
THEORETICAL ADVANCES

Online nonparametric discriminant analysis for incremental
subspace learning and recognition

B. Raducanu Æ J. Vitrià
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Abstract This paper presents a novel approach for online

subspace learning based on an incremental version of the

nonparametric discriminant analysis (NDA). For many

real-world applications (like the study of visual processes,

for instance) it is impossible to know beforehand the

number of total classes or the exact number of instances per

class. This motivated us to propose a new algorithm, in

which new samples can be added asynchronously, at dif-

ferent time stamps, as soon as they become available. The

proposed technique for NDA-eigenspace representation has

been used in pattern recognition applications, where clas-

sification of data has been performed based on the nearest

neighbor rule. Extensive experiments have been carried out

both in terms of classification accuracy and execution time.

On the one hand, the results show that the Incremental

NDA converges towards the classical NDA at the end of

the learning process and furthermore. On the other hand,

Incremental NDA is suitable to update a large knowledge

representation eigenspace in real-time. Finally, the use of

our method on a real-world application is presented.

Keywords Nonparametric discriminant analysis �
Subspace learning � Nearest neighbor classifier �
Pattern recognition

1 Introduction

Feature extraction and selection is a common pre-pro-

cessing step in any pattern classification problem. The

outcome of this process consists of obtaining either an

efficient data representation (through dimensionality

reduction, when class labels are ignored) or an effective

data discrimination (when besides the dimensionality

reduction, we are focused also on class labels) [13]. For the

latter, parametric and nonparametric forms have been

proposed [5]. One of the most popular techniques is the

linear discriminant analysis (LDA) (also known as Fischer

discriminant analysis [8, 9]). It has been successfully

applied for classification problems such as face recognition

[6, 20, 25], face authentication [11] or mobile robotics [23].

The shortcomings of parametric discriminant analysis

(PDA) are twofold. On the one hand, it assumes that the

samples present a specific distribution (such as normal

distribution for the case of LDA). On the other hand, and

also due to the former restriction, it fails to capture the

boundary class information. Because of these limitations,

methods based on parametric discriminant analysis show a

serious performance degeneration in real-world applica-

tions when data present multi-modal densities and classes

are not linearly separable.

Opposed to this case, nonparametric discriminant ana-

lysis [9] is more effective when dealing with general data

distributions and it captures properly the structural infor-

mation between class boundaries. Despite its undeniable

advantages, the nonparametric case has received little

attention within pattern recognition community. In [3], the

authors introduced a nonparametric form of the within-

class scatter matrix. This way, the matrix is normalized:

instead of assuming a gaussian distribution on the points of

the same class, it normalizes the distances between each
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point and their nearest neighbors, which has been shown to

benefit the nearest neighbor rule. In [15], simple (1D)

projections are combined such that together can provide

more separability on the whole data set. The nonparametric

nature of their approach is guaranteed by the fact that it

does not require any global statistic measure of the input

data. In [12], two kinds of nonparametric subspace analy-

sis, which complement each other, are proposed. First of

them is the principal nonparametric subspace analysis and

is used to extract nonparametric discriminating features

within the principal subspace of within-class scatter matrix.

The second one is called null-space nonparametric sub-

space analysis and is based on the null space of the within-

class scatter matrix.

Typical implementations for the above-mentioned

techniques assume that all the data is provided in advance

and learning is carried out in one step (for this reason, we

will refer as these as batch techniques). However, in real-

world applications, this is not the case, since it is unlikely

that all the data is available from the very beginning. For

this situation, a new learning strategy is required. One-pass

incremental algorithms, which performs sequentially the

update of the eigenspace representation, are the solution we

are seeking. So far, several approaches have been pro-

posed. In [1, 4, 10] the incremental principal component

analysis (IPCA) is introduced. The update of the covari-

ance matrix is achieved through a residual procedure. They

keep only the learned coefficients of the eigenspace and

discard the original data. In order to avoid the excessive

growth of the eigenspace dimensionality a new dimension

is added only when a relevant improvement in recon-

struction is detected. A completely different approach was

taken in [24]. They demonstrate that is possible to incre-

mentally build an eigenspace representation without the

need to compute the covariance matrix at all. On the other

hand, some incremental versions of ILDA have also been

proposed. In [7, 19], they embed LDA learning and clas-

sification into the incremental PCA framework. The

combined subspace consists of a truncated PCA subspace

and a few additional basis vectors that encompass the

discriminative information. As such it contains both suffi-

cient reconstructive information to enable incremental

learning, and the previously extracted discriminative

information to enable efficient classification as well. In

[18], an ILDA deriving discriminant eigenspace in a

streaming environment without updating the eigen-

decomposition is proposed. In change, they build the dis-

criminant eigenspace in terms of the incremental updating

of the between-class and within-class scatter matrices.

