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Abstract— In this paper, we propose an integrated framework ~ with a well-defined structure which suffers elastic deforma
for tracking, modelling and recognition of facial expressions. tions. Ideally, an optimal representation would be able to

The main contributions are: (i) a view- and texture independent 50 with all these complex transformations. This is uguall
scheme that exploits facial action parameters estimated by an hi d th h ifold | . h
appearance-based 3D face tracker; (ii) the complexity of the achieve roug. a maniio earnlng apprc_)ac : )
non-linear facial expression space is modelled through a mani-  The use of linear and non-linear manifolds for facial

fold, whose structure is learned using Laplacian Eigenmaps. expression recognition was addressed by many researchers.
The projected facial expressions are afterwards recognized Most of the proposed manifold learning schemes addressed
based on Nearest Neighbor classifier; (iii) with the proposed fame.-wise representation of facial textures. In [11], the
approach, we developed an application for an AIBO robot, in . .

which it mirrors the perceived facial expression. autho_r.s propose g BayeS|an. approach to modfalllng temporal

Keywords: facial expression recognition, temporal classifiers, transitions of facial expressions represented in a mahifol
manifold learning, human-robot interaction, AIBO robot In [12], the authors propose a Bayesian framework for

face recognition from video sequences. They represent face
. INTRODUCTION appearances by linear sub-manifolds together with proba-

In the field of Human-Computer Interaction (HCI), com-bilistic transitions. The linear sub-manifolds are obéain
puters will be enabled with perceptual capabilities in otde via clustering and classical Principal Component Analysis
facilitate the communication protocols between people an@®CA). In [13], the authors propose a probabilistic video-
machines. In other words, computers will be endowed withased facial expression recognition method on manifolds.
natural ways of communication people use in their everydafn enhanced Lipschitz embedding is developed to embed
life. Among them, facial expression represents a powerfuhe aligned face appearance in a low dimensional space.
mean people use to express their emotions and other aspektprobabilistic model of transition between expressions is
related with their social or psychological status. learned through training videos in the embedded space.

In the past, a lot of effort was dedicated to recognize facial In this paper we present an integrated framework for
expression in still images. For this purpose, many tectesiqudynamic facial expression recognition, consisting of gsta
have been applied: neural networks [1], Gabor wavelets [Hirst, a temporal signature extracted from a video sequence
and Active Appearance Models (AAM) [3]. A very important will be used as a sample data that encodes facial deformation
limitation to this strategy is the fact that still images akly We extract facial dynamics by using the 3D face tracker
capture the apex of the expression, i.e., the instant athwhi¢l4] based on Online Appearance Models and a deformable
the indicators of emotion are most marked. In their dailg,lif 3D mesh. This face tracker is able to retrieve in real-
people seldom show apex of their facial expression durinigme the 3D face pose parameters as well as some facial
normal communication. actions needed for recognizing facial expressions. Second

More recently, attention has been shifted particularlyve use the unsupervised non-linear embedding provided by
towards dynamic modelling of facial expressions [4], [5]Laplacian Eigenmaps (LE) that preserves local neighbathoo
[6]. Dynamical approaches can use shape deformations [fi}formation in order to embed temporal signatures on a
texture dynamics [8] or a combination of them [9]. In [10],low-dimension manifold. Third, facial expression recdigmi
the authors propose a dynamic classifier that is based &nperformed on the embedded signatures using classical
building spatio-temporal model for each universal expgoess machine learning techniques: Linear Discriminant Analysi
derived from Fourier transform. The recognition of unseefLDA) with a Nearest Neighbor (NN) classifier. This process
expression uses the Hausdorff distance to compute dissing-depicted in Figure 1.
larity values for classification. What differentiate our work from existing dynamic recog-

Modelling the variability of facial expressions is a verynition schemes are the following: 1) expressions can be
challenging task. Facial expressions form a classhpécts recognized even in the presence of 3D head motions whereas

o _ . most of the proposed expression recognition schemes esquir
e e o oveugh.ce ™ frontal view of the face. 2) the recogrition is based
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whereg; is the static shape of the mode}, the animation
control vector, and the columns & are the Animation
Units. In this study, we use six modes for the facial Anima-

; tion Units (AUs) matrixA. We have chosen the following
Original features AUs: lower lip depressor, lip stretcher, lip corner depoess

Image sequence

upper lip raiser, eyebrow lowerer, outer eyebrow raisee (se
Figure 2(a)). These AUs are enough to cover most common
facial animations. Moreover, they are essential for coimgy
emotions.

