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a b s t r a c t

The median graph has been shown to be a good choice to obtain a representative of a set of graphs.
However, its computation is a complex problem. Recently, graph embedding into vector spaces has been
proposed to obtain approximations of the median graph. The problem with such an approach is how to go
from a point in the vector space back to a graph in the graph space. The main contribution of this paper is
the generalization of this previous method, proposing a generic recursive procedure that permits to
recover the graph corresponding to a point in the vector space, introducing only the amount of approx-
imation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we
compare it with the set median and with the other state-of-the-art embedding-based methods for the
median graph computation. The experiments are carried out using four different databases (one semi-
artificial and three containing real-world data). Results show that with the proposed approach we can
obtain better medians, in terms of the sum of distances to the training graphs, than with the previous
existing methods.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In structural pattern recognition, the use of graphs to represent
complex and structured objects has gained popularity in recent
years. Thus, a number of different graph matching approaches have
been proposed in the literature. For an extensive review of graph
matching methods and applications, we refer the reader to Conte
et al. [1]. However, one drawback of graphs arises from the fact
that there is little mathematical structure in the domain of graphs.
For example, computing the weighted sum, or the product of a pair
of entities (which are elementary operations, required in many
algorithms) is not possible in the graph domain.

Another important operation is the computation of the median
graph [2]. Given a set of graphs, the median graph is defined as the
graph that has the minimum sum of distances (SOD) to all the
graphs in the set. It can be seen as the representative of the set.
In fact, it has been successfully applied in classical learning algo-
rithms such as k-means clustering [3] and kNN-based classification
[4]. Moreover, it can be potentially applied to any graph-based
algorithm where a representative of a set of graphs in needed.
However, the cost of the computation of the median graph is expo-
nential both in the number of input graphs and their size [5]. Up to
now, two exact algorithms have been presented [6,7]. As the
ll rights reserved.
computational cost of these algorithms is very high, a set of
approximate algorithms have also been presented in the past
based on different approaches such as genetic search [2,6], greedy
algorithms [8] and spectral graph theory [9,10]. However, all these
algorithms can only be applied to restricted sets of graphs, regard-
ing either the type or the size of the graphs.

An alternative to simplify the computation of the median graph
is graph embedding. In general, embeddings try to convert points
of an original space into another space with better properties that,
potentially, permit to simplify some of the operations over the ori-
ginal space. Some work has been devoted to establish a theoretical
framework and to propose generic embeddings with good proper-
ties concerning the distortion introduced by the embedding (see
[11] for a good review). Some of these ideas have been applied to
trees [12] and graphs [13] in the context of image categorization.
The application of the generic framework of embedding to graphs
permits to convert graphs into points in any vector space. Thus,
graph embedding techniques emerge as a powerful way to provide
access to the rich repository of algorithmic tools available in statis-
tical pattern analysis. For that reason, a number of specific graph
embeddings have been recently proposed. For instance, features
derived from the eigen-decomposition of graphs are studied in
[14]. An approach dealing with string edit distance applied to the
eigensystem of graphs is presented in [15]. This procedure results
in distances between graphs which are used to embed the graphs
into a vector space by means of multidimensional scaling. In

http://dx.doi.org/10.1016/j.cviu.2010.12.010
mailto:mferrer@iri.upc.edu
http://dx.doi.org/10.1016/j.cviu.2010.12.010
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


Fig. 1. Example of a possible edit path between two graphs, g and g0 . It consists on
an edge deletion, a node substitution, a node insertion and two edge insertions.
Furthermore g0 is the Weighted Mean of the Graphs g and g0 .
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[16], the authors show how the elements of the spectral decompo-
sition of the Laplacian matrix can be used to construct symmetric
polynomials. The coefficients of these polynomials are used as
graph features in order to encode graphs as vectors. Another ap-
proach for graph embedding has been proposed in [17]. The
authors use the relationship between the Laplace–Beltrami opera-
tor and the graph Laplacian to embed a graph onto a Riemannian
manifold. Recently, graph embedding by means of the graph edit
distance [18] has been used to perform classification tasks [19].

Graph embedding has been already used for the median graph
computation [4]. In that approach, a three-step procedure is fol-
lowed to approximate the median graph. In the first step, graphs
are embedded into a vector space by means of the graph edit dis-
tance computation. As a result, every graph in the original set be-
comes a point in a real-vector space. In the second step, the median
of this set of points (which is supposed to be the vector represen-
tation of the median graph) is computed using the Weiszfeld algo-
rithm [20]. Performing this operation in the vector domain is
simpler than computing it in the graph domain. Finally, in the third
step, an approximation of the median graph is recovered from the
vector domain using the weighted mean of a pair of graphs [21].
Although this work has been shown to be able to obtain good
approximations of the median graph, it is also true that one is
not able to recover the graph corresponding to the median vector
but only a graph corresponding to the median of a subset of the ori-
ginal points (supposed to be close to the median vector). This may
cause a deterioration in the obtained median graph.

