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Abstract

Intelligent senors have attracted particular attention in the
recent past. This paper argues that an “intelligent sensor”
should be able to perform on-board signal processing within
the sensor’s software in order to produce the optimal signal
output. A generic intelligent sensor software architecture is
described which builds upon the basic requirements of related
industry standards. In this framework, advanced signal pro-
cessing analyses and algorithms need to be employed. As a
case study, we present a novel approach for the analysis of
the effect of phase noise in devices such as chemical SAW
sensors, gyroscopes, biochemical acoustic wave resonator
based sensors and accelerometers.

1. INTRODUCTION

A new generation of sensors, - intelligent sensors - have in
recent years become the focus of much research. Advances in
fabrication technology in the area of micro-electro-mechanical
systems (MEMS) combined with high performance computa-
tional capabilities and advanced signal processing algorithms
have risen expectations; intelligent sensors should be able to
perform self-diagnosis and self-calibration during operation.

In order to identify the functionalities of an intelligent
sensor, the IEEE introduced the IEEE 1451 family of standards
[1], [2], [3], [4]. IEEE 1451 provides a formal definition of
the basic requirements of an intelligent (or smart) transducer.
These standards define the fundamental element of intelligence
as the ability to self-identify, and complement this with on
board memory and a set of digital, analogue and mixed
communication interfaces.

On the other hand, the Self-Validating (SEVA) [5], [6]
sensors approach addresses the issue of intelligence at a higher
level suggesting that an intelligent sensor should be able to
validate its output and associate with it an uncertainty value.
Also SEVA proposes a list of pre-defined values that describe
a spectrum of diverse sensor conditions that can be used to
communicate sensor state information to a higher level. The
SEVA approach recently became a British Standard (BS-7986)
[7] and is already endorsed by parts of industry.

Following either approach, a central task in the intelligent
sensor implementation is the reliable estimation of the noise
variance and drift in the circuit output. To perform this
tedious task, both parametric and non-parametric approaches

can be employed, based either on a detailed physical model
or exclusively on the collected data. We discuss in detail
possible implementations based on the Kalman filter algorithm
or probability density estimators in [8].

The present paper aims are twofold. Firstly, to outline an
intelligent sensor software architecture in accordance with
existing standards and which provides enhanced flexibility to
meet the requirements of adverse applications. Secondly, in
order to illustrate possible advanced signal processing methods
that could be employed in such a framework, we perform a
case study of the effect of phase noise in sensory systems that
include internal oscillators. Such systems are encountered in a
variety of applications, ranging from accelerometers and gy-
roscopes [9], to SAW chemical sensors [10] and biochemical
sensors [11]. A novel parametric analysis for the estimation
of drift and phase noise variance in such sensors is presented
that lifts the theoretical discrepancies of earlier analyses.

The paper is organized as follows. In section 2 we outline
the main functionalities of the intelligent sensor software
architecture while in section 3 we describe the particular
software modules. Section 4 includes background theory on
recent advances in oscillator modeling while we estimate the
drift and variance of a sensor that includes a noisy oscillator in
section 5. This analysis is prerequisite for the parametric fault
detection and drift estimation algorithms described in further
detail in [8]. Finally, in section 6 we discuss the conclusions
and possible future enhancements of this work.

2. INTELLIGENT SENSOR ARCHITECTURE

The intelligent sensor defined here comprises a system of indi-
vidual sensors and software modules, addressed as a single en-
tity. We propose a generic software architecture for intelligent
sensors that is compatible with the requirements introduced
by IEEE 1451 to incorporate the following functionalities:
• Real-time fault and drift detection, fault isolation and

signal conditioning.
• Communication of sensor condition to the sensor man-

agement level.
• Adaptation to environmental changes.
The architecture is intentionally generic enough to allow

for a wide range of implementations, while achieving the
functionalities outlined above and is illustrated in Fig. 1. The
key component of the design is an array of sensors mea-
suring the primary measurand. By employing sensor arrays,



Fig. 1: Intelligent Sensor Architecture

the architecture actively advocates redundancy of information
and makes use of such redundancy for self validation and
reconfiguration. Nevertheless, the design is generic, and the
array of primary measurand sensors can reduce (depending on
the application) to a single sensor coupled with fault detection
module without affecting the functionality, as will be explained
later.