In equation (1), the 3D shape is expressed in a local
coordinate system. However, one should relate the 3D co-
ordinates to the image coordinate system. To this end, we
adopt the weak perspective projection model. We neglect the
perspective effects since the depth variation of the face ca
be considered as small compared to its absolute depth. Thus,

Manifold
learning

Latent features

Classifier
training

Recognized expression

Training stage

the state of the 3D wireframe model is given by the 3D face

pose parameters (three rotations and three translatiowk) a
Fig. 1. Integrated framework for dynamic facial expressiorogaition. ~ the internal face animation control vecteg. This is given

by the 12-dimensional vectdr:

—_ T 1T
examples can link our proposed method to all classical b= [0z 0y 0. to by, . Ta | (2

machine learning approa_ches. _ ~ Note that if only the aspect ratio of the camera is known,
The rest of the paper is organized as follows. Section then the componert., is replaced by a scale factor having
describes the extraction of temporal signatures assdciatghe same mapping role between 3D and 2D. In this case, the

with universal expressions. Section IIl reviews the Laplastate vector is given bys(denotes the scale factor):
cian Eigenmaps embedding. In section IV we present some

experimental results as well as an application for the AIBO b = [0., 6y, 0., to, t,, s, 7’ |7 (3)
robot. Finally, in section V we draw our conclusions.

1. FROM VIDEOS TO FACIAL DYNAMICS AND

EXPRESSIONS 2
The objective of this work is to recognize facial expres /Eé [oner brow depressor

Brow raiscr

sions in continuous videos using data-driven machine lea
ing algorithms. Therefore, encoding the displayed unaers
expressions is a crucial step. Extracting facial dynamsssa

ciated with facial muscle deformations from video sequenc
is a challenging task. This task is made more difficult

the subject’s head moves in 3D space. The recognition
facial expressions with significant head motion is required (a) (b)
by many applications such as human computer interactiq;ib. 2
and computer graphics animation [15], [16], [17] as well asnage.
training of social robots [18], [19].

Lip corner depressor 2 Upper lip raiser

Lower lip depressor ./ Lip stretcher

(a) Candide model.(b) Candide model adapted to an input facial

A. Modelling Faces B. Smultaneous Face And Facial Action Tracking

In our work, we use a common 3D deformable face In order to recover the facial expression one has to
model—theCandide model [20] (See Figure 2). Despite thecompute the facial actions encoded by the veetgwhich
simplicity of this 3D wireframe model, it can be used toencapsulates the facial deformation. Since our recognitio
extract a subset of 3D facial dynamics in real time usingcheme is view-independent these facial actions togetitier w
one single camera. The 3D shape of this wireframe modiéie 3D head pose should be simultaneously estimated. In
is directly recorded in coordinate form. It is given by theother words, the objective is to compute the state vebtor
coordinates of the 3D verticd®;,i = 1,...,n wheren is  for every video frame.
the number of vertices. Thus, the shape up to a global scaleFor this purpose, we use the tracker based on Online Ap-
can be fully described by thén-vectorg; the concatenation pearance Models [14]. This appearance-based tracker aims
of the 3D coordinates of all verticeB;. The vectorg is at computing the 3D head pose and the facial actions, i.e.
written as: the vectorb, by minimizing a distance between the incoming

warped frame and the curresgtape-free appearance of the
g=0,+AT, (1) face. This optimization is carried out using a gradient dasc



method. The statistics of thahape-free appearance as well We decided to remove in our analysis the first half
as the gradient matrix are updated every frame. This schenrajectory (from initial, neutral state to half-apex) snwe
leads to a fast and robust tracking algorithm. found them irrelevant for the purposes of the current study.
Therefore, a feature vector associated with a given uravers
expression is encoding a signature of one realization &f thi
expression that goes from a moderate magnitude to the apex.