The present paper presents a new generic framework to com-
pute the median graph using graph embedding. The proposed
methodology also relies on embedding a set of graphs into a vector
space, computing the median of such a set in the vector domain
and then, recovering the graph corresponding to this representa-
tive point. However, the main contribution of the paper is made
in the third step, i.e. the way of recovering the median graph from
the median vector. We propose a recursive approach that, ideally,
would permit to recover the graph that corresponds exactly to
the median vector. The basic idea of this approach is as follows.
Once all graphs have been mapped to their corresponding points
in the n-dimensional real space and the median of these points
has been computed, we sequentially project the median point into
subspaces of lower dimensionality until a projected point is ob-
tained lying on a line that connects the maps of two graphs of
the given set. The graph corresponding to this point can be approx-
imately reconstructed by means of the weighted mean. Next, we
recursively consider all other projected points obtained before in
higher dimensional spaces and apply the same reconstruction prin-
ciple until the graph corresponding to the median point is ob-
tained. However, due to the complexity of graph matching
problems, we are forced to use approximate algorithms and, there-
fore we will only be able to obtain partial approximations of the
real median graph. Nevertheless, the proposed approach takes into
account all graphs of the given set in the recovery of the median
graph from the median vector. This is in contrast with previous ap-
proaches [3,4], where only a small subset is used for the recon-
struction. Due to the larger set of graphs, we may expect to
obtain a better approximation of the median graph by this proce-
dure. In this sense, we analyze four additional variations of this
method which take into account different sorting schemes of the
original set of graphs. These variations can help to understand
the influence of these approximations in the final result. It is also
important to remark that this generic framework could be poten-
tially used in conjunction with any embedding technique and with
any method to compute the representative of the set in the vector
space. A preliminary version of this paper appeared in [22]. The
current paper has been significantly extended with respect to the
underlying methodology and the experimental evaluation.
In order to test the quality of the proposed methods, we have
made experiments on four different graph databases, one semi-
artificial and three containing real-world data. The underlying
graphs have no constraints regarding the number of nodes and
edges. The results are evaluated, according to the definition of
the median graph, in terms of the sum of distances of the median
graph to all other elements in the training set. We will show that,
in most cases, the new method obtains better results than the set
median and other embedding-based methods. With these results
at hand, we can apply this new approach to any real world
graph-based application in pattern recognition and machine learn-
ing that requires to compute a median, for instance, classification
and clustering.

The rest of this paper is organized as follows. In the next section
we define the basic concepts and we introduce the notation we will
use later in the paper. Then, in Section 3 the proposed generic
method for the median computation is described. After that, Sec-
tion 4 presents a practical implementation of the proposed generic
framework. Section 5 reports a number of experiments and pre-
sents the results achieved with our method. Also a comparison
with a reference system is provided. Finally, in Section 6 we draw
some conclusions and we point out to possible future work.

2. Basic concepts

This section introduces the basic terminology and notation we
will use throughout the paper.

2.1. Graph

Given L, a finite alphabet of labels for nodes and edges, a graph g
is defined by the four-tuple g = (V,E,l,m) where V is a finite set of
nodes, E # V � V is the set of edges, l:V ? L is the node labeling
function and m: V � V ? L is the edge labeling function. The alpha-
bet of labels is not constrained in any way. For example, L can be
defined as a vector space (i.e. L ¼ Rn) or simply as a set of discrete
labels (i.e. L = {D,R,W, . . .}). Edges are defined as ordered pairs of
nodes, that is, an edge is defined by (u,v) where u,v 2 V. The edges
are directed in the sense that if the edge is defined as (u,v) then
u 2 V is the source node and v 2 V is the target node.

2.2. Graph edit distance

The basic idea behind the graph edit distance [18,23] is to de-
fine the dissimilarity of two graphs as the minimum amount of
change required to transform one graph into the other. To this
end, a number of edit operations e, consisting of the insertion, dele-
tion and substitution of both nodes and edges are defined. Given
these edit operations, for every pair of graphs, g1 and g2, there ex-
ists a sequence of edit operations, or edit path p(g1,g2) = (e1, . . . ,ek)
(where each ei denotes an edit operation) that transforms g1 into g2

(see Fig. 1 for an example). In general, several edit paths may exist
between two given graphs. This set of edit paths is denoted by
}(g1,g2). To evaluate which edit path is the best one, edit costs
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are introduced through a cost function. The basic idea is to assign a
cost c(e) to each edit operation according to the amount of distor-
tion it introduces in the transformation. Then, the edit distance be-
tween two graphs g1 and g2, denoted by d(g1,g2), is the minimum
cost edit path over all edit paths that transform g1 into g2.

dðg1; g2Þ ¼ min
ðe1 ;...;ekÞ2}ðg1 ;g2Þ

Xk

i¼1

cðeiÞ ð1Þ

A number of optimal and approximate algorithms for the computa-
tion of the graph edit distance have been proposed up to now. Opti-
mal algorithms are usually based on combinatorial search
procedures that explore all the possible mappings of nodes and
edges of one graph to the nodes and edges of the second graph
[23]. The major drawback of such an approach is its computational
complexity, which is exponential in the number of nodes of the in-
volved graphs. Consequently, its application is restricted to graphs
of rather small size in practice. As an alternative, a number of subop-
timal methods have been proposed to make the graph edit distance
less computationally demanding and therefore usable in real appli-
cations. Some of these methods are based on local optimization [24].
A linear programming method to compute the graph edit distance
with unlabeled edges is presented in [25]. Such a method can be
used to obtain lower and upper edit distance bounds in polynomial
time. In [26] simple variants of the standard method are proposed to
derive two fast suboptimal algorithms for graph edit distance, which
make the computation substantially faster. Finally, a new efficient
algorithm is presented based on a fast suboptimal bipartite optimi-
zation procedure [27]. In this paper we will use these two last
approximate methods for the graph edit distance computation.

In [18] it was shown that d(g1,g2) is a metric if the underlying
cost function is a metric. Under the approximation algorithms of
[26,27] used in this paper, however, the metric property is no
longer guaranteed. But this does not have any negative impact
on the approach proposed in this paper because, firstly, the embed-
ding procedure that maps each graph onto an n-dimensional vector
can be applied regardless if the underlying distance function is a
metric or not [28] and, secondly, after embedding all points, which
represent the graph, are located in a Euclidean (and in particular a
metric) space.

2.3. Weighted mean of a pair of graphs

For the purpose of median graph computation, the weighted
mean of a pair of graphs [21] is a crucial tool. For this reason we
include its definition in the following.

