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Abstract 

 
The use of gradients in text images is nowadays 

quite frequent. Existing segmentation methods 
encounter serious problems when it comes to modern 
text images where gradients might appear in the 
background or the foreground or both at the same 
time. This paper presents an approach for lightness 
gradient areas detection based on the Hough 
Transform. The issues arising are discussed, and 
results are presented on a dataset comprising Web 
images, logos and scanned documents. 
 
1. Introduction 
 

The use of colour gradients either as the image 
background or to emphasise the textual content is 
nowadays quite frequent. This is especially true for 
images on Web pages (Figure 1a) or company logos 
(Figure 1b) where the primary purpose of the designer 
is to capture the attention of the reader with his design. 
Previous experience of the author in the domain of 
Web images has identified the extensive use of 
gradients as a prominent problem in this class of text 
images [1]. Gradient areas are also habitually used on 
paper documents, where, in addition to emphasising 
and beautifying, they often serve to define semantic 
entities and structural aspects of the document (e.g. the 
columns of the form in Figure 1c). 

Nevertheless, the detection and segmentation of 
gradient areas in images has not received any specific 
attention. This can be partly attributed to the fact that 
gradients have not been a problem historically due to 
their sparse use in the past. The problem has 
traditionally been tackled indirectly by using 
segmentation techniques based on edge detection [2, 3] 
or adaptive thresholding [4, 5], which, depending on 
the context, can separate reasonably well foreground 
text from a smooth gradient background. Such 
methods have varying degrees of success, and 
encounter serious problems when it comes to modern 

text images such as the ones displayed below, where 
gradients might appear in the background or the 
foreground or both at the same time. 

 

(a) 

(b) 

(c) 

 
Figure 1. Sample images (a) Web image, 
(b) Logo, (c) Scanned document. 

 
A purpose-made approach for gradient detection 

can offer clear advantages over tackling the problem 
indirectly. For example in many cases it is of interest 
to group together disjoined areas that belong to the 
same gradient (e.g. characters of the same word or the 
columns in a form). 

The main idea of the Hough Transform (HT), first 
introduced by Paul Hough in 1962 [6], is to transform 
pixel coordinates into a parameter space where clusters 
or particular configurations identify instances of a 



shape under detection. Originally conceived to detect 
straight lines, the HT was later extended to other 
parametric models [7] and was finally generalised to 
any parametric shape [8]. 

The HT is used to detect shapes in images, where a 
shape is described by the coordinates of its contour 
pixels. If an image is visualised in the 3D space 
comprising the pixel’s coordinates (x, y) and the 
lightness component (L), a linear gradient will appear 
as a plane in this 3D space. This is illustrated in 
Figure 2, where an image is shown along with its 3D 
representation in the (x, y, L) space. 

 

 

Figure 2. A sample image and its 3D 
representation in the (x, y, L) space. 

 
This paper proposes an extension of the HT to 

detect parametric shapes in the combined spatial-
lightness space. Here we will show how the HT can be 
extended to detect gradient planes in the (x, y, L) space 
and we will discuss the problems arising by mixing 
spatial and feature (lightness in our case) information. 

The main assumption behind this approach is that 
lightness gradients are approximately linear changes of 
lightness over distance. The validity of this statement 
was assessed experimentally over the images of the 
dataset, and it was established that the vast majority of 
lightness gradients are indeed linear. Some of the 
reasons why this should be expected are presented 
shortly in Section 5.1. 

The method described here provides a direct 
approach to gradient detection and deals with the 
problem in a global way. The main focus of this paper 
is linear lightness gradients. The dataset used to 
evaluate the method comprises Web images, logos and 
scanned document images. 

In the next section we detail the extension of the 
Hough Transform to the gradient detection problem. 
Section 3 describes the gradient detection method 
used. Results are presented in Section 4, followed by a 
discussion in section 5. Section 6 concludes the paper. 
 