In this paper, we propose an incremental version for

NDA technique (referred for the rest of the paper as Inc-

NDA). More concrete, we introduce a sequential update of

the NDA-eigenspace representation. We start the procedure

with at least two classes, and the rest of the data (repre-

senting both new classes or new instances of the existing

classes) is added incrementally. To test the efficiency,

extensive experiments were carried out on some datasets of

the UCI database [2] as well as on some public face data-

bases: ORL-ATT [16], UMIST [21] and AR [14]. In terms

of classification accuracy, we prove that our approach

converges (at the end of the learning process) towards the

classical NDA (referred from now on as BatchNDA). In

terms of computational complexity, we show that IncNDA

is suitable for real-time applications.

Our choice for NDA was motivated by the fact that

being a nonparametric method, its application is not limited

to Gaussian distributions of data. Another advantage pro-

vided by this method is that it extracts those features which

work well with the nearest–neighbor classifier.

The paper is structured as follows: Sect. 2 contains a

brief review of the BatchNDA technique. Section 3 pre-

sents the newly introduced incremental version of it.

Section 4 contains some comparative experimental results

between BatchNDA and IncNDA. In Sect. 5, we present

the use of our approach on a real-world application.

Finally, in Sect. 6, we will draw our conclusions and

present future work directions.

2 Classical nonparametric discriminant analysis

(BatchNDA)

As introduced in [9], the within-class scatter matrix Sw and

between-class scatter matrix Sb are used as a measure of

inter-class separability. One of the most used criteria is the

one that maximize the following expression:

f ¼ trðS�1
w SbÞ ð1Þ

It has been shown that the M 9 D linear transform that

satisfies the Eq. 2 optimizes also the separability measure

f:

Ŵ ¼ arg max
WT SwW¼I

trðWT SbWÞ ð2Þ

This problem has an analytical solution and is mathema-

tically equivalent to the eigenvectors of the matrix Sw
-1Sb.

Let us assume that the data samples we have belong to N

classes Ci, i = 1,2, ... ,N. Each class Ci is formed by ni

samples Ci = {x1
i ,x2

i , ... ,xn_C_i
i }. By �xCi we will refer to the

mean vector of class Ci. According to [9], the Sw and Sb

scatter matrices are defined as follows:

Sw ¼
XCN

i¼1

X

j2Ci

xj � �xCi
� �

xj � �xCi
� �T ð3Þ
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Sb ¼
XCN

i¼1

XCN

j¼1;j 6¼i

XnCi

t¼1

WðCi;Cj; tÞðxi
t � lCj

ðxi
tÞÞðxi

t � lCj
ðxi

tÞÞ
T

ð4Þ

where lC_j(xt
i) is the local K-NN mean, defined by:

lCj
ðxi

tÞ ¼
1

k

Xk

p¼1

NNpðxi
t;CjÞ ð5Þ

where NNp(xt
i,Cj) is the pth nearest neighbor from vector

(xt
i) to the class Cj. The term W(Ci,Cj,t) which appears in

Eq. 4 is a weighting function whose role is to emphasize

the boundary class information. It is defined by the

following relation:

WðCi;Cj; tÞ ¼
minfdaðxi

t;NNkðxi
t;CiÞÞ; ðxi

t;NNkðxi
t;CjÞÞg

daðxi
t;NNkðxi

t;CiÞÞ þ daðxi
t;NNkðxi

t;CjÞÞ
ð6Þ

Here a is a control parameter that can be selected between

zero and infinity. The sample weights take values close to

0.5 on class boundaries and drop to zero as we move away.

The parameter a adjusts how fast this happens.

3 Incremental nonparametric discriminant analysis

(IncNDA)

The shortcoming of the BatchNDA described in the pre-

vious section, is that assumes that all the data are available

at the classification. This is not the case for real applica-

tions, when the data is coming over time, at random time

intervals, and the representation of the data must be

updated. Computing from the beginning the scatter matri-

ces, each time a new sample arrives, is not computationally

feasible, especially when the number of classes is very high

and the number of samples per class increases significantly.

