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Abstract

This paper presents a novel approach for incremental
subspace learning based on an online version of the Non-
parametric Discriminant Analysis (NDA). For many real-
world applications (like the study of visual processes, for
instance) there is impossible to know beforehand the num-
ber of total classes or the exact number of instances per
class. This motivated us to propose a new algorithm, in
which new samples can be added asynchronously, at dif-
ferent time stamps, as soon as they become available. The
proposed technique for NDA-eigenspace representation has
been applied to the problem of online face recognition for
human-robot interaction scenario.

1. Introduction

The human visual system is very robust among a large
range of variations in environmental conditions. Opposite
to it, a similar performance is impossible to be achieved by
any artificial vision system. Despite of the progresses re-
ported in areas like vision sensors, statistical pattern recog-
nition and machine learning, what for humans represents a
natural process, for machines is still a far-fetched goal. One
of the factors that impede to achieve these performances is
the learning strategy that is used. Most of the nowadays
approaches, require the intervention of the human operator
to collect, store and segment hand-picked images and train
pattern classifiers with them. It is unlikely that such a man-
ual operation could meet the demands of many challeng-
ing tasks that are critical for generating intelligent behavior,
such as object recognition, in general, and face recognition,
in particular. Furthermore, it is assumed that all the avail-
able data is all that a machine need to "learn’. Paradoxically,
by using this *off-line” or *batch’ approach the development
of such a system is denied by the creator of the system itself.

The purpose of the present study is to show how image
feature extraction can be addressed in terms of a develop-
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mental learning strategy for artificial vision systems. Fea-
ture extraction and selection is a common pre-processing
step in any pattern classification problem. FEigenspace-
based methods are the most common techniques used to
obtain a dimensionality reduction of the original data. The
point coordinates in this eigenspace represent the coeffi-
cients of the projected input images. The outcome of this
process consists of obtaining either an efficient data repre-
sentation (through dimensionality reduction, when class la-
bels are ignored) or an effective data discrimination (when
besides the dimensionality reduction, we are focused also
on class labels) [12]. For the latter, parametric and non-
parametric forms have been proposed [6]. The shortcom-
ings of parametric discriminant analysis (PDA) are twofold.
On the one hand, it assumes that the samples present a nor-
mal distribution. On the other hand, it fails to capture the
boundary class information, creating a generative model of
data. Because of these limitations, methods based on para-
metric discriminant analysis show a serious performance
degeneration in real-world applications when data present
multi-modal densities and classes are not linearly separable.

Opposed to this case, non-parametric discriminant anal-
ysis (NDA) [7] is more effective when dealing with general
data distributions and capturing properly the structural in-
formation between class boundaries. Despite its undeniable
advantages, the NDA has received little attention within pat-
tern recognition community. In [2], the authors introduced
a non-parametric form of the within-class scatter matrix.
This way, the matrix is normalized: instead of assuming
a gaussian distribution on the points of the same class, it
normalizes the distances between each point and their near-
est neighbors, which has been shown to benefit the nearest
neighbor rule. In [13], simple (ID) projections are com-
bined such that together can provide more separability on
the whole data set. From the Adaboost perspective, each
simple 1D projection is treated as a “weak classifier”, so the
Adaboost algorithm is used to select among a large set of
1D projections the ones that best separate the training data.
The nonparametric nature of their approach is guaranteed



by the fact that doesn’t require any global statistic measure
of the input data. Tn [11], two kinds of nonparametric sub-
space analysis, which complement each other, are proposed.
First of them is the principal nonparametric subspace analy-
sis and is used to extract nonparametric discriminating fea-
tures within the principal subspace of within-class scatter
matrix. The second one is called null-space nonparamet-
ric subspace analysis and is based on the null space of the
within-class scatter matrix.

Typical implementations for the above mentioned tech-
niques assume that all the data is provided in advance and
learning is carried out in one step (for this reason, we will
refer as these as batch techniques). However, in real-world
applications, this is not the case, since it is unlikely that
all the data is available from the very beginning. For this
situation, a new learning strategy is required. One-pass in-
cremental algorithms, which performs sequentially the up-
date of the eigenspace representation, are the solution we
are seeking. So far, several approaches have been proposed.
In [4, 8, 1] the Incremental Principal Component Analysis
(IPCA) is introduced. The update of the covariance ma-
trix is achieved through a residual procedure. They keep
only the learned coefficients of the eigenspace representa-
tion and discard the original data. In the same context of
IPCA, in [17] it is demonstrated that is possible to build in-
crementally an eigenspace representation without the need
to compute the covariance matrix at all. On the other hand,
some incremental versions of Linear Discriminant Analysis
(ILDA) are proposed in [15] and [14].