2. Extension of the Hough Transform for 
Gradient Detection 
 

A 3D plane can be described by its polar 
coordinates in a similar fashion as a 2D straight line by 
Eq 1. 

 
θϕθϕθρ sinsincoscoscos ⋅+⋅⋅+⋅⋅= zyx  Eq. 1 

 
Where θ and φ define the orientation of the normal 

vector of the plane and ρ is the distance of the plane to 
the origin, as shown in Figure 3. 

 
Figure 3. Polar plane parameters. 

 
If we choose x and y to correspond to the spatial 

pixel coordinates in the image and z to the lightness 
component (L), lightness gradient areas in the image 
will be represented by planes in the (x, y, L) Cartesian 
space. Lightness is calculated here as a weighted 
average of the RGB components based on Eq. 2 [9]. 

 
BGRL ⋅+⋅+⋅= 0721.07154.02125.0  Eq. 2 

 
If the plane in Figure 3 represents a gradient plane 

in the (x, y, L) space, then the plane parameter φ, will 
indicate the spatial direction of the gradient, while the 
angle θ the rate of change of the gradient. 

For any (x, y, L) triplet representing the coordinates 
and lightness of a pixel in the image space (by “image 
space” we refer to the combined spatial coordinates – 
lightness space), there are infinite planes (or else 



infinite lightness gradients) that pass through it. The 
parameters of all the planes passing through a point in 
the image space, define a surface in the parameter 
space (ρ, φ, θ). We can use Eq. 1 to transform any 
point to its corresponding 3D surface in the parameter 
space. 

Any set of three points in the image space defines 
exactly one plane. This is manifested by the three 
corresponding surfaces in the parameter space having a 
single intersection point as illustrated in Figure 4. 

 

 
Figure 4. Three surfaces in the parameter 
space (corresponding to three points in the 
image space). 

 
If we discretise the (ρ, φ, θ) parameter space, and 

apply Eq. 1 to all the pixels of the image we will obtain 
the “Gradient Hough Transform” of the image. A test 
image and its transformation is shown in Figure 5. 

The lightness gradients in the image will appear as 
peaks (accumulator cells with a high count in the 
quantised space). Thus, a difficult global detection 
problem in the image space is now reduced to an easier 
problem of peak detection in the parameter space. 
 
2.1. Modelling Gradient Areas 
 

The definition of lightness gradient as a plane in the 
image space is quite generic. Depending on the value 
of the angle θ, a lightness gradient can describe a 
constant lightness area, a traditional variable-lightness 
gradient area, as well as an edge. This is summarised 
in Table 1.  

 
Table 1. Meaning of parameter θ. 

Value of θ Rate of Change Type of Area 
θ=90° zero Constant Colour 

0° < θ < 90° medium  Gradual Change 
θ=0° infinite Edge 

 
 

 
Figure 5. A test image (insert) and its Gradient 
Hough Transform. 

 
By modelling constant lightness regions as a special 

gradient case, the method described here can deal with 
constant colours areas and gradients in the same step, 
performing this way a simple form of image 
segmentation. Edges though are very difficult to 
extract, since although they are described well by the 
gradient model, they comprise a very small number of 
pixels and therefore do not produce statistically 
adequate information to be identified easily in the 
parameter space. Since we do not wish to deal with 
edges here, a lower bound of 5 degrees is used for the 
parameter θ (corresponding to a lightness change from 
0 to 255 over ~20 pixels). Below this threshold a plane 
in the image space is considered to represent an edge 
and is not assessed. 
 
2.2. Issues arising from mixing spatial and 
lightness information 
 

We have to appreciate at this point that the gradient 
plane is not really a parametric shape in the image in 
the traditional sense, instead it is a shape that spans the 
spatial (x and y coordinates) and feature (lightness in 
our case) space. This entails a few issues, since the 
parameters θ and ρ, are actually linking two distinct 
quantities, and their interpretation is not trivial. 