The operating environment is monitored by one or more
arrays of sensors measuring various environmental attributes
(temperature and humidity for the example of Fig. 1). The ex-
act number and nature of the attributes observed is dependant
on the type of the primary measurand sensors. Each partici-
pating sensor is individually monitored by a Fault Detection
(FD) module. The outputs of the FD modules in each sensor
array are combined by a common modality internal fusion
(CMIF) module, which provides a single value and associated
uncertainty for each of the measured attributes.

Information about the operating regime is subsequently
used to enhance the fault detection process of the primary
measurand. To this end, the Regime Change Detection (RCD)
module makes use of environmental information to dictate
which sensor model should be employed by the fault detection
modules of the primary measurand sensors. In addition, the
RCD module is able to take immediate action (i.e. shut down

a sensor) to protect the sensing element or issue a warning
signal.

Furthermore, knowledge of the environmental conditions is
used by the Uncertainty Value Refinement (UVR) module to
assess whether the sensor operates within the manufacturer’s
recommended conditions and weight the confidence on the
measurement accordingly. Finally, the behavior of the intelli-
gent sensor at a larger timescale is monitored by the Long-
Term Drift Compensation (LTDC) module. The LTDC module
identifies and compensates for long-term drift or bias effects
typically associated with the ageing of the sensing element.

3. INTELLIGENT SENSOR SOFTWARE MODULES

A. Fault Detection

Two parallel fault detection processes, namely novelty detec-
tion and residual based, run within the fault detection module.
The former is a non-parametric fault detection approach while
the latter is based on a parametric sensor model.

• Novelty detection determines whether the incoming data
belongs to the same underlying process as data from
a healthy sensor. The data-based model employed is
a model of the probability density function for data
collected from the sensor [12].



• The residual based scheme, akin to model error prediction
methods, employs Kalman filter error prediction to infer
whether the current measurement is likely based on a
sliding window of measurement data time history. The
information produced by the two parallel processes is
subsequently fused within the FD module.

B. Common Modality Internal Fusion

Following fault detection the fault-checked data from like-
modality sensors are fused by the Common Modality Internal
Fusion (CMIF) module to obtain a single measurement value
coupled with an uncertainty value for each of the attributes
measured. Assuming that the measurements are drawn from
normal distributions, a typical method to perform measure-
ment fusion is Optimal Weighting Measurement Fusion [13].
OWMF effectively weights the input of each participating
sensor according to the certainty that the corresponding mea-
surement is correct (as reported by the related fault detection
module).

C. Regime Change Detection

The Regime Change Detection (RCD) module employs envi-
ronmental information to ensure that the primary measurand
sensor model used by the respective FD modules is correct for
the current operating regime. The appropriate sensor model is
selected from a library of stored sensor models (computed off-
line for the primary measurand sensors) which reside in the
physical memory of the intelligent sensor.

In the optimum case scenario, a sensor model is assumed
to be valid for the current operating regime. In this case, the
RCD module acts as a simple look-up table. Generally though,
a particular regime does not necessarily map to a specific pre-
defined sensor model. In this case the RCD module constructs
a sensor model by interpolating (or extrapolating) existing pre-
defined models.

D. Uncertainty Value Refinement

When the sensing element operates outside the manufacturer’s
recommended operating conditions or a constructed sensor
model is used for fault detection (as opposed to a pre-defined
one), the uncertainty on the measurement should be higher and
the particular sensor condition should be communicated to the
sensor management level. The Uncertainty Value Refinement
(UVR) module performs the above tasks.

E. Drift Compensation

Certain sensors, such as CMOS-based sensors, are prone to
low frequency effects, such as 1/f noise, while chemical sen-
sors are often subject to poisoning with time, which adversely
affects their sensitivity. The Long-Term Drift Compensation
(LTDC) module, aims to detect these drift mechanisms based
on the data, and subsequently correct for the introduced
measurement bias, effectively elongating the useful life span
of the sensor.