For this reason, we propose the IncNDA technique, that

can process sequentially later-on added samples, without

the need for recalculating entirely the scatter matrices. In

order to describe the proposed algorithm, we assume that

we have computed the Sw and Sb scatter matrix from at

least two classes. Let us now consider that a new training

pattern y is presented to the algorithm. We distinguish

between two situations.

3.1 The new training pattern belongs to an existing

class

This situation is depicted in Fig. 1. Let us assume, for

instance, that the new pattern y (represented by the solid

black star) belongs to one of the existing classes CL (i.e.

yCL ; where 1 \ L \ N). The links from the figure represent

the old and new situations, with the classes before and after

the introduction of the new element. At the same, they also

indicate only those classes from the global Sb matrix that

will be affected by the update equations.

After the introduction of the new pattern, the formula

used to recursively calculate the Sb matrix is given by:

S0b ¼ Sb � Sin
b ðCLÞ þ Sin

b ðCL0Þ þ Sout
b ðyCLÞ ð7Þ

where CL0 ¼ CL

S
fyCLg; Sin

b ðCLÞ represents the

covariance matrix between the existing classes and

the class that is about to be changed, Sin
b ðCL0Þ represents

the covariance matrix between existing classes and the

updated class CL0 and by Sout
b ðyCLÞ we denote the

covariance matrix between the vector yCL and the other

classes. The equations to compute these matrices are given

by the following formulas:

Sin
b ðCLÞ ¼

XCN

j¼1;j 6¼L

XnCj

i¼1

WðCj;CL; iÞðxj
i � lCL

ðxj
iÞÞ

ðxj
i � lCL

ðxj
iÞÞ

T ð8Þ

Sout
b ðyCLÞ ¼

XCN

j¼1;j6¼L

ðyCL � lCj
ðyCLÞÞðyCL � lCj

ðyCLÞÞT ð9Þ

In the case of Sw

0
the update equation is the following:

S0w ¼
XCN

j¼1;j 6¼L

SwðCjÞ þ SwðCL0Þ ð10Þ

where

SwðCL0Þ ¼ SwðCLÞ þ
nCL

nCL
þ 1
ðy� �xCLÞðy� �xCLÞT ð11Þ

3.2 The new training pattern belongs to a new class

This situation is depicted in Fig. 2. Let us assume that new

pattern y (again, represented by the solid black star)

......

C1
C2 CL

L
in
b CS

'L
in
b CS

CL’

yCL

LCout
b yS

L
in
b CS

LCout
b yS

'L
in
b CS

Fig. 1 The new added pattern belongs to an existing class
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belongs to a new class CNþ1 ði.e. yCNþ1Þ: Exactly as in the

previous case, the links indicate only those classes from the

global Sb matrix that will be affected by the update

equations.

After the introduction of the new pattern, the formula

used to recursively calculate the Sb matrix is given by:

S0b ¼ Sb þ Sout
b ðCNþ1Þ þ Sin

b ðCNþ1Þ ð12Þ

where Sb
out(CN+1) and Sb

in(CN+1) are defined as follows:

Sout
b ðCNþ1Þ ¼

XCN

j¼1

ðyCNþ1 � lCj
ðyCNþ1ÞÞðyCNþ1 � lCj

ðyCNþ1ÞÞT

ð13Þ

Sin
b ðCNþ1Þ

¼
XCN

j¼1

XnCj

i¼1

WðCj;CNþ1; iÞðxj
i� lCNþ1

ðxj
iÞÞðx

j
i� lCNþ1

ðxj
iÞÞ

T

Regarding, the new Sw

0
matrix, this one remains unchanged,

i.e:

S0w ¼ Sw ð14Þ

4 Experimental results

To test the efficiency of IncNDA, we applied the learned

eigenspace representation for the pattern classification

problem. The training samples presented up to a given

moment are encoded through their projection on the NDA-

eigenspace. When a test sample arrives, its identity is

claimed based on the nearest–neighbor classifier: we seek

the closest neighbor (in terms of Euclidean distance) of the

projected test sample on the IncNDA eigenspace. As a

measure of classification accuracy, we compare the class

label of the found neighbor with the class label of the test

sample. Extensive experiments in terms of classification

accuracy have been carried out on some datasets from the

UCI database and on some public face databases, such as

the ORL-ATT, UMIST and AR. On the face databases,

given the high-dimensionality of the data and the large

number of classes, we also tested the computation com-

plexity (in terms of execution time).

As a general framework for our experiments, we adop-

ted the so-called ‘tenfold cross-validation’ procedure, a

very popular technique in the pattern recognition literature.