In the case of θ, as mentioned before its physical 
meaning is linked to the rate of change of lightness on 
the direction of the gradient. It has to be stressed 
though that the interpretation of the rate of change 
depends on the spatial resolution of an image. An 
example will help clarify what this means. Suppose an 
image is resized to double the size of the original. The 
spatial dimensions of any gradient in the image will 
also double up in such a case, while the lightness 
values of the pixels will remain unaffected. In terms of 
any gradient in the image, that would mean that the 



same change in lightness will now take place over 
double the distance it did in the original image, 
effectively producing a different angle θ for the 
corresponding gradient plane. 

This does not create many serious problems, as the 
linearity of the gradient is not affected, and the method 
will still be able to identify it. Nevertheless, it has to be 
stressed that the bound set above for the parameter θ, 
as well as the bin size selected, specify lightness 
change over pixel-based distance. An easy way to 
overcome the problem, especially in relation to 
scanned documents, would be to normalise the bounds 
and bin size of θ based on the DPI of the image, so 
they are relative to lightness change over some metric 
distance. In practice the difference this makes is not 
important for most of the cases. 

What is more difficult to deal with is the parameter 
ρ. The parameter ρ defines the distance of the plane to 
the origin. Most importantly the bin size we select for 
this parameter defines the “tolerance” for (x, y, L) 
triplets to be counted in a particular accumulator cell. 
It is difficult to assign a physical meaning to this 
parameter, as the meaning is actually depending on the 
value of θ.  

 

 
Figure 6. Effect of constant ρ bin size. 

 
Figure 6 shows a 2D example of the above. As seen 

in the figure, when θ is 90° the ρ bin size refers to 
lightness tolerance (TL) only. When θ is 0°, the ρ bin 
size refers to spatial tolerance (TS) only. In any 
intermediate case, the ρ bin size refers to a 
combination of the two. What this means from a 
practical point of view is that choosing a bin size for ρ 
which works well for near-constant gradients will not 
work well for steep gradients and vice versa. 

The way to deal with this problem is to make the ρ 
bin size relative to the angle θ. There are many 

different ways to achieve this. In our case we chose to 
define a lightness-only tolerance and vary the size of 
the ρ bin size so that the lightness-only tolerance 
remains constant. This is displayed in Figure 7. 

 

 
Figure 7. Effect of variable ρ bin size. 

 
Let TL be the lightness tolerance that we want to 

maintain, then the bin size will be given by Eq. 3. 
 

θρ sin⋅= Lbin T  Eq. 3 
 
The bounds and bin sizes used to quantise the 

parameter space are summarised in Table 2 below. 
 

Table 2. Parameter space quantisation 
thresholds. 
Parameter Minimum Maximum Bin Size 

ρ -ρmax +ρmax 10·sin θ 
φ 0° 179° 4 
θ 5° 175° 2 

 
ρmax is defined by Eq. 4, where Width and Height 

are the dimensions of the image and Lmin and Lmax the 
minimum and maximum levels of L (in our case 0 and 
255). 

 
2

minmax
22

max )( LLHeightWidth −++=ρ  Eq. 4 
 
The quantised parameter space is visualized in 

Figure 8 below. 
 



 
Figure 8. Quantised parameter space, with 
variable ρ bin size. 

 
3. The Method 

 
The method used to detect lightness gradient areas 

in the image is explained here. It is structured in four 
steps, namely Pre-processing, Transformation, 
Gradient extraction and Post-processing. 

 
3.1. Pre-processing 

 
Generally no pre-processing is needed for the 

method to produce satisfactory results. Nevertheless, 
there are certain issues that can affect the performance 
of the algorithm and could be easily addressed before 
applying the Gradient Hough Transform. The main 
problems are colour half-toning (typically associated 
with scanned documents), and compression artefacts as 
illustrated in Figure 9. To tackle these issues, a 3x3 or 
5x5 (depending on the resolution) smoothing operation 
vastly improves the performance of the subsequent 
processes. 

