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Non-linear dimensionality reduction techniques are affected by two critical aspects: (i) the design of the
adjacency graphs, and (ii) the embedding of new test data—the out-of-sample problem. For the first
aspect, the proposed solutions, in general, were heuristically driven. For the second aspect, the difficulty
resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past
works addressing these two aspects were heavily parametric in the sense that the optimal performance
is only achieved for a suitable parameter choice that should be known in advance.

In this paper, we demonstrate that the sparse representation theory not only serves for automatic graph
construction as shown in recent works, but also represents an accurate alternative for out-of-sample
embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face
recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are
conducted using the K-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on six
public face datasets. The experimental results show that the proposed model is able to achieve high
categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in
batch modes.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Manifold learning refers to the problem of recovering the
structure of a manifold from a set of unordered sample data.
Manifold learning is often equated with dimensionality reduction,
where the goal is to find an embedding or ‘unrolling’ of the
manifold into a lower dimensional space such as certain relation-
ships between samples are preserved. Such embeddings are
typically used for visualization. In recent years, a new family of
non-linear dimensionality reduction techniques for manifold
learning has emerged. The most known are Kernel Principal
Component Analysis (KPCA) [1], Locally Linear Embedding (LLE)
[2,3], Isomap [4], Supervised Isomap [5], Laplacian Eigenmaps (LE)
[6,7]. This family of non-linear embedding techniques appeared as
an alternative to their linear counterparts which suffer severe
limitation when dealing with real-world data: (i) they assume that
the data lie in an Euclidean space and (ii) they may fail to get a
faithful representation of data distribution when the number of
samples is too small. On the other hand, the non-linear
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dimensionality techniques are able to discover the intrinsic data
structure by exploiting the local topology. In general, they attempt
to optimally preserve the local geometry around each data sample
while using the rest of the samples to preserve the global structure
of the data.

The non-linear methods such as Locally Linear Embedding (LLE),
Laplacian Eigenmaps, Isomap, Hessian LLE (hLLE) [8] focus on preser-
ving the local structure of data. LLE formulates the manifold learning
problem as a neighborhood-preserving embedding, which learns
the global structure by exploiting the local linear reconstructions.
It estimates the reconstruction coefficients by minimizing the recon-
struction error of the set of all local neighborhoods in the dataset.
Isomap extends the classical Multidimensional Scaling (MDS) [9] by
computing the pairwise distances in the geodesic space of the
manifold. Essentially, Isomap attempts to preserve geodesic distances
when data are embedded in the new low dimensional space. Based on
the spectral decomposition of the Laplacian of a graph, Laplacian
Eigenmaps actually try to find Laplacian eigenfunction on the mani-
fold. Maximum Variance Unfolding (MVU) [10] is a global algorithm
for non-linear dimensionality reduction, in which all the data pairs,
nearby and far, are considered. MVU attempts to ‘unfold’ a dataset by
pulling the input patterns as far apart as possible subject to constraints
that distances and angles between neighboring points are strictly
preserved.
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The main issues of the non-linear methods are (1) the quality of
embedded space is very sensitive to the choice of free parameters
used in the data graph construction [11,12], and (2) they do not
provide an explicit mapping function between low and high
dimensional spaces [13,14]. Such function is essential for ensuring
the continuity of low dimensional representation and projecting
data between spaces. Many existing manifold learning techniques
do not naturally contain an out-of-sample extension, so research
has been undertaken to find ways of extending manifold learning
techniques to handle new samples. The out-of-sample extension
problem has not received much attention by researchers since it
was considered a pure non-linear regression problem [15,16].
Therefore, the out-of-sample problem has been addressed quite
satisfactorily by applying Radial Basis Function networks in order
to approximate the optimal mapping function [15]. However, the
quality of Radial Basis Function networks relies on the careful
selection of a few parameters which are chosen empirically
[17,18]. In [19], the author presented an algorithm, Locally
Smooth Manifold Learning, for learning the structure of a manifold
in terms of tangent vectors. Rather than pose manifold learning
as the problem of recovering an embedding, they posed the
problem in terms of learning a warping function for traversing
the manifold using the learned tangent vectors. Smoothness
assumptions on this warp allowed the method generalize to
unseen data.

