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Abstract— In this paper, we propose an integrated framework
for tracking, modelling and recognition of facial expressions.
The main contributions are: (i) a view- and texture independent
scheme that exploits facial action parameters estimated by an
appearance-based 3D face tracker; (ii) the complexity of the
non-linear facial expression space is modelled through a mani-
fold, whose structure is learned using Laplacian Eigenmaps.
The projected facial expressions are afterwards recognized
based on Nearest Neighbor classifier; (iii) with the proposed
approach, we developed an application for an AIBO robot, in
which it mirrors the perceived facial expression.

Keywords: facial expression recognition, temporal classifiers,
manifold learning, human-robot interaction, AIBO robot

I. INTRODUCTION

In the field of Human-Computer Interaction (HCI), com-
puters will be enabled with perceptual capabilities in order to
facilitate the communication protocols between people and
machines. In other words, computers will be endowed with
natural ways of communication people use in their everyday
life. Among them, facial expression represents a powerful
mean people use to express their emotions and other aspects
related with their social or psychological status.

In the past, a lot of effort was dedicated to recognize facial
expression in still images. For this purpose, many techniques
have been applied: neural networks [1], Gabor wavelets [2]
and Active Appearance Models (AAM) [3]. A very important
limitation to this strategy is the fact that still images usually
capture the apex of the expression, i.e., the instant at which
the indicators of emotion are most marked. In their daily life,
people seldom show apex of their facial expression during
normal communication.

More recently, attention has been shifted particularly
towards dynamic modelling of facial expressions [4], [5],
[6]. Dynamical approaches can use shape deformations [7],
texture dynamics [8] or a combination of them [9]. In [10],
the authors propose a dynamic classifier that is based on
building spatio-temporal model for each universal expression
derived from Fourier transform. The recognition of unseen
expression uses the Hausdorff distance to compute dissimi-
larity values for classification.

Modelling the variability of facial expressions is a very
challenging task. Facial expressions form a class ofobjects
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with a well-defined structure which suffers elastic deforma-
tions. Ideally, an optimal representation would be able to
cope with all these complex transformations. This is usually
achieved through a manifold learning approach.

The use of linear and non-linear manifolds for facial
expression recognition was addressed by many researchers.
Most of the proposed manifold learning schemes addressed
frame-wise representation of facial textures. In [11], the
authors propose a Bayesian approach to modelling temporal
transitions of facial expressions represented in a manifold.
In [12], the authors propose a Bayesian framework for
face recognition from video sequences. They represent face
appearances by linear sub-manifolds together with proba-
bilistic transitions. The linear sub-manifolds are obtained
via clustering and classical Principal Component Analysis
(PCA). In [13], the authors propose a probabilistic video-
based facial expression recognition method on manifolds.
An enhanced Lipschitz embedding is developed to embed
the aligned face appearance in a low dimensional space.
A probabilistic model of transition between expressions is
learned through training videos in the embedded space.

In this paper we present an integrated framework for
dynamic facial expression recognition, consisting of 3 stages.
First, a temporal signature extracted from a video sequence
will be used as a sample data that encodes facial deformation.
We extract facial dynamics by using the 3D face tracker
[14] based on Online Appearance Models and a deformable
3D mesh. This face tracker is able to retrieve in real-
time the 3D face pose parameters as well as some facial
actions needed for recognizing facial expressions. Second,
we use the unsupervised non-linear embedding provided by
Laplacian Eigenmaps (LE) that preserves local neighborhood
information in order to embed temporal signatures on a
low-dimension manifold. Third, facial expression recognition
is performed on the embedded signatures using classical
machine learning techniques: Linear Discriminant Analysis
(LDA) with a Nearest Neighbor (NN) classifier. This process
is depicted in Figure 1.

What differentiate our work from existing dynamic recog-
nition schemes are the following: 1) expressions can be
recognized even in the presence of 3D head motions whereas
most of the proposed expression recognition schemes require
a frontal view of the face. 2) the recognition is based
on shape deformation only, which makes the recognition
scheme not depending on the imaging conditions by which
the universal expressions are learned. On the other hand,
most related works rely on the use of image raw brightness
changes. 3) the use of aligned temporal signatures as training



Fig. 1. Integrated framework for dynamic facial expression recognition.

examples can link our proposed method to all classical
machine learning approaches.