Let g and g0 be graphs and let U be the set of graphs that can be
constructed using the labels of their nodes and edges. Let

I ¼ fh 2 Uj dðg; g0Þ ¼ dðg;hÞ þ dðh; g0Þg

be the set of intermediate graphs between g and g, i.e. any of the
graphs along the edit path between g and g0. Given a weight a 2 R

where 0 6 a 6 d(g,g0), the weighed mean of g and g0 is a graph g00

such that,

g00 ¼ arg min
h2I
jdðg;hÞ � aj ð2Þ

That is, given two graphs, g and g0 and a parameter a, the weighted
mean is an intermediate graph g00 between them, whose distance to
g is as close as possible to a. Consequently, its distance to g0 is also
the closest to d(g,g0) � a. From this point on, we will refer the
weighted mean as a-mean.

Please note that, due to the discrete nature of the domain of
graphs and the graph edit distance, not for any value of a, a graph
g00 may exist such that d(g,g00) = a and d(g00,g0) = d(g,g0) � a.

Fig. 1 shows an example where a coincides with the cost of
deletion of the edge between the red and the green nodes. There-
fore, since this deletion is an edit operation of an optimal edit path,
the graph g00 is an a-mean for which jd(g,g00) � aj = 0.

Observe that g00 is not necessarily unique. Consider, for example,
a graph g consisting of only a single node with label A and a graph
g0 consisting of three isolated nodes labeled with A, B, and C,
respectively. Assume that the insertion and deletion of a node
has a cost equal to 1, regardless of the label of the affected node.
Then we have d(g,g0) = 2. Obviously, for a = 1 there exist two
1-mean graphs: g1, which consists of two isolated nodes, one with
label A and the other with label B, and g2, which also consists of
two isolated nodes, one with label A and the other with label C.

2.4. Median graph

Given L, a finite alphabet of labels for nodes and edges, let U be
the set of all graphs that can be constructed using labels from L. Gi-
ven S = {g1,g2,. . .,gn} # U, the generalized median graph �g of S is de-
fined as,

�g ¼ arg min
g2U

X

gi2S

dðg; giÞ ð3Þ

That is, the generalized median graph �g of S is a graph g 2 U that
minimizes the sum of distances (SOD) to all the graphs in S. Notice
that �g is usually not a member of S, and in general more than one
generalized median graph may exist for a given set S. It can be seen
as the representative of the set. Consequently, it can be potentially
used by any graph-based algorithm where a representative of a set
of graphs in needed.

Despite its simple mathematical definition (Eq. 3), the computa-
tion of the median graph is extremely complex. As implied by Eq. (3),
a distance measure d(g,gi) between the candidate median g and
every graph gi 2 S must be computed. However, since the computa-
tion of the graph distance is a well-known NP-complete problem,
the computation of the generalized median graph can only be done
in exponential time, both in the number of graphs in S and their size
(even in the special case of strings, the time required is exponential
in the number of input strings [29]). As a consequence, in real appli-
cations we are forced to use suboptimal methods in order to obtain
approximate solutions for the generalized median graph in reason-
able time. Such approximate methods [2,6,8–10] apply some heuris-
tics in order to reduce the complexity of the graph distance
computation and the size of the search space. Recent works [3,4] rely
on graph embedding into vector spaces. Since they are the founda-
tion of this work, we introduce them in detail in the next section.

An alternative to the generalized median graph, which is com-
putationally less demanding, is the set median graph. The differ-
ence between the two concepts consists in the search space
where the median is looked for. As it is shown in Eq. (3), the search
space for the generalized median graph is U, that is, the whole uni-
verse of graphs. In contrast, the search space for the set median
graph is simply S, that is, the set of given graphs. It makes the com-
putation of set median graph exponential in the size of the graphs,
due to the complexity of graph edit distance, but polynomial with
respect to the number of graphs in S. The set median graph is usu-
ally not the best representative of a set of graphs, but it is often a
good starting point towards the search of the generalized median
graph. As a matter of fact, we will use the set median graph as a
reference system in the experiments presented in Section 5.
3. A generic approach to compute the median graph via
embedding

Generally speaking, graph embedding [11] aims to convert
graphs into another structure, such as real vectors, and then oper-
ate in the associated space to facilitate some typical graph-based
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tasks, such as matching and clustering [30,31]. To this end, as we
already explained in the introduction, different graph embedding
procedures have been proposed in the literature so far.

Graph embedding has been used recently for the approximate
median graph computation [4]. In that work, a three-step based
process is used to perform the median computation. Here, we take
this three-step procedure as the basis to propose a generic frame-
work to compute the median graph. In the following we will de-
scribe the three steps of this procedure, although our main
contribution is made in the third step where we will introduce a
new generic method to recover the graph corresponding to the
median vector. For the rest of the section we will suppose that a
set S of n graphs S = {g1,g2, . . . ,gn} is given.

Step I: In a first step every graph in S is embedded into the real
n-dimensional space, i.e. each graph becomes a point in
Rn. In principle, any embedding which fulfils this condi-
tion could be used in this step. However, it is expected
that the best results will be obtained when the distance
relationships in the vector space resemble as much as
possible the distance relationships in the original graph
space.

Step II: The second step consists of computing a representative
of the set in the vector space. Here, the median vector
~M arises as a natural choice [4]. Given a set } =
{P1,P2, . . . ,Pm} of m points with Pi 2 Rn for i = 1, . . . ,m,
the median vector is a point Mn 2 Rn that minimizes
the sum of the distances to all the points in }. As we
can see, its definition is exactly the same as the median
graph but in the vector space. Thus, if the embedding
preserves the distance structure of the graph domain,
the median vector should be the a good representation
of the median graph in the vector space.

