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Abstract

This paper presents a new approach for the simultaneous
estimation of the 3D pose and specific shape of a previously
unseen face from a single image. The face pose is not lim-
ited to a frontal view. We describe a holistic approach based
on a deformable 3D model and a learned statistical facial
texture model. Rather than obtaining a person-specific fa-
cial surface, the goal of this work is to compute person-
specific 3D face shape in terms of a few control parameters
that are used by many applications. The proposed holis-
tic approach estimates the 3D pose parameters as well as
the face shape control parameters by registering the warped
texture to a statistical face texture, which is carried out by
a stochastic and genetic optimizer.

The proposed approach has several features that make it
very attractive: (i) it uses a single grey-scale image, (ii) it is
person-independent, (iii) it is featureless (no facial feature
extraction is required), and (iv) its learning stage is easy.
The proposed approach lends itself nicely to 3D face track-
ing and face gesture recognition in monocular videos. We
describe extensive experiments that show the feasibility and
robustness of the proposed approach.
Keywords: simultaneous 3D face shape and pose, 3D

model fitting, holistic approaches, face subspace, evolution-

ary algorithms

1. Introduction

Offline or online computed 3D face shapes can be used in

many applications such as face recognition [3, 6], 3D face

pose tracking [10], and facial expression recognition [12].

Model-based applications exploiting monocular vision sys-

tems (the face model is given by a 3D mesh or a range

model) need to personalize the face model of the person

utilizing the system in order to achieve an accurate estima-

tion. This holds true even with simple 3D models such as

cylinders and ellipsoids. Recently many authors used spe-

cial sensors such as a travelling camera or a 3-D scanner

in order to build personalized facial shape [2]. These shape

models are then used for art production or for 3D face detec-

tion and recognition using 3D sensors. Such systems suffer

from several shortcomings. Some of the shortcomings can

be alleviated by using stereo vision sensors [5]. In [7], the

authors propose to infer side-view shape parameters from

one single frontal image using learned statistical correlation

between the frontal-view parameters and the side-view pa-

rameters. The facial points (MPEG-4 points) and the frontal

view parameters (relative distances) are extracted from the

frontal image using some heuristics and prior knowledge.

The mainstream for face pose and shape estimation re-

lies on extracting and matching some salient facial features

such as the locations and local statistics of the eyes, nose,

and mouth in one or more views. A taxonomy of head

pose estimation approaches can be found in [10]. Feature-

based approaches suffer from self-occlusions and drifting.

A solution to overcome the drawbacks of feature-based

approaches is given by holistic approaches (appearance-

based approaches), which try to analyze the whole facial

appearance [4, 9]. For example, Active Appearance Models

(AAMs) were mainly used for 2D model fitting and track-

ing.

Given the huge amount of work on face modeling and

tracking, we state the problem addressed in this paper as fol-

lows.We address the simultaneous estimation of two types

of parameters (3D head pose and person specific shape pa-

rameters that are constant for a given subject) from just one

single image using only a statistical facial texture model and

a standard deformable 3D model. The face is not necessar-

ily frontal. The proposed holistic approach estimates the

3D pose parameters as well as the face shape control pa-

rameters by registering the input texture (warped region of

the image) to a statistical face texture. Compared to AAMs

methods our proposal has two advantages. First, there is

no need to compute a Jacobian matrix neither offline nor

online. Second, while AAMs merge both the inter and

intra-person shape variabilities, our method separates these
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variabilities, and therefore the proposed method can be eas-

ily and efficiently used for initializing a real time 3D face

tracker and facial expression recognizer in videos (both the

3D deformable model and its 3D pose are computed for the

first frame in the video sequence). However, it is not clear

how these tasks can be performed with AAMs.

We stress the fact that our approach does not use neither

2D AAM nor 3D AAM. The only similarity with AAMs is

the use of a statistical facial texture model based on Princi-

pal Component Analysis (PCA). The remainder of the paper

is organized as follows. Section 2 describes the face mod-

eling aspects. Section 3 presents the proposed holistic ap-

proach for the simultaneous estimation of the 3D pose and

shape. Section 4 presents some qualitative and quantitative

evaluations of performance. Section 5 concludes the paper.

