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Abstract In our work, we are particularly interested in studying the shadows cast
by static objects in outdoor environments, during daytime. To assess the accuracy of
a shadow detection algorithm, we need ground truth information. The collection of
such information is a very tedious task because it is a process that requires manual
annotation. To overcome this severe limitation, we propose in this paper a method-
ology to automatically render ground truth using a virtual environment. To increase
the degree of realism and usefulness of the simulated environment, we incorporate
in the scenario the precise longitude, latitude and elevation of the actual location of
the object, as well as the sun’s position for a given time and day. To evaluate our
method, we consider a qualitative and a quantitative comparison. In the quantitative
one, we analyze the shadow cast by a real object in a particular geographical location
and its corresponding rendered model. To evaluate qualitatively the methodology,
we use some ground truth images obtained both manually and automatically.
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1 Introduction

The problem of shadow detection has been studied extensively in attempts to
improve the performance of computer vision algorithms, including, but not limited
to segmentation [19, 21], recognition [25], and tracking [4, 7]. It has proven to be a
difficult and challenging task, because a shadows’ appearance is greatly influenced by
a series of factors such as shape, orientation, the physical properties of the objects,
and the structure of the light source. In our work, we are particularly interested in
studying the shadows cast by static objects in outdoor environments, during daytime,
when the main source of light is the sun. In this context, the shadows cast by static
objects are different from those cast by moving objects [9, 16] because they change
very subtly, almost imperceptibly from one time instance to the next. As a result, we
need to extend our observation over long periods of time and possibly to increase the
time between two consecutive observations to perceive a noticeable difference in a
shadow’s position. In order to assess the accuracy of a shadow detection algorithm,
we need ground truth information. The collection of such information is a very
tedious task because it’s a process that requires manual annotation. In some cases,
this process is a prohibitive operation due to the huge amount of data that may
represent a video-sequence.

To overcome this severe limitation, we propose a methodology to automatically
render ground truth using a virtual environment. Using specialized software, we gen-
erated a synthetic scene whose characteristics are similar to the real ones. To increase
the degree of realism and usefulness of the simulated environment, we incorporate
in the scenario the precise longitude, latitude and elevation of the actual location
of the object, as well as the sun position for a given time and day. Our approach is
based on the following assumptions: The sun is the main light source in the scene,
the camera’s position is fixed, and the camera’s extrinsic and intrinsic parameters
are known.

The rest of the paper is structured as follows. In Section 2, the related work is
presented. Then, Section 3 describes our methodology. After that, Section 4 presents
the real and synthetic datasets. The experimental results are reported in Section 5.
Finally, we summarize our contributions, and conclude our article suggesting future
directions for research.

2 Related work

In this section, we revise some works on synthetic ground truth generation and
their applications to related problems. It is worth to mention that there are some
similar approaches but in different contexts. For instance, in the study of illumination
normalization for video surveillance, Matsushita et al. [10] used synthetic images with
changes in the position of the light source to simulate changes in the shadows cast
by static objects in outdoor environments. Similarly, Weiss [23] used a sequence of
synthetic images with shadows to derive an intrinsic image decomposition method.
However, these data sets didn’t consider the ground truth images for the shadows as
well as the sun position for a given time, date, and geographical location.

In other fields, Woodward and Delmas [24] used synthetic ground truth data
for comparison of gradient integration methods for human faces. In this work, the
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ground truth data was obtained based on a synthetic model. Also, Meister and
Kondermann [12] compared the performance of algorithms to compute optical flow
in both real and synthetic images. Even if the realism of the synthetic images is high,
the authors didn’t consider the effect and the quality of the shadows. However, their
paper demonstrates the usefulness of synthetic ground truth sequences to develop
and evaluate algorithms in computer vision.

In computer graphics, authors such as Santuari et al. [20], Nadimi and Bhanu [15],
Gibson et al. [5] and Mei et al. [11], developed methods to increase the realism
of synthetic images, considering the presence of shadows. However, these authors
didn’t consider the ground truth of shadows because they were focused on obtaining
rendered images with high visual quality. Alon these lines, Albin et al. [1] and Kaneva
et al. [8] introduced methods to evaluate the visual quality of synthetic images, but
they didn’t consider the similarities of the light source position between the real and
the rendered scenario for a particular geographical location, date, and time.