Step III: Finally, the resulting median vector has to be mapped
back to a corresponding graph. This last step of mapping
back from the vector space to the graph domain is a dif-
ficult problem for a number of reasons. To mention just
two, depending on the embedding technique not every
point in the (continuous) vector space corresponds to a
graph. Secondly it might be that for a particular vector
a one-to-many relationship to the graph domain exists.
These difficulties have been shown in recent works. For
instance, in [4] the three closest points to the computed
median vector ~M are used to compute the median ~M0 of
the three points (which always falls on the plane defined
by them). Using these three points (corresponding to
known graphs) and the new median ~M0, the weighted
mean approach [21] is used to recover a graph �g0 (corre-
sponding to ~M0), which is taken as an approximation of
the median graph �g of S. Although the results of this
approach are better than other approximations of the
median graph, the method to recover the median graph
from the median vector is not exact. It only permits to
recover the graph that corresponds to the median vector
of the three selected points and not the graph that corre-
sponds to the median vector of the whole set.

In the remaining of this section we present a new recursive ap-
proach to get the mapping between the median vector and the
median graph. The novelty of the approach lies in the fact that
the complete set of graphs, or more precisely, their representation
in the vector space, will be used for establishing this mapping. Note
that all geometric operations needed in the reconstruction are car-
ried out in the n-dimensional real space using the Euclidean dis-
tance. Hence, all the operations take place in a metric space.
Thus, if we were able to compute the exact edit distance between
two graphs, we would be able to obtain the graph that corresponds
to the median vector of the whole set. However, as we will discuss
later in Section 4, we will be forced to use several approximations
in the practical implementation of the procedure. As a result we
will only be able to obtain approximations of the median graph
but still better than those obtained using existing methods as we
will show in Section 5.
3.1. Median graph recovering

The graph corresponding to the median vector will be recovered
by means of the recursive application of the weighted mean of a
pair of graphs. Let us introduce some important aspects before
explaining the method.

1. Given a set of n linearly independent points in Rn we can define
a hyperplane Hn�1 of dimensionality n � 1 (e.g. in the case of
n = 2, two points define a unique 1D line, in the case of n = 3,
three points define a unique 2D plane, etc).

2. The Euclidean median Mn
1 of these n points will always fall on

the hyperplane Hn�1. More concretely, it will fall within the vol-
ume of the n � 1 dimensional simplex with vertices Pi with
i = 1,2, . . . ,n. Fig. 2 shows an example for n = 4 and n = 3.

3. Assume that we can define a line segment in the vector space
that connects two points P1 and P2 corresponding to known
graphs g1 and g2, such that the calculated median M2 lies on this
line segment. We can then calculate the graph gM2

correspond-
ing to the median M2 as the weighted mean of g1 and g2.

From the third point we can observe that, given n embedded
points {P1,P2, . . . ,Pn} and their corresponding median Mn, in order
to obtain the graph corresponding to Mn, the problem is to find
two points in the vector space, whose corresponding graphs are
known, such that the median Mn lies on the line defined by these
two points. In this way, we can then apply the weighted mean
on these two points in order to find the graph corresponding to
Mn. In the following we will describe how we can obtain these
two points and, thus, such a graph. We will illustrate this proce-
dure with the example shown in Fig. 3 with four points. Fig. 3a
shows the four points {P1,P2,P3,P4} and their median M4.

Given P1,P2, . . . ,Pn, we can choose without loss of generality, any

one of them, say Pn, and create the vector ðMn � PnÞ
!

(vector

ðM4 � P4Þ
!

in Fig. 3b). This vector will lie fully on the hyperplane
Hn�1 defined by these n points. Then, if we call Hn�2 the hyperplane
of dimensionality n � 2 defined by the set of the remaining n � 1
points {P1,P2, . . . ,Pn�1}, that is all the original points except Pn, then

the intersection of the line defined by the vector ðMn � PnÞ
!

and the
new hyperplane Hn�2 will be a single point. We will call this new
point Mn�1 (M3 in Fig. 3b which lies on the hyperplane H2 (plane)
defined by P1, P2 and P3). As mentioned before, in order to use the
weighted mean of a pair of graphs to calculate the graph corre-
sponding to Mn, we need to first find a point (whose corresponding

graph is known) that lies on the line defined by the vector ðMn � PnÞ
!

,
and specifically on the ray extending Mn (so that Mn lies between Pn

and the new point). Now we have two points (Pn and Mn�1), and the
median Mn falling on the line defined by them. However, although
we already know the graph corresponding to the point Pn (Pn comes
from the graph gn), we do not know yet the graph corresponding to
the point Mn�1. Therefore, we cannot apply the weighted mean to
find the graph corresponding to Mn. However, we can follow exactly
the same procedure as before, and consider a new line defined by



(a) (b)

Fig. 2. (a) The 3D-Hyperplane H3 is defined by the four points Pi = {P1,P2,P3,P4}. The Euclidean median M4 falls in the 3D space defined by the four points and specifically
within the pyramid (3D simplex) with vertices Pi (i = 1, . . . ,4). (b) The 2D-Hyperplane H2 is defined by the three points Pi = {P1,P2,P3}. The Euclidean median M3 falls in the 2D
space defined by the three points and specifically within the triangle (2D simplex) with vertices Pi (i = 1, . . . ,3).

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Complete example of the median recovering with four points {P1,P2,P3,P4} .