2. Modeling faces
2.1. A deformable 3D mesh

In our study, we use the Candide 3D face model [1]. This

3D deformable wireframe model accounts for person spe-

cific shape variation as well as for facial animation. The 3D

shape of this wireframe model (triangular mesh) is directly

recorded in coordinate form. It is given by the coordinates

of the 3D vertices Pi, i = 1, . . . , n where n is the number

of vertices. Thus, the shape up to a global scale can be fully

described by the 3n-vector g; the concatenation of the 3D

coordinates of all vertices Pi. The vector g is written as:

g = g + S τ s + A τ a (1)

where g is the standard shape of the model, τ s and τ a are

shape and animation control vectors, respectively, and the

columns of S and A are the Shape and Animation Units. A

Shape Unit provides a means of deforming the 3D wire-

frame so as to be able to adapt eye width, head width,

eye separation distance, etc (see Figure 1). Thus, the term

S τ s accounts for shape variability (inter-person variability)

while the term A τ a accounts for the facial animation (intra-

person variability). The shape and animation variabilities

can be approximated well enough for practical purposes by

this linear relation. Also, we assume that the two kinds of

variability are independent. With this model, the ideal neu-

tral face configuration is represented by τ a = 0. In this

study, we assume that the images are depicting quasi-neutral

faces. Using this assumption it is then possible to omit the

third term in the left side of Eq.(1). Thus, the expression for

the deformable mesh becomes:

g = g + S τ s (2)

The shape modes were created manually to accom-

modate the subjectively most important changes in facial

shape. Even though a PCA was initially performed on man-

ually adapted models in order to compute the shape modes,

we preferred to consider the Candide model with manu-

ally created shape modes with semantic signification that

are easy to use by human operators who need to adapt the

3D mesh to facial images.

In the model package, the number of modes associated

with facial Shape Units matrix S (inter-person variability) is

twelve. However, for the purpose of our study which deals

with the automatic image-based extraction of the control

vector τ s only six components are considered as the most

significant indicators of the perceived person-dependent fa-

cial shape in a given near frontal facial image. These com-

ponents are: Head height, vertical position of the eye brows,

vertical position of the eye, eyes separation distance, verti-

cal position of the nose, vertical position of the mouth. The

remaining components are set to nominal values.

Figure 1. Effects of some facial shape control parameters on the

deformable 3D model (neutral shape, mouth width, eyes width,

eyes vertical position, eye separation distance, head height).

(a) (b)
Figure 2. (a) 3D mesh with correct control shape parameters. (b)
3D mesh with another set of control shape parameters.

Figure 2 illustrates the importance of having a correct

person-specific shape parameters—the control vector τ s).

This figure illustrates the 3D mesh overlaid on the face sub-

ject using the same 3D face pose parameters in two cases.

In (a), the 3D mesh is obtained from the control vector τ s

associated with the displayed subject. In (b), the 3D mesh

is obtained with the control vector τ s associated with an-

other subject. As can be seen, facial expression tracking

and recognition based on the deformable 3D mesh become

unfeasible if arbitrary control shape parameters are used.

In equation (1), the 3D shape is expressed in a local co-

ordinate system. However, one should relate the 3D coordi-

nates to the image coordinate system. To this end, we adopt

the weak perspective projection model. We neglect the per-

spective effects since the depth variation of the face can be

considered as small compared to its absolute depth. There-



fore, the mapping between the 3D face model and the image

is given by a 2×4 matrix, M, encapsulating both the 3D face

pose and the camera parameters.Thus, the state of the 3D

wireframe model is given by the 3D face pose parameters

(three rotations and three translations) and the shape con-

trol vector τ s. This is given by the 12-dimensional vector

b:

b = [θx, θy, θz, tx, ty, tz, τT
s ]T (3)

= [hT , τT
s ]T (4)

where the vector h represents the six degrees of freedom as-

sociated with the 3D face pose. Note that if only the aspect

ratio of the camera is known, then the component tz is re-

placed by a scale factor s ∝ 1
tz

having the same mapping

role between 3D and 2D.