In order to estimate and compensate for drift in sensors, we
need to account for the underlying generating mechanisms. In

this context, we propose the following classification of drift,
according to whether it is correlated to the sensor internal state
in a state space representation and whether it is a reversible
or irreversible effect:

1) Reversible state dependent drift. It accounts for drift due
to sensor non-idelities in the input/output characteristic.
Assuming that it is possible to develop a state space
model for the sensor, its estimation can be realized using
the extended Kalman filter algorithm, as demonstrated
in [14].

2) Reversible state independent drift. An example of such
drift is the gravitational offset in accelerometers. This
kind of drift can generally be estimated (e.g. sensor
output when “switched on”).

3) Irreversible state dependent drift. Such drift is the effect
of sensor dynamic behavior. The most common example
is drift in chemical sensors due to “poisoning”. It can be
evaluated through the use of online density estimation
algorithms [8].

4) Irreversible state independent drift. This accounts for
the effect of low-frequency noise to the sensor output.
In this context we will examine in the following section
the effect of phase noise in a sensor output.

4. ANALYSIS OF THE EFFECT OF PHASE NOISE IN
SENSORS - BACKGROUND ON PHASE NOISE MODELING

As mentioned in the previous section it is desirable to be able
to implement both parametric and non-parametric algorithms
in a fault detection and drift estimation context. Parametric
models need to account for the actual physical processes in
the device and as a result require extensive experimental and
accompanying theoretical models. Whatever the case may be,
it is imperative to characterize the main noise sources and their
potential effect on the sensor output.

For a large number of sensors their operation is based on
internal oscillators and as a result the analysis of their noise
performance is translated to the analysis of the phase noise
characteristics of noisy oscillatory systems. In this context,
two approaches were mainly adopted in literature. The use of
the “Allan variance” [15] and the empirical spectral model in-
troduced by Leeson [16]. The “Allan’s variance” characterizes
the phase noise through the second order empirical moment
estimates of first order phase differences. On the other hand,
Leeson’s model suggests that the phase noise power spectral
density (PSD) of a noisy oscillator is described as a sequence
of power law regions of the type

kα

fα
, α ∈ {0, 1, 2, 3} (1)

where f represents the deviation from the nominal oscillation
frequency.

Both approaches are ambiguous in the matter of the effect
of phase noise in the frequency region near the oscillation
frequency, as the thus projected noise energy is infinite. This
modeling discrepancy was the topic of vibrant discussions in



the research community, especially in what concerns the effect
of flicker noise sources in the oscillator loop.

Recently in [17], the aforementioned theoretical problems
were overcome using the correlation theory of frequency
fluctuations. A novel enhanced oscillator spectral model was
derived that accounts for all the main types of power law phase
noise and whose parameters can be readily evaluated from
trivial macroscopic spectral measurements. More specifically,
the proposed model is based on the following observations:

i Phase noise can be efficiently approximated as the sum
of power-law processes resulting from integration of
frequency fluctuations. At relatively high frequencies
where the “small angle approximation”1 is valid the
oscillator PSD coincides with the phase noise PSD.

ii A band-limited white-like phase noise component is
expected to generate a weak tone on the oscillator fre-
quency added to a band-limited white-like noise region.

iii Flicker phase noise of |f |−1−ν PSD results in a finite
variance noise process. The dominant side-band spectral
component follows a k1|f−1−ν | characteristic, while the
PSD on the carrier frequency is finite.

iv Long correlated events in the oscillator phase will gen-
erate Gaussian-like components in the oscillator PSD.
1/|f |3 and 1/f4 phase noise are such processes.

v Short correlated events in the oscillator phase give rise
to Lorentzian2-like components in the oscillator PSD.
1/f2 phase noise is such a process.

vi Long correlated events tend to dominate on the near-
carrier regime.