C. Representing Dynamic Universal Expressions By Fea-
tures

In order to learn the spatio-temporal structures of theafaci
actions associated with facial expressions, we have us
a simple supervised learning scheme that consists in t
stages. In the first stage, training video sequences degicti
different universal facial expressions are tracked ushey t
appearance-based face tracker. The retrieved facialnacticks
T, are represented by time series. In other words, an examj
(expression going from neutral to apex) is encoded by
sequence of facial actionsa(),...,Ta(r). One can note
that this temporal sequence (trajectory) can be consider,
as a compact representation of the spatio-temporal facg
structure that one expects to observe whenever the fa
undergoes a given universal expression. In the second, sta
since we are using example based classifiers all examp
should have the same dimension. To this end, all faci
action sequences are aligned in the time domain using t
Dynamic Time Warping (DTW) technique [21]. Dynamic & )
Time Warping is a well-known technique to find an optimakig. 3. constructing the feature vector (54 components) fnime frames
alignment between two given (time-dependent) sequencessociated with joy expression dynamics.
under certain restrictions. Thus, a given example (unalers
expression) is represented by a feature vector obtained By EMBEDDING WITH LAPLACIAN EIGENMAPS
concatenating the vectors,(¢) belonging to the aligned
temporal sequence.

In this paper, we use Laplacian Eigenmap [23] to map
More precisely, video sequences have been picked A mporal signatures into a low-dimensional space. Usieg th

from the CMU database [22]. These sequences depict filetion of the Laplacian of the graph, this non-supervised

frontal view universal expressions (surprise, sadness, jOa gorithm computes a low-dimensional representation ef th

disgust and anger). Each expression is performed by %’t"’_‘ set by OP“"_‘a”V preserving local neighborhood infor-
different subjects, starting from the neutral one. Altoget Maton In a certain sense. We assume that we have a set of
we select 35 video sequences composed of around 15 to Osamples{yi i=1 C R”. Define a nglghborhood graph on
frames each, that is, the average duration of each sequef! §se data, such as a K-nearest-neighbar-loall graph, or

is about half a second. The training video sequences haeﬁ,u” mesh, and weigh each edgge ~ y; by a symmetric

an interesting property: all performed expressions go frof NIty functionwi; = K(y;;y;), typically Gaussian:

the neutral expression to a high magnitude expression by Iy; — v 12
going through a moderate magnitude around the middle of w;; = exp(— 12 2” ). 4)
the sequence. In the final stage of the learning all training . N 7 . L
trajectories are aligned in the time domain using the Dycami Ve seek latent 2pomts_{xi i=1 C RY that minimizes
Time Warping technique by fixing a nominal duration for az 2-i,; @ij [Xi —X;[|, which discourages placing far apart
facial expression. In our experiments, this nominal dorati !atent points that correspond to similar observed poifité/ |

is set to 18 frames. This choice was guided by manger)otes the_ symmetric aff|n|ty matrix afis the dlggopal
observations that show that a complete expression can Wgight matrix, whose entries are column (or row, sikfées
displayed in 15-20 frames assuming that the video rate is ¥MMetric) sums o, then the Laplacian matrix is given
fps. L = D—W. It can be shown that the objective function can

Finally, a training video sequence associated with a unfiSO be written as:

versal expression is represented by a feature vectmrre- 1 ) "
sponding to the second half of the aligned trajectory (only 3 > wij xi = x| =tr(Z"LZ) (5)
nine frames are used). This feature vegtas given by iJ

whereZ = [xT;...;x%] is the N x L embedding matrix.
The i** row of the matrixZ provides the vectox;,—the
Thus, the dimension of this feature vector is 54. Figure 8mbedding coordinates of the sample
shows nine frames encoding a temporal signature of a joy The embedding matriX is the solution of the optimization
expression. problem:

(Ta(10)s Ta(11)> Ta{12), Ta(13); Ta(14): Ta(15); Ta(16), Ta(17); Ta(1s))



mintr(Z"LZ)s.t.2"DZ=1,2"Le=0  (6) o Surprise
Z o ?adness
X oy
wherel is the identity matrix ang = (1,...,1)T. The first 0.04 o E\).iqsggeuft

constraint eliminates the trivial solutioi = 0 (by setting
an arbitrary scale) and the second constraint eliminates
trivial solution e (all samples are mapped to the san
point). Standard methods show that the embedding matri
provided by the matrix of eigenvectors corresponding to 1 _;,,
smallest eigenvalues of the generalized eigenvector @mobl

-0.04

Lz=ADz (7) 0.04

0.04
Let the column vectorg, ..., zy_1 be the solutions of (7),
ordered according to their eigenvalueg, = 0,..., An_1.
The eigenvector corresponding to eigenvdlus left out and
only the next eigenvectors for embedding are used.

The embedding of the original samples is given by th€ig. 4. The projection of the first three components of theiosigdata

-0.04 -0.02

row vectors of the embedding matr that is, on LE space.
_ . T
Yi — X = (21(3), ..., 20(4)) (8) [K=7[K=9 [K=13 [ K=17 [ K=23]]
where L < N is the dimension of the new space. [ 88,57 [ 94.28 ngllafé Il 94.28 [ 97.14 |
IV. EXPERIMENTAL RESULTS AND RECOGNITION RATE AS A FUNCTION OF THE NEIGHBORHOODS SIZE OF
APPLICATION THE GRAPH.

A. Tests on the CMU Database

In order to test our approach, we used a subset from
the CMU facial expression database [22], containing 20

persons who are displaying 5 expressions: surprise, s&dneg| training examples). This is one of the possibilities of

joy, disgust and anger. For dynamical facial expressiogstimating automatically this parameter, as suggeste2Bi [
recognition evaluation, we used the truncated trajecorie In ord h ; f the LE embeddi
that is, the temporal sequence containing 9 frames, with the n ?r er tc; asseﬁs t etper qrmaﬂcel'o the be(;ré'e ng,
first frame representing subtle facial expression and the last W& IS0 perform the tests using the linear embedding pro-

one corresponding to the apex state of the facial expressi?ﬂ‘f‘ed by PCA (Principal Component Analysis). Thus we

(similar to those depicted in figure 3). We decided to remov%ornpam(j the proposed LE+LDA scheme for recognition

in our analysis the first few frames (from initileutral state with PCA+LDA. In table II, we represented the recognition

to half-apex) since we found them irrelevant for the purposéaccuracy'fpr s_everal values of the embeddll ng dlme'nsuynaht
of the current study. For classification, we used the Nea_rest Neighbor with K=1, 3
Once the original trajectory vectors (temporal signatpre?nd o A m(()jre elaborate(_j c(;)m_pango_n ?_etween the schbe mes
are embedded on the LE space, we further refine the dah +LDA and PCA+LDA Is gpmte_ n figure 5. It can be
representation for recognition by using a Linear Discrianin appreciated that when the dimensionality of the embedded

Analysis (LDA). While LE is capable of recovering the SPace is smaller than 20,_ the recognition rate is higher
intrinsic low-dimensional space, however, it may not b hen the samples are prOJecteq on the LE space than on
optimal for recognition. For our evaluation, we adopted g CA. Th_e fact_ that_ . em_beddlng offers the best results
10-fold cross-validation strategy: 90% of the samples ar%n 'OW d|m9n3|o_nal_|ty and its _performancg _degrades W.h en
used for training and 10% for test. We chose as classifil?® d|me-n5|onallty. Increases s not surprising. A possible
the K-nearest neighbor. explanation for this situation is given in [24]: when the

In figure 4, we depicted the representation of the first thre'%urm?er of dlmen5|ons Increases, PCA V‘_"” discard Ie§§ and
components of the data embedded on the LE space. less information. At th_e same time, LE will s_tf_;lrt overfitting

We manually set the paramett, representing the neigh- a problem t_o WhICh it is much more sensitive than PCA
borhood's size in the graph. Table I depicts the recognitiofl€cause of its nonlinear nature.
rate as a function o when the first 10 dimensions in In other words, LE offers a more powerful compression
LE space have been used. As can be seen, the recognitawinthe original data than PCA. This is a very important
rate may slightly vary. The scale of the Gaussian ke2a€l result especially for the case when the data lie in very high
(4) has been automatically estimated once the size of tligmensionality space (like hyperspectral images) and we ar
neighborhood,K, has been fixed. We computed this scalénterested in a significant dimensionality reduction witho
as the average distance to tli&-nearest neighbors (over any relevant loss of intrinsic information.



