
A Recursive Embedding Approach to Median

Graph Computation

M. Ferrer1, D. Karatzas2, E. Valveny2, and H. Bunke3
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Abstract. The median graph has been shown to be a good choice to
infer a representative of a set of graphs. It has been successfully applied
to graph-based classification and clustering. Nevertheless, its computa-
tion is extremely complex. Several approaches have been presented up
to now based on different strategies. In this paper we present a new ap-
proximate recursive algorithm for median graph computation based on
graph embedding into vector spaces. Preliminary experiments on three
databases show that this new approach is able to obtain better medians
than the previous existing approaches.

1 Introduction

Graphs are a powerful tool to represent structured objects compared to other
alternatives such as feature vectors. For instance, a recent work comparing the
representational power of such approaches under the context of web content
mining has been presented in [1]. Experimental results show better accuracies of
the graph-based approaches over the vector-based methods. Nevertheless, some
basic operations such as computing the sum or the mean of a set of graphs,
become very difficult or even impossible in the graph domain.

The mean of a set of graphs has been defined using the concept of the median
graph. Given a set of graphs, the median graph [2] is defined as the graph
that has the minimum sum of distances (SOD) to all graphs in the set. It can
be seen as a representative of the set. Thus it has a large number of potential
applications primarily enabling many classical algorithms for learning, clustering
and classification typically used in the vector domain. However, its computation
time increases exponentially both in terms of the number of input graphs and
their size [3]. A number of algorithms for the median graph computation have
been reported in the past [2,3,4,5], but, in general, they either suffer from a large
complexity or they are restricted to specific applications.
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In this paper we propose a new approximate method based on graph embed-
ding in vector spaces. Graph embedding has been recently used as a way to map
graphs into vector spaces [6] using the graph edit distance [7]. In this way we
can combine advantages from both domains: we keep the representational power
of graphs while being able to operate in a vector space. The median of the set of
vectors obtained with this mapping can be easily computed in the vector space.
Then, applying recursively the weighted mean of a pair of graphs [8] we go from
the vector domain back to the graph domain and we obtain an approximation of
the median graph from the obtained median vector. This is the main difference
over other embedding-based methods for the median graph computation like [9],
where they obtain a graph not corresponding to the median vector of the whole
set but the median of just three graphs of the set. We have made experiments
on three different graph databases. The underlying graphs have no constraints
regarding the number of nodes and edges. The results show that our method
obtains better medians, in terms of the SOD, that two other previous meth-
ods. With these results at hand, we can think of applying this new approach
to the world of real graph-based applications in pattern recognition and ma-
chine learning. In addition, our procedure potentially allows us to transfer any
machine learning algorithm that uses a median, from the vector to the graph
domain.

The rest of this paper is organized as follows. First, the basic concepts are
introduced in the next section. Then, we introduce in detail the concept of the
median graph and the previous work for its computation in Section 3. In Section 4
the proposed method for the median computation is described. Section 5 reports
a number of experiments and present results achieved with our method. Finally,
in Section 6 we draw some conclusions.

2 Basic Definitions

2.1 Graph

Given L, a finite alphabet of labels for nodes and edges, a graph g is defined
by the four-tuple g = (V, E, μ, ν) where, V is a finite set of nodes, E ⊆ V ×V is
the set of edges, μ is the node labeling function (μ : V −→ L) and ν is the edge
labeling function (ν : V × V −→ L). The alphabet of labels is not constrained
in any way. For example, L can be defined as a vector space (i.e. L = R

n) or
simply as a set of discrete labels (i.e. L = {Δ, Σ, Ψ, · · · }). Edges are defined as
ordered pairs of nodes, that is, an edge is defined by (u, v) where u, v ∈ V . The
edges are directed in the sense that if the edge is defined as (u, v) then u ∈ V is
the source node and v ∈ V is the target node.