M. Ferrer et al. / Computer Vision and Image Understanding 115 (2011) 919–928 923
the vector ðMn�1 � Pn�1Þ
!

(ðM3 � P3Þ
!

in Fig. 3c). Again, as we did for
Mn�1, we can define the point of intersection of the above line with
the n � 3 dimensional hyperplane Hn�3 which is defined by the

n � 2 remaining points {P1,P2, . . . ,Pn�2}. Then, we will get a new

point Mn�2 (M2 in Fig. 3(c) which lies on the line defined by points
P1 and P2). This process is recursively repeated until M2 is obtained.
The case of M2 is solvable using the weighted mean of a pair of
graphs, as M2 will lie on the line segment defined by P1 and P2 which
correspond to the known graphs g1 and g2 (we obtain gM2
corre-

sponding to M2 in Fig. 3d).
Having calculated the graph gM2

corresponding to the point M2,
the inverse process can be followed all the way up to Mn. Once gM2

is found, in the next step, the graph gM3
corresponding to M3 can be

calculated as the weighted mean of the graphs corresponding to M2

and P3 (Fig. 3e). Generally the graph gMk
corresponding to the point

Mk will be given as the weighted mean of the graphs corresponding
to Mk�1 and Pk. The weighted mean algorithm can be applied
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repeatedly until the graph gMn
corresponding to Mn is obtained,

which is the median graph of the set (gM4
in Fig. 3f).
4. A practical implementation of the generic framework

In the previous section we introduced the generic framework to
compute the median graph as a three-step process and, particulary,
our contribution to recover the median graph from the median
vector in the last step. In this section we describe the practical is-
sues concerning our specific implementation of this generic frame-
work. We explain the choices we have made for the first two steps,
that are basically the same as in [4], and we discuss some practical
considerations about the approximation introduced in the last
step.

Step I (graph embedding): In this work we will use a class of
graph embedding procedures based on the selection of some pro-
totypes and graph edit distance computation. This approach was
first presented in [32], and it is based on the work proposed in
[33]. The basic intuition of this work is that the description of
the regularities in observations of classes and objects is the basis
to perform pattern classification. Thus, based on the selection of
concrete prototypes, each point is embedded into a vector space
by taking its distance to all these prototypes. Assuming these pro-
totypes have been chosen appropriately, each class will form a
compact zone in the vector space. For the sake of completeness,
we briefly describe this approach in the following.

Assume we have a set of training graphs T = {g1,g2, . . . ,gn} and a
graph dissimilarity measure d(gi,gj)(i, j = 1, . . . ,n; gi,gj 2 T). Then, a
set P = {p1, . . . ,pm} # T of m prototypes is selected from T (with
m 6 n). After that, the dissimilarity between a given graph g 2 T
and every prototype p 2 P is computed. This leads to m dissimilar-
ity values, d1, . . . ,dm where dk = d(g,pk). These dissimilarities can be
arranged in a vector (d1, . . . ,dm). In this way, we can transform any
graph of the training set T into an m-dimensional vector using the
prototype set P.

For our purposes, given a set of graphs S = {g1,g2, . . . ,gn}, we use
the graph embedding method described above to obtain the corre-
sponding n-dimensional points {P1,P2, . . . ,Pn} in Rn. However, in
our case, we set P = S, i.e., we avoid the problem of selecting a prop-
er subset P # S of prototypes and use the whole set of graphs.

It is important to mention that, as long as there are no identical
graphs in the set S, the vectors v i ¼ ðPi � OÞ

!
, where O is the origin

of the n-dimensional space defined, can be assumed to be linearly
independent. This arises from the way the coordinates of the points
were defined during graph embedding. Note that this point was an
important observation in Section 3.1.

An important relation that has been shown in [32] is,

k/ðgÞ � /ðg0Þk 6
ffiffiffi
n
p
� dðg; g0Þ ð4Þ

where /(g) and /(g0) denote the maps of graphs g and g0, respec-
tively, after embedding. That is, the upper bound of the Euclidean
distance of a pair of graph maps /(g) and /(g0) is given byffiffiffi

n
p
� dðg; g0Þ. In other words, if g and g0 have a small distance in

the graph domain, they will have a small distance after embedding
in the Euclidean space as well.

Step II (median vector computation): As we already commented
at the beginning of Section 3, the median vector is used as the rep-
resentative of the set in the vector domain.

The median vector cannot be calculated in a straightforward
way. The exact location of the median vector can not be found
when the number of elements in } is greater than 5 [34]. No algo-
rithm in polynomial time is known, nor has the problem been
shown to be NP-hard [35]. In this work we will use the most com-
mon approximate algorithm for the computation of the median
vector, that is, the Weiszfeld’s algorithm [20]. It is s a form of iter-
atively re-weighted least squares that converges to the median
vector. To this end, the algorithm first selects an initial estimate
solution M0

n0
(this initial solution is often chosen randomly). Then,

the algorithm defines a set of weights that are inversely propor-
tional to the distances from the current estimate M0

ni
to the sam-

ples x, and creates a new estimate M0
niþ1 that is the weighted

average of the samples according to these weights.

M0
niþ1
¼

Pm
j¼1

xj

xj�M0ni

���
���

Pm
j¼1

1

xj�M0ni

���
���

ð5Þ
The algorithm may finish when a predefined number of iterations is
reached, or under some other criteria, such as that the difference
between the current estimate and the previous one is less than a
predefined threshold.

Step III (median graph recovering): To recover the median graph
corresponding to the median vector Mn, we will use the recursive
procedure presented in Section 3.1. In that section, it was claimed
that the method to recover the median graph from the median vec-
tor should permit to obtain the exact median graph in case that the
embedding preserves the distance structure and that we were able
to perform exact computations of the graph edit distance. In gen-
eral, these two conditions are not easy to satisfy. Concerning the
first condition, the procedure simply requires that the edit path be-
tween two graphs follows a path along the straight line joining the
two corresponding vectors in the vector space. Although there are
some cases where using the selected embedding procedure
this can be shown to be true, in general, it is not always satisfied.
Regarding the second condition, the exact computation of the edit
distance is a well-known NP-problem. So, we are forced to use
some approximation. Finally, the computation of the median
vector is also based on an approximate algorithm. For all these
reasons, we are only able to get approximations of the median
graph.