 
3.2. Transformation 

 
Initially, all the (x, y, L) points of the image are 

transformed to the corresponding surfaces in the 
parameter space using Eq. 1. The parameter space is 
quantised as described above, using variable 
quantization for the ρ bin size. Depending on the 
image it might be preferable to use only a subset of the 
image pixels (for example for scanned documents in 
high resolution, sample one every n pixels). In this 
paper, for Web images and logos all the pixels were 
sampled, while for scanned documents at 300 DPI one 
every 5 pixels was sampled. 

 

(a) 

(b) 

Figure 9. (a) Compression and (b) Half-toning 
artefacts. 

 
3.3. Gradient Extraction 

 
Potential gradients are extracted by a simple search 

in the accumulator array for the cell with the highest 
count. For each potential gradient identified, the 
associated image points are found and their 
corresponding votes removed from the accumulator 
array before the search continues for the next potential 
gradient. The result of this stage is a ranked list (in 
terms of counts) of potential gradients in the image. 

 
3.4. Post-processing 

 
A typical problem associated with the HT, arising 

from the discretisation of the parameter space, is that 
due to the presence of noise and distortion, true peaks 
are splitted between several accumulator cells. The 
best approach to address this issue would be to 
perform some kind of clustering in the 3D space before 
identifying potential gradients, but this is 
computationally expensive. Instead, here we perform 
some post-processing, where potential gradients 
already extracted which share similar properties are 
grouped together. The resulting groups of potential 
gradients are called “Meta-gradients”. The steps we 
follow are described below. 

Step 1. Starting from the gradient with the highest 
count, gradients with similar parameters are grouped 
together into a Meta-gradient. Three thresholds are 
used for this grouping, which indicate the maximum 



allowed difference for each of the parameters (ρ, φ, θ) 
between the participating gradients. These are set to 
Tr=6°, Tf = 6° and Tr = 15·sin(θMeta-Gradient). 

Step 2. The parameters of each resulting 
Meta-gradient are recalculated as the weighted sum of 
the parameters of the participating gradients. The 
weights used are the counts (amount of pixels) of the 
participating gradients. 

Step 4. Pixels are labelled based on their lightness 
difference with each Meta-gradient defined gradient 
plane. For a point defined by the triplet (x, y, L) and a 
Meta-gradient with parameters (ρ, φ, θ), the Lightness 
distance from the plane is given by Eq. 5. 

 
( )

θ
ϕθϕθρ

sin
sincoscoscos ⋅⋅−⋅⋅−

−=
yxLD  Eq. 5 

 
4. Evaluation 
 

The method was tested on a dataset of images 
comprising Web images and logos available in the 
public domain, and scanned documents kindly 
provided by ITESOFT and from the PRImA Layout 
Analysis Data Set. The dataset comprises a total of 22 
images which contain 63 gradient areas. The method 
was able to correctly segment 87.3% of the gradient 
areas. The detailed results are shown in Table 3. 

 
Table 3. Evaluation of the method 

 Web 
Images 

Logos Scanned 
Documents 

Total 

number of 
gradients 

12 18 33 63 

identified 
gradients 

11 16 28 55 

Performance 91.7% 88.9% 85.7% 87.3% 
 
Some illustrative examples are shown in 

Figures 10-14 that appear at the end of the paper. The 
first few gradients extracted are shown next to each 
original image (gradient areas appear in black). 
 
5. Discussion 

 
As in most HT implementations, a tricky point is 

the interpretation of the transformation, especially 
when working in a 3D parameter space, which is 
computationally expensive. 

There are a few pre-processing steps that can be 
performed to make the gradient clusters more 
separable in the parameter space. One such step is to 
perform histogram stretching in the image before the 
Gradient HT. Histogram stretching preserves the 

linearity of the gradient, while it was shown to help to 
differentiate very gentle background gradients from 
constant colour areas. 