2.2 Graph Edit Distance

The basic idea behind the graph edit distance [7,10] is to define the dissimilarity
of two graphs as the minimum amount of distortion required to transform one
graph into the other. To this end, a number of distortion or edit operations e,



A Recursive Embedding Approach to Median Graph Computation 115

consisting of the insertion, deletion and substitution of both nodes and edges are
defined. Given these edit operations, for every pair of graphs, g1 and g2, there
exists a sequence of edit operations, or edit path p(g1, g2) = (e1, . . . , ek) (where
each ei denotes an edit operation) that transforms g1 into g2 (see Figure 1). In
general, several edit paths exist between two given graphs. This set of edit paths
is denoted by ℘(g1, g2). To evaluate which edit path is the best, edit costs are
introduced through a cost function. The basic idea is to assign a penalty (or cost)
c to each edit operation according to the amount of distortion it introduces in
the transformation. The edit distance between two graphs g1 and g2, d(g1, g2),
is the minimum cost edit path that transforms one graph into the other. Since
the graph edit distance is a NP-complete problem, in this paper we will use
suboptimal methods for its computation [11,12].

Fig. 1. Example of a possible edit path between two graphs, g1 and g2

3 Median Graph

Let U be the set of graphs that can be constructed using labels from L. Given
S = {g1, g2, ..., gn} ⊆ U , the generalized median graph ḡ of S is defined
as:

ḡ = arg min
g∈U

∑

gi∈S

d(g, gi) (1)

That is, the generalized median graph ḡ of S is a graph g ∈ U that minimizes
the sum of distances (SOD) to all the graphs in S. Notice that ḡ is usually not a
member of S, and in general more than one generalized median graph may exist
for a given set S.

The computation of the generalized median graph can only be done in ex-
ponential time, both in the number of graphs in S and their size [2]. As a
consequence, in real world applications we are forced to use suboptimal meth-
ods in order to obtain solutions for the generalized median graph in reasonable
time. Such approximate methods [2,4,5,13] apply some heuristics in order to re-
duce the graph edit distance computation complexity and the size of the search
space.

Another alternative is to use the set median graph instead of the generalized
median graph. The difference is that, while the search space for the generalized
median graph is U , that is, the whole universe of graphs, the search space for the
set median graph is simply S, that is, the set of graphs in the given set. It makes
the computation of set median graph exponential in the size of the graphs, due to
the complexity of graph edit distance, but polynomial with respect to the number
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of graphs in S. The set median graph is usually not the best representative of a
set of graphs, but it is often a good starting point when searching the generalized
median graph.

3.1 Median Graph via Embedding

Graph embedding aims to convert graphs into another structure, such as real
vectors, and then operate in the associated space to facilitate certain graph-based
tasks, such as matching and clustering.

In this paper we will use a new class of graph embedding procedures based on
the selection of some prototypes and graph edit distance computation [6]. For
the sake of completeness, we briefly describe this approach in the following.

Assume we have a set of training graphs T = {g1, g2, . . . , gn} and a graph
dissimilarity measure d(gi, gj) (i, j = 1 . . . n; gi, gj ∈ T ). Then, a set P =
{p1, . . . , pm} ⊆ T of m prototypes is selected from T (with m ≤ n). After that,
the dissimilarity between a given graph of g ∈ T and every prototype p ∈ P is
computed. This leads to m dissimilarity values, d1, . . . , dm where dk = d(g, pk).
These dissimilarities can be arranged in a vector (d1, . . . , dm). In this way, we
can transform any graph of the training set T into an m-dimensional vector using
the prototype set P .

