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Abstract. Affective computing is at the core of a new paradigm in HCI and AI
represented by human-centered computing. Within this paradigm, it is expected
that machines will be enabled with perceiving capabilities, making them aware
about users’ affective state. The current paper addresses the problem of facial ex-
pression recognition from monocular videos sequences. We propose a dynamic
facial expression recognition scheme, which is proven to be very efficient. Fur-
thermore, it is conveniently compared with several static-based systems adopting
different magnitude of facial expression. We provide evaluations of performance
using Linear Discriminant Analysis (LDA), Non parametric Discriminant Anal-
ysis (NDA), and Support Vector Machines (SVM). We also provide performance
evaluations using arbitrary test video sequences.

1 Introduction

There is a new paradigm in Human-Computer Interaction (HCI) and Artificial Intelli-
gence focused on human-centered computing [1]. From the HCI perspective, comput-
ers will be enabled with perceptual capabilities in order to facilitate the communication
protocols between people and machines. In other words, computers must use natural
ways of communication people use in their everyday life: speech, hand and body ges-
tures, facial expression. In the past, a lot of effort was dedicated to recognize facial
expression in still images. For this purpose, many techniques have been applied: neural
networks [2], Gabor wavelets [3] and active appearance models [4]. A very important
limitation to this strategy is the fact that still images usually capture the apex of the
expression, i.e., the instant at which the indicators of emotion are most marked. In their
daily life, people seldom show apex of their facial expression during normal communi-
cation with their counterparts, unless for very specific cases and for very brief periods of
time. More recently, attention has been shifted particularly towards modelling dynam-
ical facial expressions [5, 6]. This is because that the differences between expressions
are more powerfully modelled by dynamic transitions between different stages of an
expression rather than their corresponding static key frames. This is a very relevant
observation, since for most of the communication act, people rather use ’subtle’ facial
expressions than showing deliberately exaggerated expressions in order to convey their



message. In [7], the authors found that subtle expressions that were not identifiable in
individual images suddenly became apparent when viewed in a video sequence.

Dynamical classifiers try to capture the temporal pattern in the sequence of feature
vectors related to each frame such as the Hidden Markov Models (HMMs) and Dy-
namic Bayesian Networks [8]. In [9], parametric 2D flow models associated with the
whole face as well as with the mouth, eyebrows, and eyes are first estimated. Then, mid-
level predicates are inferred from these parameters. Finally, universal facial expressions
are detected and recognized using the estimated predicates. Most proposed expression
recognition schemes rely on the use of image raw brightness changes, which may re-
quire fixing the same imaging conditions for training and testing. The recognition of
facial expressions in image sequences featuring significant head motions is a challeng-
ing problem. However, it is required by many applications such as human computer
interaction and computer graphics animation [10] as well as training of social robots
[11].

In this paper we propose a novel scheme for dynamic facial expression recogni-
tion that is based on the appearance-based 3D face tracker [12]. Compared to existing
dynamical facial expression methods our proposed approach has several advantages.
First, unlike most expression recognition systems that require a frontal view of the face,
our system is view independent since the used tracker simultaneously provides the 3D
head pose and the facial actions. Second, it is texture independent since the recognition
scheme relies only on the estimated facial actions—invariant geometrical parameters.
Third, its learning phase is simple compared to other techniques (e.g., the HMM). As
a result, even when the imaging conditions change, the learned expression dynamics
need not to be recomputed. It is worth noting that the proposed expression recognition
schemes are only depending on the facial shape deformations (facial actions) and not
on the image rawbrightness. Certainly, the shape deformations are retrieved using the
rawbrightness of the sequence using the 3D face tracker based on the flexible Online
Appearance Models [12].

The proposed approach for dynamic facial expression recognition has been com-
pared afterwards against static frame-based recognition methods, showing a clear su-
periority in terms of recognition rates and robustness. The paper presents comparisons
with several static classifiers that take into account the magnitude of facial expressions.
We provide evaluations of performance using Linear Discriminant Analysis (LDA),
Non parametric Discriminant Analysis (NDA), and Support Vector Machines (SVM).

The rest of the paper is organized as follows. Section 2 briefly presents the pro-
posed 3D face and facial action tracking. Section 3 describes the proposed recognition
schemes. In section 4 we report some experimental results and method comparisons.
Finally, in section 5 we present our conclusions.