The rest of the paper is organized as follows. Section II
describes the extraction of temporal signatures associated
with universal expressions. Section III reviews the Lapla-
cian Eigenmaps embedding. In section IV we present some
experimental results as well as an application for the AIBO
robot. Finally, in section V we draw our conclusions.

II. FROM VIDEOS TO FACIAL DYNAMICS AND
EXPRESSIONS

The objective of this work is to recognize facial expres-
sions in continuous videos using data-driven machine learn-
ing algorithms. Therefore, encoding the displayed universal
expressions is a crucial step. Extracting facial dynamics asso-
ciated with facial muscle deformations from video sequences
is a challenging task. This task is made more difficult if
the subject’s head moves in 3D space. The recognition of
facial expressions with significant head motion is required
by many applications such as human computer interaction
and computer graphics animation [15], [16], [17] as well as
training of social robots [18], [19].

A. Modelling Faces

In our work, we use a common 3D deformable face
model—theCandide model [20] (See Figure 2). Despite the
simplicity of this 3D wireframe model, it can be used to
extract a subset of 3D facial dynamics in real time using
one single camera. The 3D shape of this wireframe model
is directly recorded in coordinate form. It is given by the
coordinates of the 3D verticesPi, i = 1, . . . , n wheren is
the number of vertices. Thus, the shape up to a global scale
can be fully described by the3n-vectorg; the concatenation
of the 3D coordinates of all verticesPi. The vectorg is
written as:

g = gs + A τa (1)

wheregs is the static shape of the model,τa the animation
control vector, and the columns ofA are the Animation
Units. In this study, we use six modes for the facial Anima-
tion Units (AUs) matrixA. We have chosen the following
AUs: lower lip depressor, lip stretcher, lip corner depressor,
upper lip raiser, eyebrow lowerer, outer eyebrow raiser (see
Figure 2.(a)). These AUs are enough to cover most common
facial animations. Moreover, they are essential for conveying
emotions.

In equation (1), the 3D shape is expressed in a local
coordinate system. However, one should relate the 3D co-
ordinates to the image coordinate system. To this end, we
adopt the weak perspective projection model. We neglect the
perspective effects since the depth variation of the face can
be considered as small compared to its absolute depth. Thus,
the state of the 3D wireframe model is given by the 3D face
pose parameters (three rotations and three translations) and
the internal face animation control vectorτa. This is given
by the 12-dimensional vectorb:

b = [θx, θy, θz, tx, ty, tz, τa

T ]T (2)

Note that if only the aspect ratio of the camera is known,
then the componenttz is replaced by a scale factor having
the same mapping role between 3D and 2D. In this case, the
state vector is given by (s denotes the scale factor):

b = [θx, θy, θz, tx, ty, s, τa

T ]T (3)

(a) (b)

Fig. 2. (a) Candide model.(b) Candide model adapted to an input facial
image.

B. Simultaneous Face And Facial Action Tracking

In order to recover the facial expression one has to
compute the facial actions encoded by the vectorτ a which
encapsulates the facial deformation. Since our recognition
scheme is view-independent these facial actions together with
the 3D head pose should be simultaneously estimated. In
other words, the objective is to compute the state vectorb
for every video frame.

For this purpose, we use the tracker based on Online Ap-
pearance Models [14]. This appearance-based tracker aims
at computing the 3D head pose and the facial actions, i.e.
the vectorb, by minimizing a distance between the incoming
warped frame and the currentshape-free appearance of the
face. This optimization is carried out using a gradient descent



method. The statistics of theshape-free appearance as well
as the gradient matrix are updated every frame. This scheme
leads to a fast and robust tracking algorithm.