Such kind of embedding has already been used for the approximate median
graph computation [9]. The idea behind such an approach is to follow a three
step process. Assuming that a set of n graphs S = {g1, g2, . . . , gn} is given, in
a first step every graph in S is embedded into a n-dimensional space, i.e. each
graph becomes a point in R

n because in our case the set of prototypes P is
the whole set S, and therefore there is no prototype selection. The second step
consists of computing the median vector M of all the points obtained in the
previous step. Finally, the resulting median vector has to be mapped back to an
equivalent graph. This last step of mapping back from the vector space to the
graph space presents a difficult problem for a number of reasons. To mention just
two, depending on the embedding technique not every point in the (continuous)
vector space corresponds to a graph. Secondly it might be that a particular
vector presents a one to many relationship to graphs. For instance, to obtain
the median graph, in [9] the three closest points to the computed median vector
M are used to compute their own median M ′ (which always falls on the plane
defined by them). Using these three points (corresponding to known graphs) and
the new median M ′, the weighted mean approach [8] is used to recover a graph
ḡ′ (corresponding to M ′), which is taken as an approximation of the median
graph ḡ of S.

In the next section we present a new recursive approach for computing the me-
dian graph for a given set of graphs based on the embedding procedure explained
before. The aim of the presented approach is to obtain a graph corresponding
to the actual median vector M of the whole set S. We show that, as expected,
obtaining a graph corresponding to the real median vector M produces better
medians (with a lower SOD to the graphs of the set), than using the graph
corresponding to M ′ as in the approach of [9].
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4 A Recursive Embedding Approach

As explained before the difficulty in using graph embedding to calculate the me-
dian graph is the mapping from vector space back to the graph space. Here we pro-
pose a recursive solution to the problem based on the algorithm of the weighted
mean of a pair of graphs [8].

The weighed mean of two graphs g and g′ is a graph g′′ such that

d(g, g′′) = a (2)

d(g, g′) = a + d(g′′, g′) (3)

where a, with 0 ≤ a ≤ d(g, g′), is a constant. That is, the graph g′′ is a graph
between the graphs g and g′ along the edit path between them. Furthermore, if
the distance between g and g′′ is a and the distance between g′′ and g′ is b, then
the distance between g and g′ is a + b.

Assume that we can define a line segment in the vector space that connects
two points P1 and P2 corresponding to the known graphs g1 and g2 such as the
calculated median M lies on this line segment. We can then calculate the graph
gM corresponding to the median M as the weighted mean of g1 and g2. The
problem is thus reduced to creating such a line segment in the vector space. We
show here how this can be achieved by recursively applying the weighted mean
of a pair of graphs.

Given a set of graphs S = {g1, g2, . . . , gn}, we use the graph embedding
method described in Section 3.1 to obtain the corresponding n-dimensional
points {P1, P2, . . . , Pn} in R

n. As long as there are no identical graphs in the set
S, the vectors vi = (Pi − O), where O is the origin of the n-dimensional space
defined, will be linearly independent. This arises from the way the coordinates
of the points were defined during graph embedding.

Once all the graphs have been embedded in the vector space, the median
of the corresponding points is computed. To this end we use the concept of
Euclidean Median using the Weiszfeld algorithm [14] as in the case of [9]. The
Euclidean median has been chosen as the representative in the vector domain for
two reasons. The first reason is that the median of a set of objects is one of the
most promising ways to obtain the representative of such a set. The second is
that, since the median graph is defined in a very close way to the median vector,
we expect the median vector to represent accurately the vectorial representation
of the median graph, and then, from the median vector to obtain good median
graphs.

Given a set of n linearly independent points in R
n we can define a hyper-

plane Hn−1 of dimensionality n-1 (e.g. in the case of n=2, two points define a
unique 1D line, in the case of n=3, three points define a unique 2D plane, etc).
The normal vector Nn−1 of the hyperplane Hn−1 can be calculated from the
following set of equations:
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(Pn − P1) · Nn−1 = 0
(Pn − P2) · Nn−1 = 0

... (4)
(Pn − Pn−1) · Nn−1 = 0

‖Nn−1‖ = 1

The Euclidean median Mn of these n points will always fall on the hyperplane
Hn−1. Moreover it will fall within the volume of the n-1 dimensional simplex
with vertices Pi. For n=4 this is visualised in Figure 2(a). This figure shows
the hyperplane H3 defined by the 4 points Pi = {P1, P2, P3, P4}. The Euclidean
median M4 falls in the 3D space defined by the 4 points and specifically within
the pyramid (3D simplex) with vertices Pi.