In order to analyze the effect of all these approximations in the
final result, we can examine the order in which points Pi in the vec-
tor space are considered in the recursive procedure (and conse-
quently the order in which the graphs are taken). This is an issue
not defined in the original procedure as, if computations were ex-
act, the order would not matter. However, in case of approximate
computations, the order can be important in the final solution.
For instance, if we start the process of recovering the median graph
using the points that are further from the optimal solution to de-
fine the connecting line in the vector space, we will probably start
introducing some approximation errors in the first steps as the
quality of the weighed mean is better the shortest the edit path
is. However, in the final steps we will consider the points that
are closer to the optimal solution and thus, we will probably bal-
ance this effect as we will give more weight to these points in
the final solution. If we take the reverse order the expected effect
would be the contrary. The final result of these opposite effects is
not clear.

Therefore, we have defined different sorting schemes to con-
sider the points in the recursive procedure according to the sum
of distances of every point in the graph or the vector domain to
the rest of points. Points with a low sum of distances will corre-
spond to points close to the optimal solution.Thus, we present four
variants of the basic recursive scheme presented in Section 3.1
(BRS in short), which include a pre-processing to sort the graphs.
Note that, to be consistent with the notation and the explanations
performed in Section 3.1, the words ascending or descending used in
the following, refers to graphs from gn to g1. These sorted schemes
will be referred as SRS (sorted recursive schemes).
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� Graph-domain-based Recursive Scheme sorted in descending order
(SRS-GD): In this approach, the graphs are ordered in descend-
ing order, taking into account the SOD to the rest of the graphs
in S of each of them. Consequently, gn is the graph with maxi-
mum SOD and g1 is the set median graph. Under this sorting,
the graph corresponding to the point M2 is calculated as the
weighted mean of g1 and g2, the two graphs with lowest SOD,
i.e. the set median (g1) and the next one in terms of the mini-
mum SOD to S (g2).
� Graph-domain-based Recursive Scheme sorted in ascending order

(SRS-GA): This sorting is the inverse to the previous one. The
graphs are ordered upwards, based on the SOD. This way, the
graph corresponding to M2 is obtained from the two graphs
with maximum SOD, and the graph corresponding to Mn is
obtained from the weighted mean between the graph corre-
sponding to Mn�1 and gn (the set median).
� Vector-domain-based Recursive Scheme sorted in descending order

(SRS-VD): Here the criterion for the ordering is still the SOD, but
it is evaluated in the Euclidean space. That is, the SOD of each of
the points {Pn, . . . ,P1} to the other points of the set. In this case,
gn is the graph such that the corresponding point has the max-
imum sum of distances,
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Fig. 4. SOD Evolution for the Letter Dataset using (a)
Pmax ¼ arg max
P2fPn ;...;P1g
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kPi � Pk:

� Vector-domain-based Recursive Scheme sorted in ascending order
(SRS-VA): As before, in this last sorting, the SOD in the Euclid-
ean space, is used to sort the points. The points are ordered
upwards with respect to the SOD, such that the first two points
used to computed the weighted mean are those with maximum
SOD.

In addition note that, given n graphs, in the procedure to re-
cover the median graph we obtain n � 1 intermediate graphs (from
M2 to Mn). As we go through the process we get closer to the graph
corresponding to the median vector. But, at the same time, at every
step we are also introducing more approximation in the final solu-
tion. As a result, it could happen that some of the intermediate
graphs has a SOD better than the final median graph. Given this sit-
uation, we have also analyzed the SOD of these intermediate
graphs.

In order to see the differences along these five recursive
schemes (BRS and the four variations) we computed several medi-
ans using the Letter dataset. In this dataset, we consider the 15
25 30 35 40 45 49
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Table 1
Mean value of the position of the median with minimum SOD.

Letter Molecule Mutagenicity Webpages

BRS 21/50 18/48 23/48 24/42
SRS-GD 11/18 21/39 15/25 23/44
SRS-GA 36/56 25/58 31/63 26/55
SRS-VD 20/50 15/33 14/20 23/45
SRS-VA 28/48 33/60 33/76 28/56

2 http://www.iam.unibe.ch/fki/databases/iam-graph-database.
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capital letters of the Roman alphabet that consist of straight lines
only (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z). For each class, a pro-
totype line drawing is manually constructed. These prototype
drawings are then converted into prototype graphs by representing
lines by undirected edges and ending points of lines by nodes. Each
node is labeled with a two-dimensional attribute giving its position
relative to a reference coordinate system. Edges are unlabeled. (see
Table 2 for characteristics of this dataset, or [36]). More concretely,
we took sets of 50 and 100 elements randomly from the dataset
and we computed the median with each of the methods. Fig. 4
shows the evolution of the SOD of the intermediate medians
graphs for each recursive method. The x-axis represents the recur-
sive level being 1 for the first graph we obtain (i.e. M2), and the last
point representing the last final median (i.e. Mn). The y-axis repre-
sents the SOD of each corresponding intermediate graph. Results
are the mean over 10 repetitions for each size of the set.