In [20], the authors cast MDS, ISOMAP, LLE, and LE in a common
framework, in which these methods are seen as learning eigen-
functions of a kernel. The authors try to generalize the dimension-
ality reduction results for the unseen data samples. In [21], the
author proposes a method based on probabilistic mixtures of
factor analyzers to (1) model the density of images sampled from
such manifolds and (2) recover global parameterizations of the
manifold. A globally non-linear probabilistic two-way mapping
between coordinates on the manifold and images is estimated by
combining several, locally valid, linear mappings. In [22], the
authors propose a novel solution which involves approximating
the kernel eigenfunction using Gaussian basis functions. They
also show how the width of the Gaussian can be tuned to
achieve extrapolation. Their method was applied to Maximum
Variance Unfolding (MVU) method [10]. In [23], the proposed
method works by learning the transformation that maps
the neighborhood of the unlearnt sample from the high to the
low-dimensional space. This transformation is then applied to the
new sample to obtain an estimation of its low-dimensional
embedding.

In this paper, we address the out-of-sample extension problem.We
adopt the sparse representation approach as an optimal solution to the
‘out-of-sample’ problem. The sparse representation was recently used
as an effective alternative to the parametric construction of the
adjacency graph [12]. Without any loss of generality, we chose the
Laplacian Eigenmaps as one of the non-linear dimensionality reduc-
tion techniques to test our method. We present a generalized out-of-
sample extension solution using the recent findings in sparse coding
theory. Unlike existing approaches we do not require information to
be retained from the learning process, such as the pairwise distance
matrix or the resultant eigenvectors, we simply learn the mapping
from the original high-dimensional data and its low-dimensional
counterpart. Although the proposed method integrates the locality
preserving principle in its derivation, it is intended to be independent
of any specific manifold learning algorithm.

The paper is structured as follows. In Section 2, we briefly
review the Laplacian Eigenmaps as well as the L1 graph construc-
tion. In Section 3, we introduce our proposed approach for the out-
of-sample problem based on sparse representation. Section 4
contains the experimental results performed on six face datasets.
We evaluate the performance of the proposed out-of-sample
method for the face recognition problem. Finally, in Section 5 we
present our conclusions.
2. Background

2.1. Review of Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality
reduction technique that aims to preserve the local structure of
data [6]. Using the notion of the Laplacian of a graph, this non-
supervised algorithm computes a low-dimensional representation
of the dataset by optimally preserving local neighborhood infor-
mation in a certain sense. We assume that we have a set of N
samples xif gNi ¼ 1⊂R

D. The original LE starts with building a graph
on the data samples. In this graph, the nodes represent the data
samples and the edges quantify the similarity among pairs of
samples. There are several ways for setting the edges of the graph.
For instance, the most common strategy is to use a K-nearest-
neighbor or ϵ�ball graph, or a full mesh (all pairs are connected).
Once the edges are set, one can weigh each edge xi∼xj by a
symmetric affinity function Wij ¼ Kðxi;xjÞ, typically Gaussian:

Wij ¼ exp −
‖xi−xj‖2

β

 !
ð1Þ

where β is a suitable positive scalar. It is usually set to the average
of squared distances between all pairs.

LE seeks latent points yi
� �N

i ¼ 1⊂R
L that minimize 1

2∑i;j‖yi−yj‖2Wij,
which discourages placing far apart latent points that correspond to
similar observed points. If W≡Wij denotes the symmetric affinity
matrix and D is the diagonal weight matrix, whose entries are
column (or row, since W is symmetric) sums of W, then the
Laplacian matrix is given L¼D−W. The objective function can also
be written as

1
2
∑
i;j
‖yi−yj‖2Wij ¼ trðZTLZÞ ð2Þ

where ZT ¼ Y¼ ½y1;…; yN� is the L� N matrix of embedded data and
trð � Þ denotes the trace of a matrix. The ith row of the matrix Z
provides the vector yi—the embedding coordinates of the sample xi.

The matrix Z (or equivalently YÞ is the solution of the optimiza-
tion problem:

min
Z

trðZTLZÞ s:t: ZTDZ¼ I; ZTL1¼ 0 ð3Þ

where I is the identity matrix and 1¼ ð1;…;1ÞT . The first con-
straint eliminates the trivial solution Z¼ 0 (by setting an arbitrary
scale) and the second constraint eliminates the trivial solution 1
(all samples are mapped to the same point). Standard methods
show that the embedding matrix is provided by the matrix of
eigenvectors corresponding to the smallest eigenvalues of the
generalized eigenvector problem:

Lz¼ λDz ð4Þ

Let the column vectors z0;…; zN−1 be the solutions of (4), ordered
according to their eigenvalues, λ0 ¼ 0≤λ1 ≤⋯≤λN−1. The eigenvector
corresponding to eigenvalue 0 is left out and only the next
eigenvectors for embedding are used. The embedding of the original
samples is given by the row vectors of the matrix Z, that is,
Y¼ ½y1; y2;…; yN� ¼ ZT .

xi⟶yi ¼ ðz1ðiÞ;…; zLðiÞÞT ð5Þ

where LoN is the dimension of the new space.
From Eq. (4), we can observe that the dimensionality of the

subspace obtained by LE is limited by the number of samples N.
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2.2. Review of L1 graph construction

In traditional graph construction process, the graph adjacency
structure and the graph weights are derived separately (previous
section). In [12], the authors argue that the graph adjacency
structure and the graph weights are interrelated and should not
be separated. Thus it is desired to develop a procedure which can
simultaneously carry out these two tasks within one step. Indeed,
many experiments show that the performance of classification
tasks in the embedded space of LE obtained with a traditional
graph construction scheme can highly depend on the choice of the
neighborhood size in the constructed graph [24–26]. Choosing the
ideal size in advance can be a very difficult task.

The basic idea of [12] is to simultaneously estimate the graph
adjacency structure and graph weights. To this end, every sample
image is coded as a sparse linear combination of the rest of
the training samples [27,28]. This is carried out by implementing
an L1 minimization process to obtain the sparse representation of
that sample as a linear combination of the remaining training
samples. The obtained sparse coefficients will reflect the relation
among samples [29,30], and hence they will provide the graph
adjacency structure as well as the weights of its edges where the
absolute value of a coefficient can be considered as the edge
weight.
3. Proposed out-of-sample embedding

In this section, we show that the theory of sparse representa-
tion (coding) can be used for solving the out-of-sample extension
Fig. 2. Some samples

Fig. 1. The out-of-sample problem consists in finding the embedding coordinate od
a newly unseen sample.
problem without relying on traditional heuristics that are usually
parametric. For a case study, we use the Laplacian Eigenmaps for
the non-linear embedding. The reason of our choice is motivated
by the fact that this transform is widely used by the machine
learning community for spectral clustering [31–33].
3.1. Projection of new samples

Assume that we have obtained an LE embedding
Ys ¼ ðy1;…; yNÞ of seen samples Xs ¼ ðx1;…; xNÞ and consider an
unseen sample (out-of-sample observation) in observed space
xNþ1 (see Fig. 1). The natural way to embed the new sample would
be to recompute the whole embedding ðYs; yNþ1Þ for ðXs; xNþ1Þ
using Eq. (3). This is computationally costly and does not lead to
define a mapping for new samples; we seek a way of keeping the
old embedding fixed and embed new sample based on that. Then,
the next step is to recompute the embedding while keeping the
old embedded samples fixed and impose that the embedding of
the new sample (vector yNþ1) should minimize the following
target function:

∑
N

i ¼ 1
‖yNþ1−yi‖2W ðNþ1Þi ð6Þ

¼ ∑
N

i ¼ 1
ðyNþ1−yiÞT ðyNþ1−yiÞW ðNþ1Þi ð7Þ

The above should correspond to a minimum, and thus the
derivative with respect to yNþ1 of the target function should
disappear:

2 ∑
N

i ¼ 1
ðyNþ1−yiÞW ðNþ1Þi ¼ 0 ð8Þ

From the above, we can conclude that the embedding yNþ1 is
given by

yNþ1 ¼
∑N

i ¼ 1W ðNþ1Þiyi
∑N

i ¼ 1W ðNþ1Þi
ð9Þ

The above formula stipulates that the embedding of an unseen
sample is simply the linear combination of all fixed embedded
samples where the linear coefficients are set to the similarities
between the unseen sample and the existing samples.

Whenever W ðNþ1Þi is set to a kernel function (i.e.,
W ðNþ1Þi ¼ KðxNþ1; xiÞ, Eq. (9) is equivalent to the Laplacian Eigen-
maps Latent Variable Model (LELVM) introduced in [34].
in Yale dataset.
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3.2. Computation of the similarity coefficients
via sparse representation

The problem of out-of-sample embedding is reduced to the
estimation of the similarities W ðNþ1Þi; i¼ 1;…;N. In [34], these
W ðNþ1Þi were computed using a K nearest neighbor and a heat kernel.
However, it is well known that the neighborhood size as well as the
kernel parameter may affect the embedding process. We will bypass
this limitation by using the coding provided by sparse representation.