(a) (b)

Fig. 2. a) The 3D hyperplane defined given four 4D points {P1, P2, P3, P4}. b) The 2D
hyperplane defined by the remaining points {P1, P2, P3}.

Without loss of generality we can choose any one of the points, say Pn, and
create the vector (Mn − Pn). This vector will lie fully on the hyperplane Hn−1.
As mentioned before, in order to use the weighted mean between of a pair of
graphs to calculate the graph corresponding to Mn we need to first find a point
(whose corresponding graph is known) that lies on the line defined by the vector
(Mn − Pn), and specifically on the ray extending Mn (so that Mn lies between
Pn and the new point).

Let’s call Hn−2 the hyperplane of dimensionality n-2 defined by the set of
points {P1, P2, . . . , Pn−1}, that is all the original points except Pn. Then the
intersection of the line defined by the vector (Mn − Pn) and the new hyperplane
Hn−2 will be a single point. For the running example of n=4 this point (M3)
would be the point of intersection of the line P4 − M4 and the 2D plane H2

defined by the remaining points {P1, P2, P3} (see Figure 2(a)).
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For the normal vector Nn−2 of the hyperplane Hn−2 we can create the fol-
lowing set of n-1 equations in a similar fashion as before:

(Pn−1 − P1) · Nn−2 = 0
(Pn−1 − P2) · Nn−2 = 0

... (5)
(Pn−1 − Pn−2) · Nn−2 = 0

‖Nn−2‖ = 1

Furthermore, we ask that Nn−2 is perpendicular to Nn−1 (i.e. it falls within the
hyperplane Hn−1):

Nn−1 · Nn−2 = 0 (6)
Equations 5 and 6 provide us a set of n equations to calculate Nn−2.

Suppose Mn−1 is the point of intersection of the line defined by (Mn − Pn)
and the hyperplane Hn−2, then for this point it should be:

Mn−1 = Pn + α (Mn − Pn) (7)

(Pn−1 − Mn−1) · Nn−2 = 0 (8)
Solving the above equations for a, we have:

α =
Nn−2 · (Pn−1 − Pn)
Nn−2 · (Mn − Pn)

(9)

Substituting back to 7 we obtain the point Mn−1.
We can now follow exactly the same process as before, and assume a new

line defined by the vector (Mn−1 − Pn−1). Again we can define as Mn−2 the
point of intersection of the above line with the n-3 dimensional hyperplane Hn−3

which is defined by the n-2 points: {P1, P2, . . . , Pn−2}. As an example see Figure
2(b) for n=4. In this figure the point M2 is defined as the intersection of the
line defined be (M3 − P3) and the 1D hyperplane (line) H1 defined by the
remaining points {P1, P2}.

In the generic case the set of n equations needed to calculate the normal
vector Nk of the k dimensional hyperplane Hk are:

(Pk+1 − P1) · Nk = 0
(Pk+1 − P2) · Nk = 0

...
(Pk+1 − Pk) · Nk = 0

Nn−1 · Nk = 0 (10)
Nn−2 · Nk = 0

...
Nk+1 · Nk = 0

‖Nk+1‖ = 1
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Based on eq. 7, 8 and 9, in the generic case the point Mk can be computed
recursively from:

Mk = Pk+1 + α (Mk+1 − Pk+1) (11)

Where:
α =

Nk−1 · (Pk − Pk+1)
Nk−1 · (Mk+1 − Pk+1)

(12)

This process is recursively applied until M2 is sought. The case of M2 is solvable
using the weighted mean of a pair of graphs, as M2 will lie on the line segment
defined by P1 and P2 which correspond to known graphs (see Figure 2(b)).