2 3D Facial Dynamics Extraction

2.1 A deformable 3D face model

In our work, we use the 3D face model Candide [13]. This 3D deformable wireframe
model was first developed for the purpose of model-based image coding and computer



animation. The 3D shape of this wireframe model is directly recorded in coordinate
form. It is given by the coordinates of the 3D vertices Pi, i = 1, . . . , n where n is the
number of vertices. Thus, the shape up to a global scale can be fully described by the
3n-vector g; the concatenation of the 3D coordinates of all vertices Pi. The vector g is
written as:

g = gs + A τ a (1)

where gs is the static shape of the model, τ a the animation control vector, and the
columns of A are the Animation Units. The static shape is constant for a given person.
In this study, we use six modes for the facial Animation Units (AUs) matrix A. We have
chosen the following AUs: lower lip depressor, lip stretcher, lip corner depressor, upper
lip raiser, eyebrow lowerer, and outer eyebrow raiser. These AUs are enough to cover
most common facial animations. Moreover, they are essential for conveying emotions.
Thus, for every frame in the video, the state of the 3D wireframe model is given by the
3D head pose parameters (three rotations and three translations) and the internal face
animation control vector τ a. This is given by the 12-dimensional vector b:

b = [θx, θy, θz, tx, ty, tz, τT
a ]T (2)

where:

– θx, θy , and θz represent the three angles associated with the 3D rotation between
the 3D face model coordinate system and the camera coordinate system.

– tx, ty , and tz represent the three components of the 3D translation vector between
the 3D face model coordinate system and the camera coordinate system.

– Each component of the vector τ a represents the intensity of one facial action. This
belongs to the interval [0, 1] where the zero value corresponds to the neutral config-
uration (no deformation) and the one value corresponds to the maximum deforma-
tion. In the sequel, the word ”facial action” will refer to the facial action intensity.

2.2 Simultaneous face and facial action tracking

In order to recover the facial expression one has to compute the facial actions encoded
by the vector τ a which encapsulates the facial deformation. Since our recognition
scheme is view-independent these facial actions together with the 3D head pose should
be simultaneously estimated. In other words, the objective is to compute the state vector
b for every video frame.

For this purpose, we use the tracker based on Online Appearance Models (OAMs)—
described in [12]. This appearance-based tracker aims at computing the 3D head pose
and the facial actions, i.e. the vector b, by minimizing a distance between the incoming
warped frame and the current shape-free appearance of the face. This minimization is
carried out using a gradient descent method. The statistics of the shape-free appearance
as well as the gradient matrix are updated every frame. This scheme leads to a fast and
robust tracking algorithm. We stress the fact that OAMs are more flexible than Active
Appearance Models which heavily depend on the imaging conditions under which these
models are built.
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Fig. 1. Three video examples associated with the CMU database depicting surprise, anger, and joy
expressions. The left frames illustrate the half apex of the expression. The right frames illustrate
the apex of the expression.

3 Facial Expression Recognition

Learning. In order to learn the spatio-temporal structures of the actions associated with
facial expressions, we have used a simple supervised learning scheme that consists in
two stages. In the first stage, continuous videos depicting different facial expressions
are tracked and the retrieved facial actions τ a are represented by time series. In the
second stage, the time series representation of all training videos are registered in the
time domain using the Dynamic Time Warping technique. Thus, a given example (ex-
pression) is represented by a feature vector obtained by concatenating the registered
τ a.

Video sequences have been picked up from the CMU database [14]. These se-
quences depict five frontal view universal expressions (surprise, sadness, joy, disgust
and anger). Each expression is performed by 70 different subjects, starting from the neu-
tral one. Altogether we select 350 video sequences composed of around 15 to 20 frames
each, that is, the average duration of each sequence is about half a second. The learn-
ing phase consists of estimating the facial action parameters τ a (a 6-element vector)
associated with each training sequence, that is, the temporal trajectories of the action



parameters. The training video sequences have an interesting property: all performed
expressions go from the neutral expression to a high magnitude expression by going
through a moderate magnitude around the middle of the sequence. Therefore, using the
same training set we get two kinds of trajectories: (i) an entire trajectory which mod-
els transitions from the neutral expression to a high magnitude expression, and (ii) a
truncated trajectory (the second half part of a given trajectory) which models the transi-
tion from small/moderate magnitudes (half apex of the expression) to high magnitudes
(apex of the expression). Figure 1 show the half apex and apex facial configurations for
three expressions: surprise, anger, and joy. In the final stage of the learning all training
trajectories are aligned using the Dynamic Time Warping technique by fixing a nominal
duration for a facial expression. In our experiments, this nominal duration is set to 18
frames.