We apply the sparse coding/representation principle for comput-
ing the set of coefficients W ðNþ1Þi [30,35]. Let the vector a¼
ðW ðNþ1Þ1;W ðNþ1Þ2;…;W ðNþ1ÞNÞT . Thus, the objective is to compute
the vector a given the unseen sample xNþ1 and the training data X.
Fig. 3. Some samples

Fig. 4. Some samples

Fig. 5. Some samples in e
Based on a linear coding, one can assume that the following equation
is approximately satisfied:

xNþ1 ¼ ∑
N

i ¼ 1
aixi ¼Xa

The sparse solution is given by solving the following L1
minimization problem:

min
a

‖a‖L1 s:t: xNþ1 ¼Xa ð10Þ

As suggested in [28], in many practical cases, data are corrupted
by large errors. Thus, the above formulation should be modified.
in ORL dataset.

in UMIST dataset.

xtended Yale dataset.



Fig. 6. Some samples in PF01 dataset.

Fig. 7. Some samples in PIE dataset.
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The unseen sample can be given by

xNþ1 ¼ ∑
N

i ¼ 1
aixi þ e¼Xaþ e ð11Þ

where e is a vector of errors—a fraction of its entries are nonzero.
The nonzero entries of e model by which elements or pixels in
xNþ1 are corrupted or occluded. The locations of corruption can
differ for different test samples and are not known in advance. The
errors may have arbitrary magnitude and therefore cannot be
ignored or treated with techniques designed for small noise such
as the one given in Eq. (10).

The goal is to minimize the L1 norm of the vector a as well as
that of e:

min
a;e

ð‖a‖L1 þ ‖e‖L1 Þ s:t: xNþ1 ¼Xaþ e ð12Þ

Let a′ denote the vector a′¼ ðaT ; eT ÞT and I denote the D� D
identity matrix, then the objective function (12) can be written as

min‖a′‖L1 s:t: ½X I�a′¼ xNþ1 ð13Þ
Moreover, one can assume that the corrupting error e has a

sparse representation with respect to some basis Ae. That is,
e¼Aeu0 for some sparse vector u0. Here, we have chosen the
special case Ae ¼ I as e is assumed to be sparse with respect to the
natural pixel coordinates. If the error e is known to be more sparse
with respect to another basis, e.g., Fourier or Haar, one can simply
replace the identity matrix by another matrix Ae.

Although no sparse priors are imposed, the sparse property of
the coefficient vector a is naturally generated by the L1 optimiza-
tion. The optimization of (13) is carried out using the MATLAB
package provided by [36].

Once the vector ðaT ; eT ÞT is computed, the similarity coefficients
W ðNþ1Þi are set to

W ðNþ1Þi ¼ jaij; i¼ 1;…;N

3.3. Advantages of the proposed out-of-sample embedding scheme

Although our proposed out-of-sample formula (Eq. (9)) is
similar to that of the Latent Variable Model [34], it has two
interesting differences and advantages:
1.
 For the LVM scheme, the neighborhood size must be set
manually, and the optimal setting may be different for different
datasets. In our scheme, the computation of similarity
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coefficients adapts to the dataset through the use of sparse
coding. No parameter is required.
2.
 There have been many ways to compute the similarity coefficients
and the most popular one among them is the typical heat kernel
(Gaussian weighting function) described in Eq. (1). However, the
Gaussian aperture may affect the final classification results sig-
nificantly, and how to optimally determine this parameter is still
an open problem. Our scheme get rid of this since we exploit the
sparseness property of the deduced coefficients in order to express
both adjacency structure and the associated weights without any
predefined parameter.
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Fig. 8. Experimental results on all 6 datasets for the
4. Performance evaluation

To validate the effectiveness of our proposed approach, we
applied it to the face recognition problem. The experimental results
are reported in terms of recognition accuracy and a similarity
measure of the embedding (‘out-of-sample’ vs. ‘batch-mode’).