Having calculated M2 the inverse process can be followed all the way up to
Mn. In the next step M3 can be calculated as the weighted mean of the graphs
corresponding to M2 and P3. Generally the graph corresponding to the point
Mk will be given as the weighted mean of the graphs corresponding to Mk−1 and
Pk. The weighted mean algorithm can be applied continuously until the graph
corresponding to Mn is calculated, which is the median graph of the set.

It is important to note that the order of consideration of the points will affect
the final solution arrived at. As a result it is possible that one of the intermediate
solutions along the recursive path produces a lower SOD to the graphs of the
set than the final solution. Thus, the results reported here are based on the best
intermediate solutions.

5 Experiments

In this section we provide the results of an experimental evaluation of the pro-
posed algorithm. To this end we have used three graph databases representing
Letter shapes, Webpages and Molecules. Table 1 show some characteristics of
each dataset. For more information of these databases see [15].

To evaluate the quality of the proposed method, we propose to compare the
SOD of the median calculated using the present method (RE) taking the best
intermediate solution to the SOD of the median obtained using other existing
methods, namely the set median (SM) and the method of [9] (TE). For every
database we generated sets of different sizes as shown in Table 1. The graphs in
each set were chosen randomly from the whole database. In order to generalize
the results, we generated 10 different sets for each size.

Results of the mean value of the SOD over all the classes and repetitions for
each dataset are shown in Figure 3. Clearly, the lower the SOD, the better the

Table 1. Summary of dataset characteristics, viz. the size, the number of classes (#
classes), the average size of the graphs (∅ nodes) and the sizes of the sets

Database Size # classes ∅ nodes Number of Graphs in S
Letter 2,250 15 4.7 15, 25, 35, ..., 75
Webpages 2,340 6 186.1 15, 25, 35, ..., 75
Molecules 2,000 2 15.7 10, 20, 30, ..., 100
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(a)

(b) (c)

Fig. 3. SOD evolution for the three databases. a) Letter, b) Molecule and c) Webpage.

result. Since the set median graph is the graph belonging to the training set with
minimum SOD, it is a good reference to evaluate the median graph quality.

As we can see, the results show that in all cases we obtain medians with lower
SOD than those obtained with the TE method. In addition, in two cases (Web
and Molecule) we also obtain better results than the SM method. In the case of
the Letter database, we obtain slightly worse results than the SM method but
quite close to that. Nevertheless, our results do not diverge from the results of the
SM method as in the case of the TE method, which means that our proposed
method is more robust against the size of the set. With these results we can
conclude that our method finds good approximations of the median graph.

6 Conclusions

In the present paper we have proposed a novel technique to obtain approximate
solutions for the median graph. This new approach is based on graph embed-
ding into vector spaces. First, the graphs are mapped to points in n-dimensional
vector space using the graph edit distance paradigm. Then, the crucial point
of obtaining the median of the set is carried out in the vector space, not in the
graph domain, which simplifies dramatically this operation. Finally, we proposed
a recursive application of the weighted mean of a pair of graphs to obtain the
graph corresponding to the median vector. This embedding approach allows us
to exploit the main advantages of both the vector and graph representations,
computing the more complex parts in real vector spaces but keeping the rep-
resentational power of graphs. Results on three databases, containing a high
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number of graphs with large sizes, show that the medians obtained with our
method are, in general, better that those obtained with other methods, in terms
of the SOD. For datasets such ones used in this paper, the generalized median
could not be computed before, due to the high computational cost of the exist-
ing methods. These results show that with this new procedure the median graph
can be potentially applied to any application where a representative of a set is
needed. Nevertheless, there are still a number of issues to be investigated. For
instance, the order in which the points are taken becomes an important topic to
be further studied in order to improve the results of the method.
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