Recognition. In the recognition phase, the 3D head pose and facial actions are recov-
ered from the video sequence using the appearance-based face and facial action tracker.
We infer the facial expression associated with the current frame t by considering the es-
timated trajectory, i.e. the sequence of vectors τ a(t) within a temporal window of size
18 centered at the current frame t. This trajectory (feature vector) is then classified using
classical classification techniques that rely on the learned examples. We have used three
different classification schemes: (i) Linear Discriminant Analysis, (ii) Non-parametric
Discriminant Analysis, and (iii) Support Vector Machines with a Radial Basis Function.

4 Experimental Results

In our experiments, we used a subset from the CMU facial expression database, con-
taining 70 persons who are displaying 5 expressions: surprise, sadness, joy, disgust and
anger. For training and testing we used the truncated trajectories, that is, the temporal
sequence containing 9 frames, with the first frame representing a ”subtle” facial expres-
sion (corresponding more or less with a ”half apex” state, see the left column of Figure
1) and the last one corresponding to the apex state of the facial expression (see the right
column of Figure 1). We decided to remove in our analysis the first few frames (from
initial, ”neutral” state to ”half-apex”) since we found them irrelevant for the purposes
of the current study.

It is worth noting that the static recognition scheme will use the facial actions as-
sociated with only one single frame, that is, the dimension of the feature vector is 6.
However, the dynamic classifier use the concatenation of facial actions within a tem-
poral window, that is, the feature vector size is 6 × n where n is the number of frames
within the temporal window. In the sequel, n is set to 9.

4.1 Classification results using the CMU data

The results reported in this section are based on the ”leave-one-out” cross-validation
strategy. Several machine learning techniques have been tested: Linear Discriminant
Analysis (LDA), Non-parametric Discriminant Analysis (NDA) and Support Vector



Machines (SVM). For LDA and NDA, the classification was based on the K Nearest
Neighbor rule (KNN). We considered the following cases: K=1, 3 and 5.

In order to assess the benefit of using temporal information, we performed also
the ”static” facial expression recognition. Three static classifier schemes have been
adopted. In the first scheme, training and test data are associated to the apex frames.
In the second scheme, training and test data are associated to the half-apex frames. In
the third schemes, we considered all the training frames in the 9-frame sequence be-
longing to the same facial expression, but with different magnitudes. However, during
testing every frame is recognized individually and the recognition rate concerns the
recognition of individual frames.

The whole results (dynamic and static) for LDA and NDA are reported in tables 1
and 2, respectively. The SVM results for the dynamic classifier are reported in table 3.
The kernel was a radial basis function. Thus, the SVM used has two parameters to tune
’C’ and ’g’ (gamma). The first parameter controls the number of training errors, and the
second one controls the RBF aperture. In general, gamma is taken as the inverse of the
feature dimension, that is, it is set to 1/dim(vector) = 1/54 for the dynamic classifier
and to 1/dim(vector) = 1/6 for the static classifier. In this case we wanted to see
how the variation of the parameters ’C’ (cost) affects the recognition performance. We
considered six values for ’C’.

To conclude this part of the experimental results, we could say that, in general, the
dynamic recognition scheme has outperformed all static recognition schemes. More-
over, we found out that the SVM clearly outperforms LDA and NDA in classification
accuracy. Moreover, by inspecting the recognition results obtained with SVM we can
observe that the dynamic classifiers and the static classifiers based on the apex frames
are slightly more accurate than the static classifiers (half-apex) and (all frame) (third
and fourth columns of Table 3). This can be explained by the fact that these static clas-
sifiers are testing separately individual frames that may not contain high magnitude
facial actions.

Classifier type K=1 K=3 K=5
Dynamic 94.2857% 88.5714% 82.8571%
Static (apex) 91.4286% 91.4286% 88.5714%
Static (half-apex) 85.7143% 82.8571% 80.0000%
Static (all frames) 84.1270% 91.4286% 89.5238%

Table 1. LDA - Overall classification results for the dynamic and static classifiers.

4.2 Cross-check validation using the CMU data

Besides the experiments described above, we performed also a cross-check validation.
In the first experiment, we trained the static classifier with the frames corresponding to
half-apex expression and use the apex frames for test. We refer to this case as ’minor’
static classifier. In a second experiment, we trained the classifier with the apex frames



Classifier type K=1 K=3 K=5
Dynamic 88.5714% 88.5714% 85.7143%
Static (apex) 85.7143% 88.5714% 91.4286%
Static (half-apex) 82.8571% 80.0000% 80.0000%
Static (all frames) 90.7937% 90.1587% 91.1111%

Table 2. NDA - Overall classification results for the dynamic and static classifiers.