4.1. Datasets

In our experiments, we considered six public face datasets,
which are characterized by a large variation in face appearance.
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30–70 modality. The used classifier was 1 NN.
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Fig. 9. Experimental results on all 6 datasets for the 70–30 modality. The used classifier was 1 NN.
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1.
 Yale1: The Yale face dataset contains 165 images of 15 persons.
Each individual has 11 images. The images demonstrate varia-
tions in lighting condition, facial expression. Each image is
resized to 32�32 pixels (Fig. 2).
2.
 ORL2: There are 10 images for each of the 40 human subjects,
which were taken at different times, varying lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial
details (glasses/no glasses). The images were taken with a
1 http://see.xidian.edu.cn/vipsl/database_Face.html.
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
tolerance for some tilting and rotation of the face up to 201
(Fig. 3).
3.
 UMIST3: The UMIST dataset contains 575 gray images of 20
different people. The images depict variations in head pose
(Fig. 4).
4.
 Extended Yale—part B4: It contains 16 128 images of 28 human
subjects under 9 poses and 64 illumination conditions. In our
3 http://www.shef.ac.uk/eee/research/vie/research/face.html.
4 http://vision.ucsd.edu/� leekc/ExtYaleDatabase/ExtYaleB.html.

http://see.xidian.edu.cn/vipsl/database_Face.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.shef.ac.uk/eee/research/vie/research/face.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html


Table 1
Maximum average recognition rate using the nearest neighbor classifier.

Dataset Method

Sparse rep. (%) LVM (%) Lineariz. (%) RBF (%)

ϵ¼ 3 ϵ¼ 5 ϵ¼ 7

30–70%
Yale 72.36 51.84 41.66 33.15 65.43 64.38
ORL 69.25 51.35 37.71 30.25 41.71 43.00
UMIST 87.56 69.72 60.49 52.65 58.31 60.76
Ext. Yale 87.29 46.66 31.33 24.25 49.90 81.45
PF01 45.00 19.50 13.41 10.36 10.22 34.58
PIE 55.79 19.86 13.75 11.18 14.58 44.35

50–50%
Yale 81.85 70.12 61.60 52.09 68.14 67.90
ORL 82.50 72.05 60.35 49.25 46.38 52.44
UMIST 95.03 85.90 76.04 70.03 76.25 83.61
Ext. Yale 91.46 61.09 46.85 39.03 53.14 89.61
PF01 52.65 27.32 20.40 20.23 8.27 42.10
PIE 66.20 27.47 20.57 16.79 12.26 56.24

70–30%
Yale 86.73 77.15 73.87 67.95 75.51 75.51
ORL 88.75 82.16 73.66 65.41 53.25 68.66
UMIST 97.74 93.06 85.20 79.94 80.52 91.79
Ext. Yale 92.12 70.97 58.36 48.74 57.14 92.49
PF01 54.41 33.99 27.06 21.52 8.66 47.85
PIE 72.82 35.39 26.78 21.83 13.42 64.03

Table 2
Maximum average recognition rate using the SVM classifier.

Dataset Method

Sparse rep. (%) LVM (%) Lineariz. (%) RBF (%)

ϵ¼ 3 ϵ¼ 5 ϵ¼ 7

30–70%
Yale 72.10 55.00 44.00 36.30 78.50 78.10
ORL 65.50 51.90 40.80 31.50 48.70 49.50
UMIST 86.30 74.60 63.10 55.00 57.20 61.40
Ext. Yale 89.57 54.00 45.57 37.57 83.28 82.14
PF01 44.42 20.00 14.71 10.42 24.57 50.28
PIE 60.28 22.57 17.71 12.85 43.14 59.71

50–50%
Yale 81.00 71.70 65.80 56.20 87.20 87.40
ORL 82.60 75.40 64.00 52.80 53.70 62.60
UMIST 94.40 89.00 80.80 72.90 79.50 86.90
Ext. Yale 94.14 68.85 63.00 56.42 88.28 88.00
PF01 53.42 28.71 23.00 17.42 20.14 62.28
PIE 73.28 31.57 23.57 18.00 38.57 74.28

70–30%
Yale 87.20 78.60 78.00 72.80 86.60 87.40
ORL 90.50 85.60 77.00 68.00 62.80 75.70
UMIST 97.40 93.20 88.00 81.70 88.20 94.70
Ext. Yale 95.71 78.57 75.00 69.57 90.57 91.00
PF01 60.28 35.85 29.14 22.71 15.71 72.14
PIE 80.71 40.57 30.14 23.71 36.71 80.71
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study, a subset of 1800 images has been used. Fig. 5 shows
some face samples in the extended Yale Face Database B.
5.
 PF01: It contains the true-color face images of 103 people,
53 men and 50 women, representing 17 different images
(1 normal face, 4 illumination variations, 8 pose variations,
4 expression variations) per person. All the people in the
dataset are Asians. There are three kinds of systematic varia-
tions, such as illumination, pose, and expression variations in
the dataset (Fig. 6).
6.
 PIE5: We use a reduced dataset containing 1926 face images of
68 individuals. The images contain poses variations, illumina-
tion variations, and facial expression variations. The image size
is 32�32 pixels with 256-bit gray scale (Fig. 7).
4.2. Recognition accuracy

To make the computation of the embedding process more
efficient, the dimensionality of the original face samples was
reduced by applying random projections [37]. It has a similar role
to that of PCA yet with the obvious advantage that random
projections do not need any training data.