2.2. Shape-free facial patches

A facial patch is represented as a shape-free image (geo-

metrically normalized rawbrightness image). The geometry

of this image is obtained by projecting the standard shape g
using a centered frontal 3D pose onto an image with a given

resolution. The texture of this geometrically normalized im-

age is obtained by texture mapping from the triangular 2D

mesh in the input image (see figure 3) using a piece-wise

affine transform, W . The warping process applied to an in-

put image y is denoted by:

x(b) = W(y, b) (5)

where x denotes the shape-free patch and b denotes the geo-

metrical parameters. Several resolution levels can be chosen

for the shape-free patches. Regarding photometric transfor-

mations, a zero-mean unit-variance normalization is used to

partially compensate for contrast variations.

(a) (b)
Figure 3. (a) an input image with correct adaptation. (b) the cor-

responding shape-free facial patch.

2.3. Statistical facial texture

Our statistical facial texture should describe the appear-

ance variation of the shape-free facial patches x (see fig-

ure 3.(b)). These patches are obtained from the training

images (individual snapshots or video sequences) by fitting

the 3D deformable model to the face. This fitting can be

manual or automatic [1]. Using these training patches one

can easily build a statistical facial texture model. For this

purpose we use the Principal Component Analysis (PCA)—

a well-known technique used for modeling face subspaces.

We assume that we have K shape-free patches. Applying a

PCA on the training patches we can compute the mean and

the principal modes of variation. Thus, the parameters of

the facial texture model will be given by the average texture

x and the principal texture modes encoded by the d × K
matrix T. The columns of T represent the principal modes

(d is the size of the shape-free facial patch).

If the model instance, b, is a good fit to the input image

(i.e., the 3D mesh is aligned with the actual 3D face pose

and shape), then the residual error between the shape-free

patch x and its projection onto the PCA space x̂ is small

since the remapped texture will be consistent with the sta-

tistical model of a face texture. Thus, a reliable measure of

the goodness of any fit, b, can be given by the norm of the

associated residual image between the shape-free patch and

its PCA approximation:

e(b) = ‖r‖2 = ‖x(b) − x̂(b)‖2 (6)

The above error is called Distance From Feature Space

(DFFS). The projection of the texture x(b) onto the space

spanned by the texture modes is given by:

x̂(b) = x + T TT (x(b) − x) (7)

Thus, the basic idea is to estimate the 3D face pose and

shape parameters, i.e. the vector b, such that the associated

shape-free patch will be as close as possible to the facial

sub-space.

3. 3D face pose and person-specific shape pa-
rameters from a single image

The unknown 3D face pose and shape parameters encap-

sulated into the vector b can be estimated by seeking the

minimum of the cost function (6):

b = arg min
b

e(b) (8)

To this end, we use the Differential Evolution (DE) al-

gorithm [11] in order to minimize the error (6) with re-

spect to the 3D face pose and shape parameters. The DE

algorithm is a practical approach to global numerical opti-

mization that is easy to implement, reliable and fast. The

crucial idea behind DE is a scheme for generating trial pa-

rameter vectors. Basically, DE adds the weighted difference

between two population vectors to a third vector. In a popu-

lation of potential solutions within a D dimensional search

space, a fixed number of vectors are randomly initialized,



then evolved over time to explore the search space and to

locate the extremum of the objective function.

In our case, the initial population is randomly selected

between the lower and upper bounds defined for each vari-

able using uniform distributions. In other words, the pop-

ulation of the first generation is randomly chosen around a

rough solution b�. Thus, the first population is centered on

a solution formed by b� = (0, 0, 0, t�x, t�y, s�, τ �
s)

T . By def-

inition of Candide model, each component of τ s is normal-

ized and belongs to the interval [−1, 1], thus the value of all

initial individuals are drawn from the uniform distribution

U(−1, 1), i.e., τ �
s = 0.

The rough 2D translation (t�x, t�y) is set to the center of

the rectangle found by Viola & Jones face detector [13].

The scale s� is directly related to the size of the detected

rectangle. A learned Look Up Table is used for this purpose.

The optimization adopted by the DE algorithm is based

on a population of N solution candidates bn,i (n =
1, . . . , N ) at iteration (generation) i. Initially, the solution

candidates are randomly generated around the solution b�

within the provided intervals of the search space. The popu-

lation then improves by generating new solutions iteratively

for each candidate [11].