[LEPCA] KNN=I | KNN=3 | KNN=5 |

5 91.42/91.42 | 88.57 /88.57| 91.42/91.42

10 97.14 /1 94.285| 97.14/ 91.42 | 97.14 / 91.42

15 91.42/85.71 | 91.42/85.71| 91.42/85.71

20 88.57 /68.57 | 88.57 /65.71| 88.57 / 68.57
TABLE T

RECOGNITION RATE AS A FUNCTION OF DIMENSIONALITY OF THE
EMBEDDED SPACE LE vs. PCA.
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Fig. 5. Recognition rate as a function of LE and PCA dimendigna

modal interaction (vision, audio and touch). For instance,
) ) ) it can display the 'happiness’ feeling when it detects a face
B. A Human-Robot Interaction Scenario For A Social Robot  (through the vision system) or it hears a voice. But it dods no
In this subsection, we describe a human-robot interactigrossess a built-in system for vision-based automatic Ifacia
application based on our proposed approach. The applicgxpression recognition. For this reason, the applicatien w
tion refers to mimicking the facial expressions of a persoareated for AIBO could be seen as an extension of its pre-
perceived by a robot's camera. defined behaviors. This application is a very simple one,
Without any loss of generality, we used an AIBO robot forin which the robot is just imitating the expression of a
our application. The input to the system is a video streafuman subject. In other words, we wanted to see its reaction
capturing the user’s face (the experimental setup is dagictaccording to the emotional state displayed by a person.
in figure 6). AIBO's human-like communication system isUsually, the response of the robot occurs slightly after the
implemented through a series iotincts and senses; affec-  apex of the human expression. The results of this applicatio
tion, movement, touch, hearing, sight and balance. AIBO igere recorded in a 2 minutes video which can be downloaded
able to show its emotions through an array of LEDs situateiiom the following addressttp://www.cvc.uab.es/
in the frontal part of the head. These are depicted in figurebogdan/AIBO-emotions.avi . In order to be able
7, and are shown in correspondence with the six universt@ display simultaneously in the video the correspondence
expressions. Notice that the blue lights that appear, itaizer between person’s and robot's expressions, we put them side
images, on each part of the head, are blinking LEDs whod® side. In this case only, we analyzed offline the content
meaning is to inform that the robot is remotely controlled of the video and commands with the facial expression code
This is a built-in feature and can not be turned off. were sent to the robot. Figure 8 illustrates nine recognized
In addition to the LEDs’ configuration, the robot re-facial expressions from a 1600 frame-long video sequence.
sponse contains some small head and body motion. From
its concept design, AIBO’s affective states are triggergd b V. CONCLUSIONS
the Emotion Generator engine. This occurs as a responseThis paper described an integrated framework for dynamic
to its internal state representation, captured throughtimulfacial expression recognition. First, we proposed a teaipor
recognition scheme that classifies a given image in an unseen
'The application described in this paper, was built using Remote yideo into one of the universal facial expression categorie
Framework (RFW) programming environment (based on C++ librpries . . .
which works on a client-server architecture over a wirelessnection UYSING temporal facial deformation. The proposed approach
between a PC and the AIBO relies on tracked facial actions provided by a real-time
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face tracker. Second, we use the unsupervised non-lind4y
embedding provided by Laplacian Eigenmaps (LE) that
preserves local neighborhood information in order to embddtl
temporal signatures on a low-dimension manifold. Thirdy,,
facial expression recognition is performed on the embedded
signatures using classical machine learning techniques. 23]

In the future, we want to further extend the research
reported in this paper by focusing on the out-of-sample cas&!
for manifold learning: augmenting the graph Laplacian with
new data without recomputing the whole embedding.
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