3 Proposed methodology

In our approach, we are interested in studying the shadows behavior for particular
geographical locations. Therefore, we project latitude, altitude, elevation, date, and
time of a real scenario to a rendering software. The first step in our methodology
consists of obtaining the location information of the scenario under study. Then, we
compute the sun’s position and the corresponding projections of the azimuth and
elevation angles to the rendering tool. In parallel, we acquire images of the scenario
and generate the virtual one. In the simulator, it is possible to render the images
with a particular frame rate during extended intervals of time. In the rendering
software, the sun’s position is simulated by changing the position of the light source.
As a result, sequences with and without shadows are obtained. These sequences
are used to compute the ground truth images by a simple subtraction operations
between the shadow and shadowless images. The resulting image is binarized by
applying a threshold where 1’s and 0’s correspond to shadow and shadowless pixels,
respectively.

To evaluate our method, we consider a qualitative and a quantitative comparison.
In the quantitative one, we analyze the shadow cast by a real object (a cylinder)
and its corresponding rendered model in a particular geographical location. For
simplicity, we align the geometric object and the camera with the magnetic North
Pole as a reference model for the rendering software. Additionally, we compute the
intrinsic and extrinsic parameters of the camera to obtain the undistorted images of
the real cylinder. This avoids simulating the radial distortion effect during the ren-
dering process. To evaluate qualitatively the methodology, we use some ground truth
images obtained both manually and automatically. Figure 1 describes the proposed
methodology.

3.1 Computing the sun’s position

In our methodology, the first step in the process of rendering ground truth images of
shadows cast by static objects in outdoors is to compute the sun’s position in a given
location as time passes by. In our scenarios the sun is by far the main illumination
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Fig. 1 Proposed methodology to render synthetic ground images of shadows cast by static objects in
outdoors. Starting from the image stream Ik, four sub-processes run in parallel. In the left one, the
undistorted images Uk are computed based on the extrinsic Ep and intrinsic Ip camera parameters.
Then, a subset of undistorted images Us are selected to obtain its corresponding ground truth Ug
manually. At the same time, calibration images Ic are acquired and used to compute the camera
model. The third sub-process is used to render the virtual scenario R, place the virtual camera with its
corresponding parameters (the field of view angle Fv , location Lc, and orientation of the optical axis
Cl), and simulate the sun position where sequences with Iks and without shadows Ikn are obtained.
In the right subprocess, the geographical position parameters such as: Altitude Al , latitude La and
longitude Lo are obtained. Finally, the evaluated ground truth images of shadows Ig are obtained

source. Furthermore, we assume that the virtual scenario is centered in a specific
geographical location where latitude, longitude, and elevation are above sea level.
Then, the sun’s position in a real scenario at a given location, time, and date for long
intervals of time (days) is computed using the Matlab implementation [18] of the
Reda and Andreas algorithm [17]. This method computes the sun’s position with an
uncertainty of ±0.0003◦ in the azimuth and elevation angles. However, it is possible
to compute the sun position using other methods as well [2, 6, 14, 22].

The sun’s position over time can be described by the azimuth and altitude angle
vectors. The azimuth (measured from the magnetic North Pole in the horizontal
plane) and altitude (measured from a line on the horizontal plane in the direction of
the azimuth toward the zenith) angle vectors are projected to the rendering software
coordinate system x, y, and z by using an orthogonal decomposition. In Fig. 2, α is

Fig. 2 Coordinate system and
its relationship with the
azimuth (α referred to the
magnetic North Pole -N), and
altitude (β referred to the
horizontal coordinate system),
angles of the sun position. The
xyz-reference system is super
imposed on an object in the
scenario
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the azimuth and ax, az its corresponding projections to the x and z axes (az = sin α

and ax = cos α). β is the altitude, and ay is its projection onto the y axis (ay = sin β).

3.2 Camera calibration process

To evaluate the results of the rendered ground truth images, it is important to
consider the camera calibration process. The real images are affected by the radial
distortion introduced by the lens. Thus, to obtain undistorted images, we computed
the intrinsic and extrinsic camera parameters as described in [3].