First of all, as expected, it is important to note that the results
are different for each of the five recursive schemes. As it can be
seen in Fig. 4, the evolution of the SOD shows different behavior
depending on the initial sorting. However, while the BRS approach
shows a random-like behavior (there is no clear tendency in the
evolution of the SOD), the sorted schemes show a general tendency
in the SOD evolution. Note also that this tendency is independent
of the size of the set used to compute the median. One of the most
striking facts is that the domain on which the sorting is based is
unimportant. That is, in the descending methods (SRS-GD and
SRS-VD), there is a clear tendency in starting with graphs with
lower SODs and terminate with higher SODS. This fact can be
explained because in the descending methods, the first intermedi-
ate graph (i.e. M2) is computed using graphs having lower SOD (in
the case of SRS-GD method, M2 is computed with the set median
and the next graph in terms of the lower SOD). Consequently, M2

has a SOD close to that of the set median. Then, as we compute
more intermediate graphs, they are computed using graphs with
higher SODs. This translates into a degradation in terms of the
SOD in the intermediate graph. On the contrary, in the ascending
schemes (SRS-GA and SRS-VA) the tendency in the evolution is ex-
actly complementary. Here, we start with graphs having high SODs
(and consequently M2 has a high SOD) and then we use better
graphs in terms of the SOD. This translates in a decreasing curve.
As a conclusion, we can state that we get better solutions as we
take points that are closer to the optimal solution. However, the
behavior of the two sorting schemes is not completely complemen-
tary in the sense that the loss in terms of SOD in the descending
methods is not the same as the gain obtained in the ascending
methods. For this reason, the minimum (or maximum) values of
SOD in these evolutions differs. However, the fact that the ten-
dency is kept regardless of the domain of the sorting, supports
the idea that relative distances are well conserved after mapping
graphs into points.

Another important observation is that if we analyze the SOD of
the intermediate graphs we can find intermediate solutions along
the recursive path with a lower SOD than the final solution. This
fact validates our previous hypothesis that there is a compromise
between the amount of approximation and how close we are to
the final solution. For this reason, when we compare these meth-
ods to other existing approaches for the median graph computa-
tion in the next section, we will take into account not only the
final solution but also the best solution along the recursive path.

Recursive methods sorted in descending order (specially
SRS-GD) obtain, in general, the best intermediate graphs. This fact
seems to lead to the conclusion that it is better to start the approx-
imation with a graph as closer as possible to the optimal solution.
In addition, in these methods, the best median is usually obtained
in a very interior call, when few intermediate graphs have been
computed. Table 1 shows for each dataset and for each of the five
recursive schemes the mean position of the best intermediate
median (for 50/100 elements) along all the repetitions. Note that
the values obtained by the BRS method are very close to the mid
position (i.e. 25 in the case of 50 elements and 50 in the case of
100 elements), while the descending methods have in general
lower values than the mid value and the ascending methods have
in general higher values than the mid value. This could be used in a
future work to improve the method in order to obtain good
approximations of the median without need of computing all the
intermediate graphs.
5. Experimental evaluation

In this section we provide the results of an experimental evalu-
ation of the proposed algorithm against the two previous embed-
ding methods for the median graph computation. To this end we
have used four different graph databases representing Letter
shapes, Molecular compounds (two databases), and Webpages.
Table 2 show some characteristics of each dataset. For more infor-
mation of these databases see [36].2
5.1. Experimental setup

In the experiments presented in this section we have proceeded
as follows. For each class in each dataset 50 and 100 elements were
randomly chosen. Then, we calculate the approximate median of
each set using 8 different methods. Namely, the set median (SM),
the previous embedding method using the two closest points to
the median vector to recover the approximate median graph
(E2P) [3], the embedding method using the three closest points
to the median vector (E3P) [4], and the five recursive schemes
explained before. For these five recursive schemes we also include
results taking the best median along the recursive path. This
procedures were repeated 10 times each.

The set median graph (SM) is used in the experiments as a ref-
erence line. As the set median graph is the graph belonging to the
training set with minimum SOD, it is a good reference to evaluate
the generalized median graph quality. For a given dataset, the same
edit distance algorithm is used to compute the set median and the
approximate median. In this sense, since they are computed using
the same method, the same amount of error or distortion (due to
the approximation) is introduced to both of them. Thus, we can
say that they are fairly comparable. Clearly, with the size of the sets
and the graphs we are managing, it is not possible to obtain the
true median graph. This is the main reason for which we use the
set median as the reference line for our comparisons.

Tables 3 and 4 show, for each dataset, the mean value of the
SOD of the median obtained for each method. Results marked with
the �are those better than the set median. Results marked with the
� are those better than both of the previous embedding methods.
Results marked with the q are those better than one of the previ-
ous embedding methods. The best results for each dataset and size
of the training set (50 or 100) is marked with bold face.

http://www.iam.unibe.ch/fki/databases/iam-graph-database


Table 3
SOD comparison for the Letter and the Molecule datasets (�: Methods better than the
set median. �: Methods better than both of the previous embedding methods. q:
Methods better than one of the previous embedding methods. Global best results are
marked with bold face).

Letter Molecule

50 100 50 100

SM 97.02 194.08 306.9 587.1
E2P 117.03 241.95 341.5 705.8
E3P 120.80 245.42 277.7 � 566.5 �

BRS 127.83 260.86 374.1 590.3
SRS-GD 149.39 308.47 504.9 1038.9
SRS-GA 109.71 � 220.31 � 290.9 � 599.3
SRS-VD 149.39 307.20 508.6 1069.8
SRS-VA 122.92 247.42 314.9 649.7

BRS/Best 98.93 � 196.75 � 259.5 �,� 493.2 �,�
SRS -GD/Best 92.60 �,� 183.79 �,� 266.3 �,� 518.2 �,�
SRS-GA/Best 103.10 � 193.68 � 255.23 �,� 508.9 �,�
SRS-VD/Best 100.54 � 195.83 � 269.9 �,� 523.7 �,�
SRS-VA/Best 102.26 � 196.35 � 265.35 �,� 515.28 �,�

Table 4
SOD comparison for the Mutagenicity and the Web datasets (�: Methods better than
the set median. �: Methods better than both of the previous embedding methods. q:
Methods better than one of the previous embedding methods. Global best results are
marked with bold face).