4. Experimental results
Experiments were conducted to evaluate the perfor-

mance of the proposed fitting algorithm in image snapshots

extracted from several video sequences recorded under real-

istic conditions. The videos depict rich person activity, cov-

ering as many head pose angles as possible. The distance of

the faces from the recording camera ranged from 50 cm to

one meter. The yaw and pitch angles were belonging to the

interval [−40◦,+40◦].
In this section, we report qualitative and quantitative

evaluation of the proposed algorithm. For the purpose of

ground-truth data associated with the 3D head pose we used

home-made tools in order to compute the ground truth 3D

head pose by registering dense 3D facial surfaces obtained

by a stereo camera.

4.1. Qualitative evaluation

We have found that PCA models with 20 principal com-

ponents are usually enough for representing the face space.

More precisely, we found that the retained variance is above

95% of the total variance. We built a PCA model by using

the shape-free templates associated with a training set of

500 images.

Figure 4 illustrates the application of the proposed

scheme on a single image of an unseen person. Figure 4.(a)
shows the original image together with the 2D face detec-

tion results obtained by Viola & Jones detector. Figure 4.(b)
shows the projection of the 3D mesh using the obtained 3D

(a) (b)
Figure 4. Full automatic estimation of 3D face pose and person-

specific shape associated with an unseen person. (a) The original

image and the 2D face detection results. (b) The estimated 3D face

pose and shape parameters projected onto the image.

0 1 2 3 4 5 6 7 8 9 10
3400

3500

3600

3700

3800

3900

4000

4100

4200

Generation

B
es

t r
es

id
ua

l e
rr

or

Figure 5. The evolution of the best residual error obtained by the

Differential Evolution algorithm associated with the image shown

in Figure 4. The population size was 500. As can be seen, the

convergence was obtained in three iterations/generations.

Figure 6. Simultaneous 3D face pose and shape associated with

four different snapshots.

pose and shape parameters.

Figure 5 illustrates the evolution of the best residual error

obtained by the Differential Evolution algorithm associated

with the image shown in Figure 4. The population size of

DE algorithm was 500. As can be seen, the convergence

was obtained in three iterations/generations. With a non-

optimized C code, the algorithm took about 5 seconds to

compute the unknown parameters.

Figure 6 illustrates the application of the proposed

scheme on four snapshots.

4.2. Quantitative evaluation

In the previous section, the evaluation of the fitting al-

gorithm was carried out by visual inspection. We checked



that the features of the 3-D model (deformed 3D mesh) pro-

jected onto their corresponding 2-D features in the image.

In this section, we aim at a quantitative evaluation. The

problem with an objective evaluation is that the absolute

truth is not known. This is particularly true for the shape

parameters that represent normalized intensities that deform

a 3D model.

In this section, we report comparisons with a manual fit-

ting. Then we present performance studies considering ro-

bustness to occlusions. Finally, we provide a comparison

with ground-truth data obtained from a stereo-based 3D fa-

cial surfaces.

4.2.1 Control shape parameters: Automatic fitting ver-
sus manual fitting

In this section we compare the automatically estimated pa-

rameters with the manually fitted ones. The manual fitting

is carried out using an interactive graphical interface that

displays the current image together with a 2D projection of

the Candide model.

Table 1 depicts the average deviation between the man-

ually obtained parameters and the automatically obtained

parameters over ten different individuals. Recall that the

shape parameters are normalized, i.e., each parameter be-

longs to the interval [−1, 1]. Thus, one can conclude that

the largest deviation is associated with the vertical position

of the nose 4.57%. This can be explained by the fact that

the nose and its surrounding areas are somewhat feature-

less. Table 2 illustrates the manually and automatically fit-

ted shape parameters for a given individual.

eyebrow eye eyes separa. nose mouth

Ave. dev. 2.65% 3.27% 1.7% 4.57% 1.22%

Table 1. Average deviation (in %) over ten different individuals.

eyebrow eye eyes separa. nose mouth

Manual 0.550 0.680 0.037 0.580 0.160

Automatic 0.493 0.687 0.032 0.635 0.139

Table 2. Manual fitting versus automatic fitting associated with a

given subject. The first row illustrates the shape parameters ob-

tained manually by deforming the 3D mesh using a graphical user

interface. The second row depicts the same parameters estimated

by the proposed algorithm.