We used 90% of the data for training and the rest for test

(as the name suggests, this is repeated ten times with data

selected randomly). On its turn, the training dataset was

also divided in two parts: usually 15–20% of the data

(representing two or more classes) are used to initialize the

IncNDA1. For each experiment run, we calculated also the

95% confidence interval (that is why the data is represented

as mean ± variance) according to the Eq. 15.

var ¼ 1:96� stdðrecog rateÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max iter
p ð15Þ

where ‘std’ stands for the standard deviation of the rec-

ognition rate vector and max_iter = 10.

4.1 UCI database

The IncNDA was tested on some subsets (see Table 1)

from the UCI Machine Learning Repository. The idea of

the experiments is to show that the performance of Inc-

NDA is similar to the one achieved using BatchNDA both

in case of datasets with a small number classes and a few

samples per class as well as with a great number of classes

and many samples per class. A description of the used

datasets is given in Table 1. The column ‘NDA dim’ refers

to the dimensionality of the NDA eigenspace used in our

experiments.

......

CL=N+1

C2

C1

yCL

L
in
b CS

L
in
b CS

LCout
b yS

LCout
b yS

Fig. 2 The new added pattern belongs to a new class

Table 1 Overview of evaluated UCI datasets: S1 = sonar, S2 = liver,

S3 = iris, S4 = wine, S5 = vehicle, S6 = glass, S7 = segmentation,

S8 = vowel

Idx No. classes Original dim NDA dim No. samples

S1 2 60 6 208

S2 2 6 3 345

S3 3 4 2 150

S4 3 13 7 178

S5 4 18 9 846

S6 6 9 6 214

S7 7 19 6 2,310

S8 11 10 7 528

1 In order to overcome the singularity problem, a PCA has been

applied beforehand.
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The rest of the samples are added randomly, in a

sequential order. The IncNDA eigenspace is updated after

each sample is presented. We compared the results

obtained using the IncNDA (in terms of classification

accuracy and variance) with the ones obtained using

BatchNDA. The results shown in Table 2 represent the

average recognition rate and the confidence interval. We

repeated the experiments, considering different number of

neighbors in computing the Eq. 4: 1, 3, 5 and 7. In case of

IncNDA algorithm, mean and variance value correspond to

the last ‘learning stage’. It can be appreciated that in all

cases, these values, are very close to the ones corre-

sponding to the BatchNDA, which demonstrates the

convergence of our algorithm.

The best results in Table 2 are marked in bold. It shows

that for datasets with a small number of classes or small

number of samples (especially sets S1–S6), better classi-

fication results are obtained when using only one neighbor

in computing the Eq. 4. It is the case that for these classes

we also have a larger confidence interval. On the other

hand, when we have datasets with more classes and more

samples per class (dataset S7–S8), more stable results (also

in terms of a reduced confidence interval) are achieved

when we use more neighbors (five and seven, respectively)

in computing the Eq. 4.

4.2 Face databases

We also tested the performance of our algorithm on some

face databases: ORL-ATT, UMIST and AR2. The decision

for choosing these databases was motivated by the fact that

they complement very well with each other in the sense

they show a wide variety of conditions: ORL-ATT con-

tains frontal or slightly tilted face images, under small

variations in illumination conditions; UMIST contains face

images taken in very different head poses (ranging from

frontal to profile), but with constant illumination; and

finally, AR database which shows frontal face images

under very significant changes in illumination, facial

expression and occlusions. The characteristics of these

databases are summarized in Table 33.

The recognition rates are presented in Table 4. Exactly

as in the case of UCI datasets, we repeated the experiments

considering different numbers of neighbors (1, 3, 5, 7)

when computing the Eq. 4. The best results are marked in

bold characters. It can be noticed that while the
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classification accuracy remains unchanged for the first two

databases, for AR database in change, the classification

accuracy increases with the number of nearest neighbors

used to calculate the Eq. 4.

Additionally, we also give a graphical interpretation of

some aspects related to the incremental learning process.

For this purpose, we introduce the term ‘learning stage’ to

refer to the number of samples from the training set that

have been added up to a certain moment. In Fig. 3 above

we depicted the evolution of the learning process after each

update (a new sample added) of the initial IncNDA

eigenspace. In Fig. 3 below, we depicted the percentage of

incremental training samples introduced so far (the stars

represent the moment when a new class has been added).

