameter belongs to the interval[−1, 1].

eyebrow eye eyes separa. nose mouth

#1 0.7% 6.2% 3.2% 6.4% 1.4%
#7 2.8% 0.4% 0.3% 2.8% 1.1%
#10 3.1% 4.3% 1.1% 5.9% 0.7%
#13 1.9% 1.6% 2.3% 3.6% 1.6%
#15 2.5% 3.5% 2.1% 5.3% 1.7%

Table 1. Average error for five individuals.

Table 2 depicts the average error between the man-
ually obtained parameters and the automatically esti-
mated ones for all the persons considered.

5. Conclusions

This paper presented a featureless method that fits a
generic deformable 3D face model to a single facial image
where the face is not required to be frontal. The fitted param-
eters are some salient shape control parameters as well as the
3D face pose parameters. The proposed method has several

advantages that make it attractive, being useful for 3D face
pose tracking and facial expression recognition in real-time.

eyebrow eye eyes separa. nose mouth

All 2.4% 3.6% 1.6% 4.2% 1.4%

Table 2. Global average error.
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