C Dynamic Apex Half-apex All frames
5 94.2857% 97.1428% 82.8571% 87.9364%
10 97.1428% 100.0000% 85.7142% 88.8888%
50 100.0000% 94.2857% 94.2857% 86.6666%
100 97.1428% 94.2857% 94.2857% 86.3491%
500 97.1428% 94.2857% 94.2857% 87.3015%
1000 97.1428% 94.2857% 91.4285% 88.5714%

Table 3. SVM - Overall classification results for the dynamic and static classifiers.

Static classifier K=1 K=3 K=5
Minor 82.8571% 85.7143% 85.7143%
Major 57.1429% 65.7143% 62.8571%

Table 4. LDA - Cross-check validation results for the static classifier. Minor: train with half-apex
frames and test with apex. Major: train with apex frames and test with half-apex.

Static classifier K=1 K=3 K=5
Minor 94.2857% 88.5714% 85.7143%
Major 65.7143% 62.6571% 60.0000%

Table 5. NDA - Cross-check validation results for the static classifier. Minor: train with half-apex
frames and test with apex. Major: train with apex frames and test with half-apex.

C Minor Major
5 80.0000% 60.0000%
10 85.7142% 51.4285%
50 85.7142% 45.7142%
100 80.0000% 48.5714%
500 82.8571% 48.5714%
1000 82.8571% 48.5714%

Table 6. SVM - Cross-check validation results for the static classifier. Minor: train with half-apex
frames and test with apex. Major: train with apex frames and test with half-apex.



and test it using the half-apex frames (’major’ static classifier). The results for LDA,
NDA and SVM are presented in the tables 4, 5 and 6, respectively. By analyzing the ob-
tained results, we could observe that the ’minor’ static classifier has comparable results
to the static half apex classifier. This was confirmed by the three classification methods:
LDA, NDA, and SVM. This means that a learning based on data featuring half apex ex-
pressions will have very good generalization capabilities since the tests with both kinds
of data (half-apex and apex expressions) have a high recognition rate. Also, one can
notice that the recognition rate of the minor static classifier is higher than that of the
major static classifier.

This result may have very practical implications assuming that training data contain
non-apex expressions, specially for real-world applications. In human-computer inter-
action scenarios, for instance, we are interested in quantifying human reaction based on
its natural behavior. For this reason, we have to acquire and process data online without
any external intervention. In this context, it is highly unlikely to capture automatically
a persons apex of the facial expression. Most of the time we are tempted to show more
subtle versions of our expressions and when we indeed show apex, this is in very spe-
cific situations and for very brief periods of time.

Fig. 2. Four snapshots from the second video sequence.

4.3 Dynamic vs. static recognition on non-aligned videos

In order to assess the robustness of our method, we also tested the recognition schemes
on three arbitrary video sequences. The length of the shortest one is 300 frames and
that of the longest is 1600 frames. Figure 2 shows four snapshots associated with the
second test video sequence. These sequences depicted unseen subjects displaying a
variety of different facial expressions. For training, we employed all the videos from
the CMU database used in the previous sections (for which the dynamic expressions
are represented by aligned 9-frame sequences). It is worth mentioning that the CMU
videos and these three test videos are recorded at different frame rates. Moreover, the
displayed expressions are not so similar to those depicted in the CMU data.



We compare the recognized expressions by the static and dynamic classifiers with
the ground-truth displayed expressions. Since the test videos are not segmented, we
perform the dynamic and static recognition only at some specific frames of the test
videos. These keyframes correspond to significant facial deformations and are detected
using the heuristic developed in [15]. These keyframes does not correspond to a specific
frame in the time domain (onset, apex, offset of the expression). As a result of this,
the task of the dynamic classifier will be very hard since the temporal window of 9
frames centered at this detected keyframe will be matched against the learned aligned
trajectories. The static recognizer will not be so affected since the recognition is based
on comparing the attributes of the individual detected keyframe with those of a set of
learned individual frames depicting several amplitudes of the expression.