In this paper we propose an online version for NDA tech-
nique (referred for the rest of the paper as IncNDA). More
concrete, we introduce a sequential update of the NDA-
eigenspace representation. The proposed solution for online
learning is applied to the problem of face recognition and is
presented as an application for social robotics.

The paper is structured as follows: in the next section,
we will briefly review the classical NDA algorithm (from
now on referred as BatchNDA). Section 3 is dedicated to
the introduction of the novel incremental non-parametric
discriminant analysis (from now on referred as IncNDA).
In section 4 we discuss the application of our approach to
the problem of face recognition for human-robot interaction
scenario. We will show that at the end of the learning pro-
cess, the recognition performance achieved converges to-
wards the result obtained using the BatchNDA. Finally, sec-
tion 5 contains our conclusions and the guidelines for future
work.

2. Classical Nonparametric Discriminant
Analysis (BatchNDA)

As introduced in [7], the within-class scatter matrix S,
and between-class scatter matrix .S are used as a measure

of inter-class separability. One of the most used criteria is
the one that maximize the following expression:
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It has been shown that the M x D linear transform that sat-
isfies the equation 2 optimizes also the separability measure
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This problem has an analytical solution and is mathemati-
cally equivalent to the eigenvectors of the matrix S 1.S;.

Let’s assume that the data samples we have belong to V
classes C;,i = 1,2, ..., N. Each class C; is formed by n;
samples C; = {z{,2%, ...z}, }. By 2 we will refer to
the mean vector of class C;. According to [7], the S,, and
Sy, scatter matrices are defined as follows:
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where NN, (zi, C;) is the p—th nearest neighbor from vec-
tor (xf) to the class C;. The term W (C;, C;,t) which ap-
pears in equation 4 is a weighting function whose role is to
emphasize the boundary class information. It is defined by
the following relation:

mzn{da(m%aNNk z Cl)) (.’Bi,NNk(Ii,C]))}

W(Ci, Cy,t) = : Al e .
O NN O+ 1, N1, )
Here « is a control parameter that can be selected between
zero and infinity and d(u,v) is the distance between two
vectors v and v. The sample weights take values close to
0.5 on class boundaries and drop to zero as we move away.

The parameter « adjusts how fast this happens.

3. Incremental Nonparametric Discriminant
Analysis (IncNDA)

The shortcoming of the BatchNDA described in the pre-
vious section comes from the assumption that all the data
are available at the classification. This is not the case for
real applications, when the data is coming over time, at ran-
dom time intervals, and the representation of the data must



be updated. Computing from the beginning the scatter ma-
trices, each time a new sample arrives, is not computation-
ally feasible, especially when the number of classes is very
high and the number of samples per class increases signifi-
cantly. For this reason, we propose the IncNDA technique,
that can process sequentially later-on added samples, with-
out the need for recalculating entirely the scatter matrices.
In order to describe the proposed algorithm, we assume that
we have computed the S,, and S scatter matrix from at
least 2 classes. Let’s now consider that a new training pat-
tern y is presented to the algorithm. We distinguish between
two situations:

e y belongs to one of the existing classes Cy, (y°*,
where 1 < L < N).

In this case, the equation that updates S}, is given by:

Sy = Sp — Si(CL) + Sin(Crr) + Sg(yF) (D)

where Cp, = Cr, J{y“*t}, Si*(CL) represents the covari-
ance matrix between the existing classes and the class that
is about to be changed, Si"(C',) represents the covariance
matrix between existing classes and the updated class Cy,,
and by S¢¥(y“*) we denote the covariance matrix between
the vector y©= and the other classes:
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In the case of S), the update equation is the following:
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e y belongs to a new class Cy .y (y&V+1).

For this case, the updated equations for the scatter matri-
ces are given by:

S = Sy 4+ SPChny1) + SI"(Cnyr) (12)

where S¢%(Cny1) and Si"(Cn 1) are defined as follows:
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Regarding, the new S) matrix, this one remains un-
changed, i.e:
S =8, (15)

4. Face Recognition for Human-Robot Interac-
tion: A Case Study

Detecting and responding to human presence is an is-
sue of great interest for the area of human-robot interac-
tion. The current trend in robotics is represented by social-
oriented robots, i.e. robots which are enabled with percep-
tual capabilities in order to make communication with hu-
mans more natural. This can include robots responsive to
hand or head gestures, head pose orientation, voice recog-
nition, etc. [3, 10, 5, 9]. Our goal is to build an application
whose aim is to have an AIBO behaving in a personalized
manner, depending on the frequency it sees a certain per-
son. Thus, we expect the robot to develop a ’friendlier’
attitude towards persons who are frequently seen, mean-
while to act more ’reserved’ in front of a person who has
been seen less frequent. In order to achieve this goal, the
incremental learning approach introduced in the previous
section has been tested on a face recognition problem us-
ing a custom face database. The image acquisition phase
was extended over several weeks and performed in an au-
tomatic way. For this purpose, we put an AIBO robot in
an open space and snapshots were taken each time a person
was passing in front of the camera. In figure 1 we extracted
some frames from the face acquisition process. The face
was automatically extracted from the image using the face
detector based on [16]. We didn’t impose any restrictions
regarding ambient conditions.