We have compared our method with three other approaches.
The first method is the Latent Variable Model (LVM), proposed in [34].
The second one is a linearization of the existing mapping Xs-Ys. To
this end, we use a simple linear regression in order to infer a matrix
transform A that best approximates the existing mapping through the
linear equation Ys ¼ATXs. We stress the fact that the linearization has
not been thoroughly tested as an out-of-sample method. Instead, this
linearization was used for spectral regression (e.g., [38]). The third
method is a representation based on Radial-Basis Functions (RBF)
[17,15]. In our implementation of the RBF method, we use Gaussian
kernels whose number is equal to the number of training samples.
In other words, we consider each training sample as a center. The
5 http://www.ri.cmu.edu/projects/project_418.html.
aperture of the Gaussian kernels was set to the average squared
distances between the pairs of the training samples.

For each face dataset and for every embedding method, we
conducted three groups of experiments for which the percentage
of training samples was set to 30%, 50% and 70% of the whole
dataset. The remaining data was used for testing. Here, the testing
implies: (i) the out-of-sample embedding of the unseen observa-
tion (face) (new observation embedding), and (ii) assigning it a
class-label through the use of a classifier in the embedded space
(recognition).

We considered for comparison the two classifiers: nearest
neighbor (NN) and Support Vector Machines (SVM). For a given
out-of-sample embedding method, the recognition rate was com-
puted for several dimensions belonging to the interval ½5; Lmax�,
where Lmax is a parameter directly related with the number of
training samples. In Figs. 8 and 10 we depict the recognition rate
(based on NN and SVM, respectively) as a function of dimension of
the embedded space, considering 30% of data for training, for all
the 4 out-of-sample embedding methods. The curves have been
obtained by averaging the results over ten random splits. In the
case of NN classifier, we use 1 neighbor for classification. Regard-
ing SVM, we use a Gaussian kernel. Similar results are depicted in
Figs. 9 and 11, but this time considering 70% of data for training.

In Tables 1 and 2, we present the best (average) performance
obtained by each ‘out-of-sample’ method, based on 10 random
splits using NN and SVM, respectively. Numbers in bold designate
the best results. For the case of LVM method, the ϵ parameter
corresponds to the number of neighbors used to approximate the
unseen sample. We could appreciate that the smaller this number
is, the better will be the result of LVM method.

From the results, we can draw the following conclusions:
(i) For the case of the NN classifier, the above results confirm the

superiority of our approach when compared with existing ones. We
can observe that this superiority was obtained for all datasets and for
all dimensions tested for the obtained embedding space. We can also
observe that the linearization method provided the poorest results,
which can be explained by the fact that the linear method is global
and does not take into account the local adjacency information. We

http://www.ri.cmu.edu/projects/project_418.html
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Fig. 10. Experimental results on all 6 datasets for the 30–70 modality. The used classifier was SVM.
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can also appreciate that, for the NN classifier, the performance of
LVM and RBF depends on the dataset used. There is no general trend
that shows that one method is better than the other.

(ii) For the case of SVM, the sparse representation does not
guarantee always the best recognition accuracy rate, but it can be
outperformed by the RBF method in some cases. This could be
explained by the fact that both RBF and SVM are highly non-linear
techniques which can benefit each other well. For the SVM classifier,
we can observe that the superiority of RBF was only obtained for a
few cases and for high dimensions (see the PF01 and PIE datasets in
Figs. 10 and 11). If we consider the PF01 dataset with 70% of data for
training (the lower part of Fig. 11), we can observe that the RBF
method provided better results than the sparse representation
method for dimensions that are larger than 550. This dimension
becomes 845 for the PIE dataset (the lower part of Fig. 11).
In practice, it should be a trade-off between a high recognition rate
and a compact representation with a reduced number of dimen-
sions. Thus, this requirement favors again our proposed sparse
representation method since it has the best performance for low
dimensions even when challenging face datasets (such as PF01 and
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Fig. 11. Experimental results on all 6 datasets for the 70–30 modality. The used classifier was SVM.
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PIE) are considered. It is worth mentioning that this advantage is not
shown in the tables since the latter depict the best performances
over the number of dimensions.