Mutagenicity Web

50 100 50 100

SM 367.1 723.9 1910.8 3886.4
E2P 336.9 � 666.9 � 1344.1 � 2693.6 �
E3P 317.6 � 643.3 � 1467.4 � 2998.2 �

BRS 399.6 945.2 2106.1 4141.1
SRS-GD 909.5 1732.1 3019.1 6195.3
SRS-GA 373.1 713.3 � 1865.1 � 3387.9 �
SRS-VD 877.6 1895.9 2754.5 5602.5
SRS-VA 388.3 771.1 1997.4 4246.1

BRS/Best 314.7 �,� 610.1 �,� 1298.1 �,� 2418.1 �,�
SRS -GD/Best 321.5 �,q 622.5 �,� 1298.5 �,� 2453.5 �,�
SRS-GA/Best 329.5 �,q 613.8 �,� 1309.8 �,� 2446.6 �,�
SRS-VD/Best 316.4 �,� 611.41 �,� 1293.7 �,� 2441.7 �,�
SRS-VA/Best 322.1 �,q 615.3 �,� 1306.5 �,� 2482.7 �,�

Table 2
Summary of dataset characteristics, viz. the size, the number of classes (# classes), the
average size of the graphs (; nodes) and the maximum size of the graph.

Database Size # classes ; nodes max nodes

Letter 2250 15 4.7 8
Molecules 2000 2 15.7 95
Mutagenicity 4337 2 30.3 417
Webpages 2340 6 186.1 834
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5.2. Results and discussion

First of all, it is important to note that in all cases, the best re-
sults in terms of the SOD are achieved by one of the recursive
methods, and more specifically, when we take the best intermedi-
ate graph along the recursive path. In addition to that, in 80% of the
cases (32 out of 40) the best recursive methods outperform the set
median. In all cases they outperform at least one of the previous
embedding methods and in the 92.5% of cases they outperform
both previous embedding methods. Keeping in mind that the pre-
vious embedding methods are already better than the set median
in 10 out of the 16 cases, this last result shows that the best recur-
sive schemes are able to outperform two already good previous
methods for the median graph computation.
For the non-best recursive methods, the SRS-GA method shows
to be superior over the others. In particular, it achieves better SOD
than the set median in four out of the eight cases, and it is also bet-
ter than the embedding methods in two cases. These results show a
high correlation with the SOD evolution experiment, where the
SRS-GA method achieved the lower SOD among all the recursive
methods.

As a final conclusion we can say that in practice, in the recursive
methods, selecting the best intermediate graph is better than tak-
ing the graph at the end of the recursive path and, as we said, bet-
ter that the set median and the existing embedding methods.
Moreover, we can also observe that all the best intermediate
graphs are always better than all the best final graphs obtained
with any of the recursive methods. In addition, recursive methods
perform similarly among them. There is no recursive method
clearly better than the others. Thus, it is worth to highlight and re-
call the fact that by means of descendent methods the best inter-
mediate graph is found earlier. This could give us the option to
avoid some of the computation, by stopping the recursion without
calculating all the intermediate graphs. The proposed recursive
embedding method shows to be an excellent guide through the
search space, so that we have been able to find intermediate graphs
which, with few exceptions, have lower SOD than those returned
by the rest of the methods.
6. Conclusions

The median graph has been shown to be a good choice to obtain
a representative of a set of graphs. However, its computation is ex-
tremely complex. As a consequence, in real applications we are
forced to use suboptimal methods in order to obtain approximate
solutions for the generalized median graph in reasonable time. Re-
cently, two different procedures using graph embedding into vec-
tor spaces have been presented for its approximate computation.
Both procedures are based on three key steps. However, they intro-
duce a source of error due to some approximation in the third step
(i.e. mapping back from the vector domain to the graph domain),
which may cause a deterioration in the obtained medians.

In this paper we proposed a generic recursive embedding proce-
dure based on the weighted mean of a pair of graphs which tries to
minimize such an approximation in the third step. First, the graphs
are mapped to points in an n-dimensional vector space using the
graph edit distance. Then, the crucial point of obtaining the median
of the set is carried out in the vector space, not in the graph do-
main, which dramatically simplifies this operation. Finally, we pro-
posed a recursive application of the weighted mean of a pair of
graphs to obtain the graph corresponding to the median vector.
This last step is the main difference with the previous existing
embedding-based methods. We also proposed four variations of
the base algorithm taking into account the order the graphs (and
therefore the points) are considered in the recursive path.

In order to evaluate the proposed method (and all its varia-
tions), we have made experiments on four different graph dat-
abases, one semi-artificial and three containing real-world data.
The underlying graphs have no constraints regarding the number
of nodes and edges. We compared our approaches with these
state-of-the-art embedding-based methods for the median graph
computation and also with the set median approach. Results show
that with the proposed recursive approach we can obtain, in gen-
eral, better medians, in terms of the SOD, than the previous embed-
ding methods and also the set median.

The proposed novel method for median graph computation is
approximate in a double sense, namely through the graph embed-
ding and graph recovery step. Nevertheless, as experiments on a
number of databases with quite different characteristics have
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shown, it is able to find median graphs of better quality than pre-
vious approximate methods that use the set median or the closest
two or three points.

A number of important questions remain open regarding the
nature of the median graph and the selection of the best represen-
tative graph for of a given set. For example it would be interesting
to establish under what circumstances such a graph could be un-
ique and in what ways it depends on the particular costs associated
with the edit distance. These are interesting and relevant questions
that should guide future research on the topic.

Finally, it should be noted that although we have concentrated
on the concept of median graph, our generic approach can be easily
adapted to obtain other graph representatives. For instance, if the
barycenter vector is computed instead of the median vector, we
can think that the corresponding graph should be more similar
to the sample mean of graphs than the median graph. With these
results at hand, we can think of applying this new approach to real
world graph-based applications in pattern recognition and ma-
chine learning, such as classification and clustering, or more gener-
ally to any machine learning algorithm where a representative is
needed.
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