The graph falls a couple of times, because the percentage

of total data is actually computed relative to the number of

classes presented up to a given moment, not with the total

number of classes. For this reason, this graphic should be

read in concordance with the one above. The plots corre-

spond to the ORL-ATT face database.

In Fig. 4, we show that indeed the IncNDA is con-

verging (at the end of the learning process) towards

BatchNDA. Both graphics were plotted after averaging the

results obtained from a tenfold cross-validation procedure

(the training samples were randomly chosen in each run).

The oscillation of the IncNDA has two explanations: new

classes are presented one after the other, at short intervals

and there are few instances available for each class. The

plot corresponds also to the ORL-ATT face database.

In terms of computational complexity, the most ‘criti-

cal’ aspect (time consuming) is represented by the

calculation of the Sb matrix (this, on its turn, is related to

finding the nearest neighbor). In order to show the effi-

ciency of our proposed technique, we measured the time

needed to update Sb and compared it with time needed by

the classical NDA to recalculate Sb each time from the

beginning. We sequentially updated the Sb matrix with

about 2,200 samples (presented randomly) of dimension-

ality 100 (corresponding to the projection of an image on

the NDA eigenspace). The samples corresponding to the

AR face database are divided in 85 classes4. The results are

Table 3 Overview of the face databases: ORL-ATT, UMIST, AR

Idx No. classes Face size

(pixels)

NDA

dim

No. samples

ORL-ATT 40 56 9 46 100 400

UMIST 20 56 9 46 100 564

AR 85 36 9 33 100 1,190
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4 For this experiment, in order to have more data, we considered also

the images affected by occlusions.
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presented in Table 5. The values represent ‘seconds’ and

were obtained considering one neighbor in calculating the

Sb matrix (according to Eq. 4). Due to very significative

differences between the results of the two methods (two

orders of magnitude), a graphical representation would not

have been informative. For visualization purposes, we

present only the time computed every 200 samples. The

experiment was done in MATLAB on a 3 GHz Pentium IV

computer, with 1 GB of memory.

From the Table 5, it can be appreciated that the time

needed to update the Sb matrix using the incremental

approach is sensibly much lower than using the classical

one. In summary, this makes our approach suitable for

applications which need real-time update (for instance, for

classification from video or live streams).

4.3 Discussion

From the experimental results presented so far, it can be

shown that incremental techniques are approximate ones,

converging in the end towards the global solution given by

their classical counterparts (this is also underlined in all the

papers mentioned in Sect. 1). For instance, in the case of

incremental PCA, based on the incremental update of the

eigenvectors, a very rigorous mathematical proof about the

convergence is given in [17]. For IncNDA, the reason for

obtaining an approximate result can be explained by the

order in which the samples are introduced. This factor, on

its turn, has impact on the estimation of the nearest

neighbor(s), which in the end is reflected in the computa-

tion of Sb matrix.

Another aspect that is related with the algorithm per-

formance is represented by the memory usage. The

memory usage itself should not be a problem (remember

that we work with the projected version of our data, not

with the original one), but the number of samples and the

number of classes affects the execution time needed to

update the NDA eigenspace. However, the experiments

presented in this paper are limited and such a question does

not represent a critical issue. It would be very interesting to

consider the case of much larger datasets (with thousands

of samples per class). With our incremental approach we

can always keep an optimal number of samples per class

and this way we can guarantee the real-time character of

IncNDA. When the number of samples increases consi-

derably, we can figure out some criteria upon which we can

fix an upper-limit to them, without affecting the system’s

performance. This implies to replace some old samples by

new ones. Such criteria would require to make some

Fig. 3 Learning process: evolution of the number of classes function

of learning stages (above) and the percentage of the training data

function of learning stages (below)
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Fig. 4 IncNDA versus BatchNDA curves. IncNDA converges

towards BatchNDA at the end of the learning process
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modifications to our algorithm. Thus, we could think of a

‘weight vector’ associated with the data which would keep

information about the time-stamp of the data was presented

and how many times a sample has been selected by the

nearest–neighbor rule. In this way, the criteria referred

above could be stated as removing the oldest elements or

removing the less relevant ones. These aspects are cur-

rently under investigation and will be the object of future

work.

5 Face recognition in a real scenario

Next, we will discuss the results obtained applying Inc-

NDA to a custom face database. The image acquisition

phase was extended over several weeks and was performed

in an automatic manner. For this purpose, we put the

camera in an open space and snapshots were taken each

time a person was passing in front of it. The face was

automatically extracted from the image using the face

detector based on [22]. We did not impose any restrictions

regarding ambient conditions. Figure 5 shows a snapshot

of the experimental setup.