In the tables 7 and 8, we present the results for the dynamic and static classifiers,
respectively. The static scheme has outperformed the dynamic scheme for these three
sequences. This confirms that the dynamic classifiers need better temporal alignment.
As can be seen, the recognition rates obtained with both recognition schemes are lower
than those obtained with a cross validation test based on the same database. This is due
to the fact that the test was performed only on two subjects displaying arbitrary facial
expressions.

Sequence name LDA NDA SVM
Data 1 43.4783% 34.7826% 60.8696%
Data 2 60.0000% 40.0000% 60.0000%
Data 3 61.1111% 55.5556% 66.6667%

Table 7. Recognition results for the dynamic classifier on arbitrary non aligned video sequences.

Sequence name LDA NDA SVM
Data 1 69.5652% 65.2174% 65.2174%
Data 2 80.0000% 80.0000% 60.0000%
Data 3 66.6667% 66.6667% 72.2222%

Table 8. Recognition results for the static classifier on the three arbitrary non aligned video
sequences. We considered only the keyframes.

5 Conclusions and Future Work

In this paper, we addressed the dynamic facial expression recognition in videos. We in-
troduced a view and texture independent scheme that exploits facial action parameters
estimated by an appearance-based 3D face tracker. We represented the universal expres-
sions by time series associated with learned facial expressions. Facial expressions are
recognized using several machine learning techniques. In order to show even better the



benefits of employing a dynamic classifier, we compared it with static classifiers, built
on half-apex, apex, and all frames of the corresponding facial expressions.

In the future, we want to further explore the results obtained in this paper by fo-
cusing on two directions: trying to discriminate between a fake and a genuine facial
expression, and solving simultaneously the alignment and recognition.

Acknowledgements

B. Raducanu is supported by MEC Grant TIN2006-15308-C02 and CONSOLIDER-
INGENIO 2010 (CSD2007-00018), Ministerio de Educación y Ciencia, Spain.

References

1. Lisetti, C., Schiano, D.: Automatic facial expression interpretation: Where HCI, AI and
cognitive science intersect. Pragmatics and Cognition 8 (2000) 185–235

2. Tian, Y., Kanade, T., Cohn, J.: Recognizing action units for facial expression analysis. IEEE
Trans. on Patt. Anal. and Machine Intell. 23 (2001) 97–115

3. Bartlett, M., Littlewort, G., Lainscsek, C., Fasel, I., Movellan, J.: Machine learning methods
for fully automatic recognition of facial expressions and facial actions. In: Proc. of IEEE.
Int’. Conf. on SMC. Volume I., The Hague, The Netherlands (2004) 592–597

4. Sung, J., Lee, S., Kim, D.: A real-time facial expression recognition using the staam. In:
Proc. of Int’l. Conf. on Pattern Recognition. Volume I., Hong Kong, PR China (2006) 275–
278

5. Shan, C., Gong, S., McOwan, P.: Dynamic facial expression recognition using a bayesian
temporal manifold model. In: Proc. of British Machine Vision Conference. Volume I., Edin-
burgh, UK (2006) 297–306

6. Yeasin, M., Bullot, B., Sharma, R.: Recognition of facial expressions and measurement of
levels of interest from video. IEEE Trans. on Multimedia 8 (2006) 500–508

7. Ambadar, Z., Schooler, J., Cohn, J.: Deciphering the enigmatic face: the importance of facial
dynamics to interpreting subtle facial expressions. Psychological Science 16 (2005) 403–410

8. Zhang, Y., Ji, Q.: Active and dynamic information fusion for facial expression understanding
from image sequences. 27 (2005) 699–714

9. Black, M., Yacoob, Y.: Recognizing facial expressions in images sequences using local
parameterized models of image motion. Int’l. Journal of Comp. Vision 25 (1997) 23–48

10. Pantic, M.: Affective computing. In Pagani, M.e.a., ed.: Encyclopedia of Multimedia Tech-
nology and Networking. Volume I. Idea Group Publishing (2005) 8–14

11. Breazeal, C.: Sociable machines: Expressive social exchange between humans and robots.
Ph.D. dissertation, Dept. Elect. Eng. & Comput. Sci., MIT, Cambridge, US (2000)

12. Dornaika, F., Davoine, F.: On appearance based face and facial action tracking. IEEE Trans.
on Circuits and Systems for Video Technology 16 (2006) 1107–1124

13. Ahlberg, J.: Model-based coding: extraction, coding and evaluation of face model parame-
ters. Ph.D. Thesis, Dept. of Elec. Eng., Linköping Univ., Sweden (2002)
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