In our experiments, we considered a cylinder to measure quantitatively the quality
of the rendered shadows. The object and the camera were placed on the roof of a
building. The origin of the world reference system, where the cylinder is placed, is
arbitrarily defined as one corner of a calibration chessboard-like pattern. To avoid
self-occlusion of the shadow and to simplify the projection of the extrinsic parameters
of the camera to the rendering software, we aligned the object and camera to the
magnetic North Pole using a compass (see Fig. 3).

We took into consideration camera parameters such as the location, field of view,
and orientation of the optical axis. The angle of view γ is estimated by considering
the size and resolution of the sensor d and the effective focal length f as

γ = 2 arctan(d/2 f ). (1)

To compute the intrinsic and extrinsic parameters, we used the Matlab implemen-
tation of the Zhangs’ method [26] for camera calibration developed by Bouguet [3].

3.3 Rendering ground truth images of shadows

Initially, the camera’s position, the orientation of the optical axis, and the field of
view angle in the rendering software are defined. Afterwards, to generate ground
truth images of shadows cast by static objects in outdoors, it is mandatory to also
define the shape, size, texture, color, and position of the objects. Additionally, the
position of the light source is fundamental to create the required shadow effect. For
convenience, we used Pov-Ray as a rendering tool.

Fig. 3 Camera and object
location according to the
magnetic North Pole and the
corresponding coordinate
system projections
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Fig. 4 Example of a rendered image. Left, rendered image with shadow; Middle, rendered image
without shadows; and Right, shadow ground truth

In general, we apply the following procedure to render the images:

1. Define the light source. Here, the projected values of the azimuth and elevation
angles are required. Additionally, the intensity of the light source is defined.

2. Define the background. The floor and the sky are adjusted.
3. Define the intrinsic parameters of the camera. Here, the field of view is

computed.
4. Position the camera, with the field of view estimated in the previous step, and the

corresponding extrinsic values. For simplicity, the optical axis is defined pointing
to the origin of the coordinate system.

5. Place the objects.

The information related to the sun’s position at a given time is used to render two
sequences of frames: One with shadows and another without shadows. The rendering
software has to have a function for adding or removing the projection of shadows.
Figure 4 illustrates an example of an image rendered with and without shadows.
Moreover, the ground truth image of the shadow is presented. It is worth to mention
that the quality of the rendered images is maximized when the shadows cast by both
the real and the simulated objects look alike.

4 Data sets

In this section, we present the real and synthetic data sets used to develop the
proposed methodology. The real data set consists of two sequences. The first one
was acquired from the top of a building with the purpose of analyzing the behavior
of the shadows, and the other with the objective of measuring the performance of
the method. The synthetic data set consists of three sequences. One with a typical
urban scenario that includes static objects such as buildings, towers, trees, and bushes
among others; and two other synthetic sequences with a single object (a tree and
a cylinder). The sequences with the tree and the cylinder are used to evaluate the
method.

4.1 Real data sets

The rendering process is based on the sequences acquired from the top of a building.
To obtain the first sequence, we grabbed images during eight consecutive days from
October 26 to November 2, 2011 (first row of Fig. 5); while for the second one, we
acquired images from 15:00 to 20:00 hours on June 23, of 2012 (second row of Fig. 5).
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Fig. 5 Real data set. First row images from the top of the building; second row, shadows cast by a
single object

The interval of time between frames in the first sequence was 10 s, while for the
second one it was 60 s. The images in these sequences have a resolution of 1032×776
pixels (width×height).

4.2 Synthetic data sets

An urban infrastructure environment is usually composed of buildings, trees, light
poles, and other static objects. We considered the above elements to generate a
virtual scenario in the rendering software. To create the first sequence (see first
row of Fig. 6), we computed and simulated the sun position for one week. Then, the
rendering process was achieved by changing the light source position. We rendered
the images with insignificant changes in the position and shape of the shadows.
To achieve this, an interval of 10 s between frames was selected. Thus, for each
simulated day we obtain 2, 520 frames. The resolution of the rendered images was
512×384 pixels (width×height), which was stored in Windows bitmap BMP file
format. However, it is possible to obtain images at higher resolution or at a different
frame rate. The rendering process for the cylinder and the tree sequences was done

Fig. 6 Examples of rendered images. First row: urban outdoors environment; second row: cylinder
sequence to evaluate quantitatively the method; third row: sequence to evaluate qualitatively the
strategy
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using the same interval of time between as in the real images. For the cylinder, the
interval of time between frames was 60 s and for the tree it was 10 min.