4.3. Assessing manifold reconstruction accuracy

In the previous section, we have evaluated the recognition
performance of the proposed out-of-sample embedding method.
However, the main role of the out-of-sample embedding method
is to complete the reconstruction of the manifold in the embedded
space (i.e., by adding the new observations in the embedded
space). To this end, we can compare the coordinates of the new
embedded observations with their coordinates computed in the
batch mode. The batch mode assumes that the whole dataset is
used in order to get the non-linear manifold learning.

In order to quantify the accuracy of the out-of-sample embed-
ding methods, we use the following error measure:

e¼ distðY; ŶÞ
‖Ŷ‖F

where distð; Þ denotes the Procrustes distance [39], ‖A‖F denotes



Table 3
Alignment error between batch-mode manifold and the out-of-sample computed
manifold (see text for details).

Dataset \ Method Sparse rep. LVM Linearization RBF

30–70%
Yale 0.4956 0.5300 0.5322 0.5306
ORL 0.4915 0.5227 0.6343 0.6319
UMIST 0.4337 0.5069 0.7181 0.7016
Ext. Yale 0.5086 0.6470 0.7699 0.6384
PF01 0.5833 0.6564 0.8095 0.6466
PIE 0.6981 0.7580 0.8047 0.6352

50–50%
Yale 0.3786 0.4429 0.4578 0.4549
ORL 0.3597 0.4058 0.9614 0.7167
UMIST 0.3470 0.4103 0.5834 0.5564
Ext. Yale 0.3564 0.3892 0.7528 0.4958
PF01 0.4040 0.4746 0.7746 0.4433
PIE 0.4248 0.4514 0.7758 0.4462

70–30%
Yale 0.2685 0.3173 0.3540 0.3486
ORL 0.2520 0.2686 0.3623 0.3440
UMIST 0.2442 0.2675 0.3722 0.3296
Ext. Yale 0.1982 0.2174 0.6658 0.3534
PF01 0.2474 0.2647 0.6707 0.2639
PIE 0.2474 0.2607 0.6794 0.2587
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Fig. 12. Variation of the alignment error as a function of the embedded space
dimensionality.

Table 4
CPU times (in milliseconds) representing the projection of one sample on the
embedded space. The dimension of the input data is (D¼ 200), the dimension of
the non-linear space is (d¼1200), the number of training samples is (N ¼ 1241).

Method Sparse rep. LVM Linearization RBF

CPU time 840.52 6.07 5.50 139.42
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the Frobenius norm of the matrix A, and Y and Ŷ are the test data
that are provided by the out-of-sample method and the associated
batch one, respectively. The above error can quantify the dissim-
ilarity between the batch mode geometric configuration and the
out-of-sample geometric configuration related to the test
observations.

In Table 3 we show some results based on this definition for all
the modalities and for all out-of-sample methods. Numbers
marked in bold represent the best alignment between ‘out-of-
sample’ and ‘batch-mode’ embedding. The smaller the number, the
better the alignment. We could conclude that our proposed sparse
representation method offers the best similarity with the batch
mode embedding.

Additionally, Fig. 12 shows, for the UMIST dataset (in the
modality 70–30), the evolution of the dissimilarity obtained by
the out-of sample methods as function of dimensionality of the
embedded space. We could appreciate that, for all out-of-sample
methods, the dissimilarity distance is decreasing with the increase
of the embedding dimensionality. However, after a certain value,
the sparse representation method, again, guarantees the highest
similarity. We can also observe that the alignment obtained by the
LVM and our proposed method is much better than that of the
linearization and RBF methods.