C. Representing Dynamic Universal Expressions By Fea-
tures

In order to learn the spatio-temporal structures of the facial
actions associated with facial expressions, we have used
a simple supervised learning scheme that consists in two
stages. In the first stage, training video sequences depicting
different universal facial expressions are tracked using the
appearance-based face tracker. The retrieved facial actions
τ a are represented by time series. In other words, an example
(expression going from neutral to apex) is encoded by a
sequence of facial actionsτ a(1), . . . , τ a(T ). One can note
that this temporal sequence (trajectory) can be considered
as a compact representation of the spatio-temporal facial
structure that one expects to observe whenever the face
undergoes a given universal expression. In the second stage,
since we are using example based classifiers all examples
should have the same dimension. To this end, all facial
action sequences are aligned in the time domain using the
Dynamic Time Warping (DTW) technique [21]. Dynamic
Time Warping is a well-known technique to find an optimal
alignment between two given (time-dependent) sequences
under certain restrictions. Thus, a given example (universal
expression) is represented by a feature vector obtained by
concatenating the vectorsτ a(t) belonging to the aligned
temporal sequence.

More precisely, video sequences have been picked up
from the CMU database [22]. These sequences depict five
frontal view universal expressions (surprise, sadness, joy,
disgust and anger). Each expression is performed by 20
different subjects, starting from the neutral one. Altogether
we select 35 video sequences composed of around 15 to 20
frames each, that is, the average duration of each sequence
is about half a second. The training video sequences have
an interesting property: all performed expressions go from
the neutral expression to a high magnitude expression by
going through a moderate magnitude around the middle of
the sequence. In the final stage of the learning all training
trajectories are aligned in the time domain using the Dynamic
Time Warping technique by fixing a nominal duration for a
facial expression. In our experiments, this nominal duration
is set to 18 frames. This choice was guided by many
observations that show that a complete expression can be
displayed in 15-20 frames assuming that the video rate is 30
fps.

Finally, a training video sequence associated with a uni-
versal expression is represented by a feature vectory corre-
sponding to the second half of the aligned trajectory (only
nine frames are used). This feature vectory is given by

(τa

T
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T
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T

(12), τa

T
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T
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T

(17), τa

T

(18))
T

Thus, the dimension of this feature vector is 54. Figure 3
shows nine frames encoding a temporal signature of a joy
expression.

We decided to remove in our analysis the first half
trajectory (from initial, neutral state to half-apex) since we
found them irrelevant for the purposes of the current study.
Therefore, a feature vector associated with a given universal
expression is encoding a signature of one realization of this
expression that goes from a moderate magnitude to the apex.

Fig. 3. Constructing the feature vector (54 components) fromnine frames
associated with joy expression dynamics.

III. EMBEDDING WITH LAPLACIAN EIGENMAPS

In this paper, we use Laplacian Eigenmap [23] to map
temporal signatures into a low-dimensional space. Using the
notion of the Laplacian of the graph, this non-supervised
algorithm computes a low-dimensional representation of the
data set by optimally preserving local neighborhood infor-
mation in a certain sense. We assume that we have a set of
N samples{yi}

N
i=1 ⊂ R

D. Define a neighborhood graph on
these data, such as a K-nearest-neighbor orǫ-ball graph, or
a full mesh, and weigh each edgeyi ∼ yj by a symmetric
affinity function wij = K(yi; yj), typically Gaussian:

wij = exp(−
‖yi − yj‖

2

2σ2
). (4)

We seek latent points{xi}
N
i=1 ⊂ R

L that minimizes
1
2

∑
i,j wij ‖xi − xj‖

2, which discourages placing far apart
latent points that correspond to similar observed points. If W
denotes the symmetric affinity matrix andD is the diagonal
weight matrix, whose entries are column (or row, sinceW is
symmetric) sums ofW, then the Laplacian matrix is given
L = D−W. It can be shown that the objective function can
also be written as:

1

2

∑

i,j

wij ‖xi − xj‖
2 = tr(ZT L Z ) (5)

whereZ = [xT
1 ; . . . ; xT

N ] is theN ×L embedding matrix.
The ith row of the matrix Z provides the vectorxi—the
embedding coordinates of the sampleyi.