4.2.2 Evaluation in the presence of occlusions

Figure 7 shows the fitting results on a partially occluded

face. The occlusions affected about half of the shape-free

facial image. Despite the presence of these occlusions, the

estimated pose and shape parameters do not deviate signif-

icantly from their estimated values with no occlusion. Ta-

ble 3 summarizes the deviations associated with the 3D face

pose parameters (Figure 7.(a)). The first row depicts the de-

viations when the DFFS used the Sum of Squared Distance

SSD (the classical distance). The second row depicts the

deviations when the DFFS used the Trimmed Least Square

distance TLS (the inlier percentage was set to 60%).

(a) (b)
Figure 7. 3D face pose and shape estimation when the face is par-

tially occluded.

tx(pixels) ty(pixels) s θx θy θz

SSD 0.08 0.15 0.03 1.35◦ 2.1◦ 1.64◦

TLS 0.47 2.4 0.03 1.30◦ 1.1◦ 0.95◦

Table 3. The deviation in the 3D face pose parameters when the

face is partially occluded (Figure 7.(a)). The first row corresponds

to the classical DFFS (Sum of Squared Difference). The last row

corresponds to the Trimmed Least Square distance.

4.2.3 3D face pose accuracy using stereo-based
ground-truth data

We point out that the input to our proposed fitting algo-

rithm is a single image depicting a quasi neutral face. Thus,

the proposed approach can be used for initializing 3D face

trackers in videos using the 3D mesh. However, the pro-

posed approach is not intended to be used as a 3D face

tracker since the person-specific shape parameters are con-

stant for a given person in the sense that only one single

image is enough for estimating them.

In this section, we evaluate the accuracy of the proposed

fitting algorithm on images extracted from three video se-

quences whose ground-truth 3D face pose data are known.

In total, about 900 images are used in the evaluation pro-

cess. Figure 8 presents some snapshots taken from two dif-

ferent videos. In these videos, the subjects were asked to

move their face such that it performs the three out-of-plane

motions (pitch, yaw and depth). The aim of using our pro-

posed approach as a 3D face tracker was two-fold: to eval-

uate the accuracy of the estimated 3D head pose parameters

over a large number of images, and to measure the similar-

ity of the estimated person-specific shape parameters within

a given sequence. Recall that those parameters are ideally

constant for a given person.

We run our proposed fitting algorithm (Section 3) on the

monocular sequence in order to retrieve the 3D face pose



parameters and the 3D shape parameters associated with

every frame of the sequence. Using the above stereo se-

quence, the relative 3D face pose was estimated using two

approaches: (i) the proposed fitting algorithm (Section 3),

and (ii) the joint use of the stereo-based facial surfaces and

the Iterative Closest Point (ICP) algorithm. The second kind

of data can be used as ground-truth 3D face poses since the

3D data associated with the face surface are accurate and

since the used registration (the Iterative Closest Point) per-

forms a fine 3D registration.

The average errors over the whole data set were (4.37◦;

4.82◦; 0.73◦) on the three rotation angles, and (0.24cm;

0.26cm; 1.33cm) on the 3D position. The average over the

sequences of the standard deviation of the estimated shape-

parameters the vertical position of the eye brows, the ver-

tical position of the eye, the eyes separation distance, the

vertical position of the nose, and the vertical position of

the mouth were respectively 0.9%, 1.0%, 1.1%, 0.8%, and

0.9%. This shows the ability of the fitting algorithm to es-

timate almost the same person-shape parameters under dif-

ferent 3D face poses.

Figure 8. Simultaneous 3D face pose and shape parameters asso-

ciated with two 300-frame video sequences.

5. Conclusion

This paper presented a holistic method that fits a generic

deformable 3D face model to a single facial image where

the face is not required to be frontal. The fitted parame-

ters are the 3D face pose parameters as well as some shape

control parameters. The proposed method has several ad-

vantages that make it attractive. These advantages are sum-

marized in Table 4. The core of our method is an holistic

approach that is based on a genetic optimizer. The proposed

method is useful for the tasks of 3D face pose tracking and

3D facial expression recognition.
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Criterion Yes/No

Requires continuous video data? No

Requires an initialization? No

Causes drifting? No

Uses stereo vision? No

Needs a frontal view of the face? partially yes

Needs facial feature labelling? No

Subject dependent? No

Table 4. The main features of the proposed holistic approach to

face pose and shape estimation according to [8].
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