We compute the projections of the azimuth and elevation angles, based on a
sphere of radius equal to one, because we have to add constant values to represent
in the simulator the distance between the light source and the object. This distance
defines the effect of parallel rays from the light source.

The latitude, longitude, and elevation of the selected geographical location to
perform our experiments are: 20.57◦N, 100.37◦W degrees and 1857[m] above sea
level, respectively. These values correspond to a region in the roof of a building
where the sequence illustrated in Fig. 5 (second row) were acquired.

The procedure to automatically estimate the shadows ground truth image is based
on a property of the rendering software, which has the capability to generate an im-
age with or without shadows. Thus, we generated two images for each sun’s position
at a given time; one with shadows and another one without. Then, the difference
between the generated images is computed offline. This process first computes a
subtraction between the shadow and shadowless frames. Afterwards, we apply a
threshold over the result to get the ground truth image of shadows.

5 Experimental results

In this section, we present the results of a synthetic data set rendered for seven
consecutive days, from October 26 to November 2, of 2011. Figure 7 shows a
sequence of images representing the shadow movement throughout daylight. The
left column depicts images rendered with the sun position information from October
27 through November 2, of 2011. It is important to notice that images in the first
column have shadows cast, while for the second one only the self shadows of the
static objects are presented. The third and fourth columns depict the ground truth
of shadows and the overlapped images, where the shadows cast by static objects are
highlighted. This synthetic data set simulates the sun’s position each 10 s during seven
consecutive days.

Additionally, the qualitative and quantitative evaluation of the proposed method-
ology to render ground truth images of shadows is presented. We divided the
evaluation process in two parts: Qualitative and Quantitative. By using our proposal,
we rendered three sequences: One to study the problem of shadow detection, and
the others to quantitatively and qualitatively evaluate the accuracy of the strategy.
The first sequence consists of seven days of simulation, from 10:00 to 17:00 hours. In
this sequence, the images are rendered every 10 s. The second and third sequences
have few frames to measure the performance of the method. It is important to
mention that the ground truth images of the shadows in the real frames are obtained
manually. The ground truth of shadow images, in the first sequence, is estimated by
computing the difference between the shadow and non-shadow images obtained with
the rendering software.

As mentioned previously, to render the images we used the POV-Ray software.
However, more realistic scenarios could include other rendering tools such as higher
order interreflections, variable reflectance properties for the objects in the field of
view, and light source attenuations due to clouds and fog. Following this strategy, we
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Fig. 7 Synthetic ground truth data set of shadows. Each column corresponds to the same scenario
but highlighting a different characteristic. The first and second columns show the simulated scenario
with and without shadows, while the third and fourth one are the shadows ground truth and the
overlapped input images with shadows cast by static objects

generated a synthetic data set. We add several objects to the scenario to define an
urban infrastructure.

5.1 Qualitative analysis

To make a qualitative comparison between shadows cast by a static object outdoors
and the rendered ones, a region of interest (ROI) was selected from the images of the
real sequence (first row and column of Figs. 5 and 8). Specifically, we analyzed the
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Fig. 8 Real and synthetic inputs and their corresponding shadow ground truth and overlap images.
First and second columns show the real and simulated images; third and fourth columns show the
corresponding ground truth of shadows; fifth and sixth columns illustrate shaded areas highlighted
in the real and the synthetic images

behavior of the shadow cast by an isolated tree on a particular date and time against
the derived synthetic sequence.

The left column of the Fig. 8 illustrates the shadow cast by a tree at 12:53, 13:43,
14:15, 14:56, 15:37, and 16:18 hours. The second column is the synthetic tree and the
simulated shadow cast. The third and fourth columns are the ground truth images.
The real ground truth was detected by hand, while the synthetic image was detected
by using the shadow and shadowless rendered images. The overlapping shadow
regions are presented in the fifth and sixth columns. In the synthetic overlap images
it is also possible to see the self-shadow of the tree. This effect also appears in the
real tree, but the detection of these small shaded regions by hand is a considerably
difficult task. It is noteworthy that the shape of the ground truth rendered shadow
depends on the quality of the generated object. In the tree sequence, it is difficult to
render with high accuracy the structure of the branches and leaves.