The embedding matrixZ is the solution of the optimization
problem:



min
Z

tr(ZT L Z )s.t.ZT D Z = I , ZT L e = 0 (6)

whereI is the identity matrix ande = (1, . . . , 1)T . The first
constraint eliminates the trivial solutionZ = 0 (by setting
an arbitrary scale) and the second constraint eliminates the
trivial solution e (all samples are mapped to the same
point). Standard methods show that the embedding matrix is
provided by the matrix of eigenvectors corresponding to the
smallest eigenvalues of the generalized eigenvector problem,

L z = λ D z (7)

Let the column vectorsz0, . . . , zN−1 be the solutions of (7),
ordered according to their eigenvalues,λ0 = 0, . . . , λN−1.
The eigenvector corresponding to eigenvalue0 is left out and
only the next eigenvectors for embedding are used.

The embedding of the original samples is given by the
row vectors of the embedding matrixZ, that is,

yi −→ xi = (z1(i), . . . , zL(i))T (8)

whereL < N is the dimension of the new space.

IV. EXPERIMENTAL RESULTS AND
APPLICATION

A. Tests on the CMU Database

In order to test our approach, we used a subset from
the CMU facial expression database [22], containing 20
persons who are displaying 5 expressions: surprise, sadness,
joy, disgust and anger. For dynamical facial expression
recognition evaluation, we used the truncated trajectories,
that is, the temporal sequence containing 9 frames, with the
first frame representing asubtle facial expression and the last
one corresponding to the apex state of the facial expression
(similar to those depicted in figure 3). We decided to remove
in our analysis the first few frames (from initial,neutral state
to half-apex) since we found them irrelevant for the purposes
of the current study.

Once the original trajectory vectors (temporal signatures)
are embedded on the LE space, we further refine the data
representation for recognition by using a Linear Discriminant
Analysis (LDA). While LE is capable of recovering the
intrinsic low-dimensional space, however, it may not be
optimal for recognition. For our evaluation, we adopted a
10-fold cross-validation strategy: 90% of the samples are
used for training and 10% for test. We chose as classifier
the K-nearest neighbor.

In figure 4, we depicted the representation of the first three
components of the data embedded on the LE space.

We manually set the parameterK, representing the neigh-
borhood’s size in the graph. Table I depicts the recognition
rate as a function ofK when the first 10 dimensions in
LE space have been used. As can be seen, the recognition
rate may slightly vary. The scale of the Gaussian kernel2σ2

(4) has been automatically estimated once the size of the
neighborhood,K, has been fixed. We computed this scale
as the average distance to theK-nearest neighbors (over
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Fig. 4. The projection of the first three components of the original data
on LE space.

K = 7 K = 9 K = 13 K =17 K =23

88.57 94.28 91.42 94.28 97.14
TABLE I

RECOGNITION RATE AS A FUNCTION OF THE NEIGHBORHOOD’ S SIZE OF

THE GRAPH.

all training examples). This is one of the possibilities of
estimating automatically this parameter, as suggested in [23].

In order to assess the performance of the LE embedding,
we also perform the tests using the linear embedding pro-
vided by PCA (Principal Component Analysis). Thus we
compared the proposed LE+LDA scheme for recognition
with PCA+LDA. In table II, we represented the recognition
accuracy for several values of the embedding dimensionality.
For classification, we used the Nearest Neighbor with K=1, 3
and 5. A more elaborated comparison between the schemes
LE+LDA and PCA+LDA is depicted in figure 5. It can be
appreciated that when the dimensionality of the embedded
space is smaller than 20, the recognition rate is higher
when the samples are projected on the LE space than on
PCA. The fact that LE embedding offers the best results
on low dimensionality and its performance degrades when
the dimensionality increases is not surprising. A possible
explanation for this situation is given in [24]: when the
number of dimensions increases, PCA will discard less and
less information. At the same time, LE will start overfitting,
a problem to which it is much more sensitive than PCA
because of its nonlinear nature.