In terms of post-processing, the results indicate that 
substantial improvement can be achieved by 
examining the topology of the extracted gradients in 
parallel to their parametric representation. The spatial 
proximity or connectedness of gradient areas in the 
image could be used in post-processing to facilitate the 
decision making of combining them into a single 
Meta-gradient. Also, depending on the image in 
question (especially for large scanned documents), 
performing opening and closing morphological 
operations on the extracted gradient areas might 
improve the results substantially. 
 
5.1. A short discussion on linearity 
 

As mentioned in the introduction, the main 
assumption behind this approach is that lightness 
gradients are approximately linear changes of lightness 
over distance. Although, the validity of this statement 
was verified experimentally it is useful to discuss 
shortly why this is expected for the types of images 
contained in the dataset. 

There are two broad categories of images that we 
are dealing with here, on one hand we have computer 
generated images such as logos and Web images, and 
on the other hand scanned documents. In terms of 
computer generated images, the answer to the linearity 
of the gradient is twofold. First, it is a fact that most 
software packages create gradients by linearly 
interpolating between two user-selected RGB colours. 
This means that the RGB values change linearly 
through the gradient. Computing the lightness using 
Eq. 2 preserves this linearity. There is a reason why a 
linear RGB interpolation is typically used by software. 
The conversion of RGB values to luminance on a 
display follows a non-linear power-law relationship 
with a typical gamma between 1.9 and 2.2. Luminance 
on the other hand relates to lightness (perceived 
intensity) through a cube-root law [10, 11]. The two 
effects cancel each other out to a great extend, and the 
result this has is that a linear change in RGB produces 
a lightness change which is almost perceptually linear. 
Therefore software packages reasonably make use of a 
fast linear interpolation to create something 
perceptually plausible. 

Translating colour from any input device to any 
output device entails gamut mapping. When 
documents are printed and eventually scanned, gamut 
mapping is performed in each step of the process. 
Gamut mapping algorithms, with very few exceptions, 
have a linear response to the lightness component 



[12, 13, 14]. Therefore printing and scanning a 
document generally preserves the linearity of the 
lightness gradients. 

That is not to say that all gradients are linear. There 
are cases where gradients are not linear (e.g. certain 
natural processes can create non-linear effects). In 
most of the cases these are described well by a power-
law and can be linearised easily by using the logarithm 
of the encoded lightness. In more complex cases, the 
gradient parametric model will have to be changed.  
 
6. Conclusion 
 

In this paper we presented a method for gradient 
detection in text images, based on an extension of the 
Hough Transform, and the modelling of lightness 
gradients as planes in the combined spatial – feature 
space. Preliminary results reported indicate that this 
method can be useful to a wider range of images. 

Due to the modelling of lightness gradients, the 
algorithm is able to deal in a single step with gradient 
changes and constant colour areas, thus it provides the 
means for simple image segmentation. A property of 
the HT is that it works even when the shape under 
detection is partially occluded. In our case this is a 
very useful property both for the detection of gradient 
background “occluded” by text and for the extraction 
of individual characters created from the same gradient 
(e.g. in Figure 10). 

The case was made for lightness gradients, but the 
technique discussed here is applicable to any type of 
linear gradients. Although the method is easily 
transferable to other channels, colour gradients are 
typically not a direct fusion of linear gradients in their 
individual components, and they necessitate more than 
merely the combination of individual results. The 
extension of the technique to colour gradients is 
identified as future work. 
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Figure 10. A Web image and the two largest 
gradients extracted.  Figure 11. A Logo and the two largest 

gradients extracted. 
 

     
Figure 12. A Logo and the four largest gradients extracted. It is often the case that some pixels 
can be assigned to more than one gradient (here the white part of the blue gradient background). 
In such cases spatial information could improve the results. 
 

     
Figure 13. A Logo and the four largest gradients extracted. 
 

  

  
Figure 14. A scanned book cover and the three largest gradients extracted. 