Figure 9 illustrates the quality between the real and synthetic shadows obtained
with our method, when the rendered object and the real one are quite similar. The
left column depicts the rendered image according to the real one (right column) at
the same date, time, and location. We have added a copy of the real cylinder to the
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Fig. 9 Real and synthetic images of a geometric object. In the first and second columns, the dark
yellow cylinder is the rendered one, while the light yellow cylinder is the real; the third and fourth
columns are the corresponding ground truth of shadows; the fifth and sixth columns show the real
and synthetic images overlap with the ground truth of shadows

synthetic image with the purpose of projecting some comparison lines (horizontal
and vertical black lines).

5.2 Quantitative analysis

In this section, a quantitative assessment of the method to render ground truth
images of shadows cast by static objects is presented. To systematically evaluate the
performance, we used the precision and recall parameters [13]. The recall is the ratio
corresponding to the number of times the system makes a right call (true positives,
TP), out of the number of times an event truly exists (true positives, TP, plus true
negatives, TN). The precision is defined as the ratio between the number of times the
system makes a right call (true positives, TP), out of the number of times the system

Fig. 10 Quantitative results.
The red-circled line
corresponds to the values of
recall, while the blue-asterisked
line corresponds to the valued
of precision. Both indicators
are computed for each image
of the cylinder sequence
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Table 1 Computational time to obtain ground truth images of shadows cast by static objects

Data set Tree Cylinder Outdoor scene

Images rendered 10 40 17,640.00
Rendering scenario (h) 4 3 8
Rendering shadows (s) 4 3 43
Rendering shadowless images (s) 3 2 25
Rendering an image (s) 7.23 5.23 68.23
Computing automatically ground truth—seq. (h) 4.02 3.05 342.32
Obtain manually ground truth—seq. (h) 3.33 10 35,280.00

makes a call (true positives, TP, plus false positives, FP). Equation 2 describes the
precision and recall parameters, respectively as

Precision = T P/(T P + F P), and Recall = T P/(T P + F N). (2)

To compute the above parameters, we used as valid ground truth the images with
the shadows detected by hand in the real sequence. We used 30 frames to evaluate
quantitatively the method, manually segmenting shadows in the real images for the
cylinder data set (see Fig. 9).

Figure 10 presents the values of precision and recall for 30 images of the real
and synthetic sequences illustrated in Fig. 9. The recall values are over 0.9, while its
corresponding mean value is around 0.95. On the other hand, the precision values
range from 0.75 to 0.9, with a mean value of 0.83. This implies that most of the real
shadows are mirrored by the synthetic shadows. It is worth to notice that these results
correspond only to the sequence of the cylinder.

To compare the computational time that is required to obtain ground truth
images automatically and manually, we consider the rendering time with and without
shadows and the subtraction and thresholding operations. Additionally, we measure
the time needed to render the scenario and the time that a user requires to manually
select ground truth in an image of shadows (see Table 1). The resolution of the
synthetic images was 512×384 pixels (width×height).

Results in Table 1 show that the estimated time needed to obtain the ground truth
of shadows cast by static objects outdoors using our methodology is significantly
reduced with respect to the manual method. However, if the data set only has a few
images, the manual is faster than the automatic one.

6 Conclusion

An important element to measure the performance of computer vision algorithms is
the ground truth information. In particular, the detection of shadows cast by static
objects during extended periods of times, such as days or weeks, demands a large
number of ground truth images. In this context, we presented a methodology to
render ground truth images of shadows cast by static object outdoors.

The results show the potential of synthetic images to study the complex problem
of shadow detection in outdoors. We conclude that qualitatively the method can
simulate the behavior of real shadows with high accuracy. Quantitatively, the recall
and precision parameters of the strategy are around 95 %, and 83 % respectively.
However, the performance of the methodology may improve if better rendering
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tools are used to represent objects in the simulator. Nevertheless, we showed that
the proposed methodology can significantly improve the process to obtain ground
truth, saving time and effort for researchers.

Future work will focus upon the use of the real and synthetic data sets to develop
an approach for automatic detection of the shadows cast by static objects in urban
environments.
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the manuscript.
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