In other words, LE offers a more powerful compression
of the original data than PCA. This is a very important
result especially for the case when the data lie in very high
dimensionality space (like hyperspectral images) and we are
interested in a significant dimensionality reduction without
any relevant loss of intrinsic information.



LE/PCA K-NN=1 K-NN=3 K-NN=5

5 91.42 / 91.42 88.57 / 88.57 91.42 / 91.42
10 97.14 / 94.285 97.14/ 91.42 97.14 / 91.42
15 91.42 / 85.71 91.42 / 85.71 91.42 / 85.71
20 88.57 / 68.57 88.57 / 65.71 88.57 / 68.57

TABLE II

RECOGNITION RATE AS A FUNCTION OF DIMENSIONALITY OF THE

EMBEDDED SPACE: LE VS. PCA.
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Fig. 5. Recognition rate as a function of LE and PCA dimensionality.

B. A Human-Robot Interaction Scenario For A Social Robot

In this subsection, we describe a human-robot interaction
application based on our proposed approach. The applica-
tion refers to mimicking the facial expressions of a person
perceived by a robot’s camera.

Without any loss of generality, we used an AIBO robot for
our application. The input to the system is a video stream
capturing the user’s face (the experimental setup is depicted
in figure 6). AIBO’s human-like communication system is
implemented through a series ofinstincts and senses: affec-
tion, movement, touch, hearing, sight and balance. AIBO is
able to show its emotions through an array of LEDs situated
in the frontal part of the head. These are depicted in figure
7, and are shown in correspondence with the six universal
expressions. Notice that the blue lights that appear, in certain
images, on each part of the head, are blinking LEDs whose
meaning is to inform that the robot is remotely controlled1.
This is a built-in feature and can not be turned off.

In addition to the LEDs’ configuration, the robot re-
sponse contains some small head and body motion. From
its concept design, AIBO’s affective states are triggered by
the Emotion Generator engine. This occurs as a response
to its internal state representation, captured through multi-

1The application described in this paper, was built using theRemote
Framework (RFW) programming environment (based on C++ libraries),
which works on a client-server architecture over a wirelessconnection
between a PC and the AIBO

Fig. 6. The experimental setup.

Fig. 7. The figure illustrates the LEDs’ configuration for each universal
expression.

modal interaction (vision, audio and touch). For instance,
it can display the ’happiness’ feeling when it detects a face
(through the vision system) or it hears a voice. But it does not
possess a built-in system for vision-based automatic facial
expression recognition. For this reason, the application we
created for AIBO could be seen as an extension of its pre-
defined behaviors. This application is a very simple one,
in which the robot is just imitating the expression of a
human subject. In other words, we wanted to see its reaction
according to the emotional state displayed by a person.
Usually, the response of the robot occurs slightly after the
apex of the human expression. The results of this application
were recorded in a 2 minutes video which can be downloaded
from the following address:http://www.cvc.uab.es/

˜ bogdan/AIBO-emotions.avi . In order to be able
to display simultaneously in the video the correspondence
between person’s and robot’s expressions, we put them side
by side. In this case only, we analyzed offline the content
of the video and commands with the facial expression code
were sent to the robot. Figure 8 illustrates nine recognized
facial expressions from a 1600 frame-long video sequence.

V. CONCLUSIONS

This paper described an integrated framework for dynamic
facial expression recognition. First, we proposed a temporal
recognition scheme that classifies a given image in an unseen
video into one of the universal facial expression categories
using temporal facial deformation. The proposed approach
relies on tracked facial actions provided by a real-time
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Fig. 8. Person’s facial expressions are shown in correspondence with the
robot’s response.

face tracker. Second, we use the unsupervised non-linear
embedding provided by Laplacian Eigenmaps (LE) that
preserves local neighborhood information in order to embed
temporal signatures on a low-dimension manifold. Third,
facial expression recognition is performed on the embedded
signatures using classical machine learning techniques.

In the future, we want to further extend the research
reported in this paper by focusing on the out-of-sample case
for manifold learning: augmenting the graph Laplacian with
new data without recomputing the whole embedding.
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