Overall, our database consists of 6882 images of 51 peo-
ple (both male and female)!. Since no arrangements were
previously made, some classes contain only a handful of
images (as much as 20), meanwhile, the largest of them
contains over 400. Segmented faces were normalized at a
standard size of 48x48 pixels. Because of the particularity
of the acquisition process, face images reflect the changes

In the current study we put the accent in having a reasonable number
of classes with a lot of instances rather having an excessive number of
classes with very few instances



Figure 1. Real-time face detection and tracking by an AIBO robot.

in appearance suffered by subjects over time. Furthermore,
since our application was thought to run in real-time (and
to give it a more ad-hoc impression), we didn’t perform any
pre-processing step to face images before passing them to
the classifier. That’s why the faces used in the experiment
show a certain degree of variation in pose and size and are
not constrained to be exactly frontal. For the same reason,
face images used to be a little wider than the face region
itself. Some samples of these face images are presented in
figure 2.

To test the IncNDA technique, we used 90% of the im-
ages (i.e. about 6000) as training set and the remaining ones
as test set. From the training set, we used 15% of the images

(belonging to 5 classes and representing 900 samples) to
build the initial IncNDA eigenspace. In order to overcome
the singularity problem, a PCA step was performed before-
hand. This way, data dimensionality was downsized from
2304 to 60. The remaining samples (5100) from the training
set were added later on in a sequential manner (the samples
were drawn randomly) and this way the NDA-eigenspace
was updated’. The classification accuracy was evaluated
based on the nearest-neighbor rule.

In figure 3 (above) we depicted the evolution of the learn-

2We considered our learning strategy a supervised one, so the class
label of the new added sample from the training set is known



Figure 2. Samples of face images from CVC custom database
showing a certain degree of variation in illumination, pose and
size

ing process after each update (a new sample added) of the
initial IncNDA eigenspace. In the early stages, there are a
lot of new classes presented at very short intervals. It can be
appreciated that, with almost 50% of the remaining training
samples introduced, all classes have been represented. Tn
figure 3 (below), we depicted the percentage of incremental
training samples introduced so far (the stars represent the
moment when a new class has been added). The graph falls
a couple of times, because the percentage of total data is ac-
tually computed relative to the number of classes presented
up to a given moment, not with the total number of classes.
For this reason, this graphic should be read in concordance
with the above one.

As a final proof of accuracy, we compared IncNDA with
the BatchNDA). In figure 4, we show that indeed the Inc-
NDA is converging (at the end of the learning process) to-
wards BatchNDA. The common recognition rate achieved is
around 95%, which in our opinion is a very good result, tak-
ing into account the difficulty of the database. Both graphics
were plotted after averaging the results obtained from a ten-
fold cross-validation procedure (the training samples were
chosen in a random manner in each run). We repeated the
experiments considering different number of neighbors (1,
3,5,7) in computing the equation 4), but the best results ob-
tained correspond to a number of neighbors equal to 3. The
figure 4 corresponds to this case. The oscillation of the Inc-
NDA in its early stages corresponds to the situation when a
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Figure 3. Learning process: evolution of the number of classes
function of learning stages (above) and the percentage of the train-
ing data function of learning stages (below)

significant number of new classes have been added at very
short intervals and only a very few samples of those classes
were available. After some learning stages, when enough
samples for each class became available, we can appreciate
that the evolution curve regulates its tendency and becomes
constantly ascending.

Some instances of misclassified faces are represented in
figure 5. From the experiments performed, we arrive at
the following conclusion. The misclassification occurs in
three situations: when there are too few face instances per
class, when there are too few instances of a particular head
pose/illumination conditions and when the image presents a
high level of distortion (the *blurring’ effect due to person
movement).
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Figure 4. IncNDA vs. BatchNDA curves. IncNDA converges to-
wards BatchNDA at the end of the learning process

Figure 5. Some instances of misclassified faces

5. Conclusions and Future Work

For real-world applications, one-step (batch mode)
learning techniques prove to be inadequate. For this rea-
son, we proposed in this paper an online version of the
Nonparametric Discriminant Analysis. We start to build the
NDA-eigenspace representation in an incremental way, by
adding sequentially new data. This new approach has been
applied to the problem of face recognition for human-robot
interaction scenario. The tests performed on a custom face
database confirm the robustness of IncNDA and the fact
that, at the end of the learning process, it converges towards
BatchNDA. In the future, we plan to extend the current ap-
proach, by allowing the update of the NDA-eigenspace in
terms of data chunk.
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