4.4. Assessing algorithms' complexity

Regarding the algorithms' complexity, the critical aspect is
represented by the computational load needed to project a new
sample on the embedded space. Let d denote the adopted dimen-
sionality of the non-linear embedded space. Let D denote the sample
dimension in input space and N denote the number of training
samples. The linearization method is based on a linear regression.
This out-of-sample method requires: (i) the computation of the
pseudo-inverse of a D� N matrix, (ii) a matrix multiplication to get
the linear transform (a d�D matrix), and (iii) a matrix–vector pro-
duct to obtain the projection of the unseen sample. On its turn, the
RBF method requires: (i) computing NðN þ 1Þ=2 elements of a
symmetric kernel matrix associated with the training set, (ii) com-
puting N kernel elements (test sample with the whole training
samples), (iii) computing the inverse of an N � N matrix, and (iv) a
matrix–vector product to obtain the projection of the unseen sample.
Regarding the Latent Variable Model, this method requires: (i) the
estimation of the K nearest neighbors, (ii) the computation of the
kernel responses between the test sample and these K neighbors, (iii)
a weighted sum of K embedded samples (Eq. (9)). Our proposed
Sparse representation method consists of two main steps: (i)
computing the blending weights via an L1 minimization (Eq. (13)),
and (ii) performing a weighted sum of the embedded samples (Eq.
(9)). It is obvious that the first step is the most computationally
expensive one [36]. Its complexity depends on the size of the matrix
used as a dictionary for L1 coding (the dictionary refers to the basis
matrix ½X; I� in Eq. (13)) which is given by D� ðN þ DÞ. In order to
quantify the computational complexity of all out-of-sample embed-
ding methods used in this paper, we have considered the extended
Yale dataset, in the modality 70–30 (1241 samples for training).

Table 4 illustrates the CPU times (in milliseconds) required to
project a new sample. The dimensionality of the data in the non-
linear manifold was set to 1200 (this is related to the size of the
training set). We performed the experiments using a non-
optimized MATLAB code running on a PC equipped with a dual-
core Intel processor at 2 GHz and 2 GB of RAM memory. It should
be noted that the proposed method has the highest computational
load since it relies on an L1 minimization based on a very large
dictionary. Despite the increased time required by the proposed
sparse representation method, this should not be considered as a
serious drawback. Indeed, the above CPU time was obtained with a
large dictionary formed by 1241 training samples, each having 200
elements (each image is projected using random projection
adopting 200 axes). Therefore, alternative techniques that allow
the use of a small dictionary will help us to achieve a more
efficient implementation (e.g., see Fig. 14). These techniques can
rely on online learning and clustering (in both sequential and
chunk update modalities).

Besides this, we also performed two additional studies (for
sparse representation only). One aims to estimate the



Table 6
CPU times (in milliseconds) representing the projection of a new sample on the
embedded space, as a function of the size of the training data, N (using the sparse
representation method). The dimension of input data is kept fixed to D¼100.

N 600 700 800 900 1000 1100 1200

CPU time 169.68 219.23 285.85 351.48 447.37 513.04 647.27
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Fig. 14. Variation of the CPU time (in milliseconds) of the sparse representation
method as a function of the size of the training data. The CPU time corresponds to
the projection of a new sample on the embedded space.
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Fig. 13. Variation of the CPU time (in milliseconds) of the sparse representation
method as a function of the dimensionality of the input data. The CPU time
corresponds to the projection of a new sample on the embedded space.

Table 5
CPU times (in milliseconds) representing the projection of a new sample on the
embedded space (dimensionality d¼1200), as a function of the dimension of input
data, D (using the sparse representation method).

D 80 100 120 140 160 180 200

CPU time 609.75 647.27 677.30 724.20 772.98 804.87 840.52
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computational complexity of projecting a new sample, as function
of the dimensionality of the input data. As we have mentioned
before, in our case, due to the use of random projections, we have
reduced the dimensionality of the input image to 200. In Table 5
we measured the computation time at several dimensions, starting
with 80 and finishing with 200, with a step of 20. For a more
convenient visualization of the complexity evolution, the same
results were represented as a plot in Fig. 13. As it can be seen, by
reducing the dimension of samples in the dictionary to half, the
CPU time is decreased by 23%. The other study estimates the CPU
time as a function of the size of the training data. For a fixed
dimensionality of the input data (in this case 100), we have
considered several sizes of training set, ranging from 600 up to
1200 with an incremental step of 100. The results are shown in
Table 6 and the corresponding plot is depicted in Fig. 14. As can be
seen by reducing the size of the training set to half, the CPU time
decreases by 73.8%. Due to the rapid increase of the computational
complexity with the size of the training set, we are considering the
possibility to adopt an L1 minimization strategy based on a
representative subset of the training set only.
5. Conclusions and future work

In this paper, we demonstrated that sparse representation can
serve as an accurate alternative for out-of-sample embedding.
Considering for a case study the Laplacian Eigenmaps, we applied
our method to the face recognition problem. Indeed, the proposed
out-of-sample embedding in general provided the best classifica-
tion accuracy as well as the best alignment between out-of-sample
mode and batch mode. The experimental results demonstrate that
our algorithm can maintain an accurate low-dimensional repre-
sentation of the data without any parameter tuning. A natural
extension of our approach is its application to online learning and
incremental embedding.
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