Overall, our database consists of 6,882 images of 51

people (both male and female)5. Since no arrangements

were previously made, some classes contain only a handful

of images (as much as 20), meanwhile, the largest of them

contains over 400. Segmented faces were normalized at a

standard size of 48 9 48 pixels. Because of the particular

acquisition process, face images reflect the changes in

appearance suffered by subjects over time. Furthermore,

since our application was thought to run in real-time (and

to give it a more ad hoc flavor), we did not perform any

pre-processing step to the face images before passing them

to the classifier. That is why the faces used in the experi-

ment show a certain degree of variation in pose and size

and are not constrained to be exactly frontal. For the same

reason, face images used to be a little wider than the face

region itself. Some samples of these face images are pre-

sented in Fig. 6.

To test the IncNDA technique, we used 90% of the

images (i.e. about 6,000) as training set and the remaining

ones as test set. From the training set, we used 15% of the

images (belonging to five classes and representing 900

samples) to build the initial IncNDA eigenspace. In order

to overcome the singularity problem, a PCA step was

performed beforehand. This way, data dimensionality was

downsized from 2,304 to 60. The remaining samples

(5,100) from the training set were added later in a

sequential order (the samples were drawn randomly) and

this way the NDA-eigenspace was updated.

In Fig. 7, we show that indeed the IncNDA is con-

verging (at the end of the learning process) towards

BatchNDA. The common recognition rate achieved is

around 95%, which in our opinion is a very good result,

taking into account the difficulty of the database. Both

graphics were plotted after averaging the results obtained

from a tenfold cross-validation procedure (the training

samples were chosen in a random manner in each run). We

repeated the experiments considering different number of

Fig. 5 Snapshot of the experimental setup

Table 5 Comparison between IncNDA and BatchNDA in terms of computational complexity: execution time tocalculate the Sb matrix (in

seconds)

Method Number of samples

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200

BatchNDA 0.46 1.51 3.17 4.53 6.57 8.54 10.65 13.03 16.09 18.73 22.14

IncNDA 0.03 0.04 0.07 0.09 0.12 0.15 0.17 0.20 0.21 0.26 0.29

5 In the current study, we put the accent in having a reasonable

number of classes with many instances rather having an excessive

number of classes with very few instances.
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neighbors (1, 3, 5, 7) when computing the Eq. 4), but the

best results obtained correspond to a number of neighbors

equal to 3. The Fig. 7 corresponds to this case. The oscil-

lation of the IncNDA in its early stages corresponds to the

situation when a significant number of new classes have

been added at very short intervals and only a very few

samples of those classes were available. After some

learning stages, when enough samples for each class

became available, we can appreciate that the evolution

curve regulates its tendency and becomes constantly

ascending.

Some instances of misclassified faces are represented in

Fig. 8. From the experiments performed, we arrive at the

conclusion that misclassification occurs in three situations:

when there are too few face instances per class, when there

are too few instances of a particular head pose/illumination

conditions and when the image presents a high level of

distortion (the ‘blurring’ effect due to person movement).

6 Conclusions and future work

For some real-world applications, one-step (batch mode)

learning techniques prove to be inadequate. For this reason,

we proposed in this paper an incremental version of the

NDA. We start to build the NDA-eigenspace representation

in an incremental way, by adding sequentially new data.

This new approach has been applied to a classification

problem based on the nearest–neighbor rule. Extensive

experiments were performed on some datasets from the

UCI database as well as on some public face databases:

ORL-ATT, UMIST and AR. The experiments were inten-

ded to assess the classification accuracy (it converges

towards BatchNDA) and computational complexity (it is

able to update the NDA eigenspace in real-time) of the

proposed method. Finally, we presented the use of our

approach in a real-world scenario.

In the future, we plan to extend the current approach, by

allowing the update of the NDA-eigenspace in terms of

data chunk. Another research direction is represented by

the analysis of decremental learning, which emulates the

‘forgetting’ process in humans: those patterns which

became irrelevant are removed from the knowledge rep-

resentation depending on some criteria are replaced with

new ones. This is necessary in order to avoid an excessive

increase of the data, which could affect negatively the real-

time running of the algorithm.
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Fig. 8 Some instances of misclassified faces

Fig. 6 Samples of face images from CVC custom database showing

a certain degree of variation in illumination, pose and size
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