The proposed enhanced oscillator model includes:
1) A Gaussian3-like region near the carrier frequency, as

an approximation of the convolution of the near-carrier
sub-spectra.

2) A sequence of power-law regions, in accordance with
the small angle approximation.

The model is depicted in Fig. 2 and assumes that the oscillator
can be treated as a wide sense stationary random process and
that flicker phase noise sources generate finite variance noise
terms.

In the following section we will use the enhanced oscillator
spectral model to provide estimates of the drift and noise
variance in the output of a sensor whose operation is based
on internal oscillators.

5. ESTIMATION OF DRIFT AND PHASE NOISE VARIANCE
DUE TO PHASE NOISE

As discussed previously, real oscillators suffer from phase
noise that distorts the system short-term and long-term stabil-
ity. In subsection 5-A we derive in parametric form the amount
of drift in the output of such a sensor, while in subsection 5-B
we will demonstrate the evaluation of noise variance. Finally

1The small angle approximation states that ejφ ' 1 + jφ when φ ¿ 1
2Lorentzian is the shape of the power spectrum of a first order low-pass

filter
3Also known as Doppler lineshape
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Fig. 2: Oscillator PSD with Gaussian characteristic near the oscillator
frequency

in subsection 5-C we demonstrate the use of the approach on
real published data.

A. Drift Estimation
In order to quantify the resulting drift effect, we begin with
considering the complex valued oscillation:

ψ(t) = ej(ωosct+φ(t)) (2)

where ψ(t) is an analytic version4 of a real oscillator at
ωosc = 2πfosc assuming negligible amplitude noise. In [17]
the correspondence in terms of mean and variance between
a real valued oscillator and its complex valued counterpart
(analytical representation) is provided. In (2) we can isolate
the effect of the phase noise component as a multiplicative
term b(t),

b(t) = ejφ(t) (3)

with φ(t) representing the phase noise process. Modeling φ(t)
as a zero-mean Gaussian random process, we can estimate the
expected value of the process b(t) as a function of the variance
σ2

φ(t) of the phase noise process φ(t):

E
[
b(t)

]
= E

[
ejφ(t)

]
= e−

σ2
φ(t)

2 (4)

where E[·] represents the expected value. (4) expresses the
actual drift in the oscillator output.

As a result, drift in the output of oscillatory systems cor-
rupted by phase noise is expressed as a function of the overall
variance of the phase noise process and can be time dependent
in the case of non-stationary phase noise (in which case σ2

φ is
a function of time). The above result can be incorporated in
a drift estimation context as well as in the design process of
sensors based on oscillators and can be particularly useful in
early simulation stages.

4The real oscillator and the complex oscillator are related through the
Hilbert transform



B. Phase Noise Variance Estimation

The spectral modeling of the noisy oscillator we presented
in section 4 is based on macroscopic measurements of the
output PSD at frequencies higher from the nominal oscilla-
tion frequency (reliable measurements cannot be taken very
close to the oscillation frequency). In order to understand the
generation mechanism of the near-carrier phase noise we start
from the following observations: (i) in the oscillator internal
loop noise components at frequencies close to the oscillation
frequency (rule of thumb: lower than the half-rate frequency
of the oscillation) will be frequency modulated. (ii) Noise
components at higher frequencies will be phase modulated.
As a result:
• White noise sources that are phase modulated in the

oscillator loop result in a white noise region at the
oscillator output.

• 1/f noise sources that are phase modulated in the os-
cillator loop will generate flicker noise at the oscillator
output.

• The frequency modulation of white noise sources gener-
ates a 1/f2 region in the oscillator output.

• Frequency modulation of flicker noise generates 1/f3

phase noise.
• The frequency modulation of 1/f2 noise generates a 1/f4

region.
The lower knee frequency of transition from the deep-into-

the-carrier to the power law region can be readily evaluated
using the above model and the oscillator one-sided PSD at a
frequency offset f from the oscillation frequency is given in
closed form below:

S(f) =
1√
2πΩ

e−
2π2f2

Ω2 Π(f, 0, f4) +
k4

f4
Π(f, f4, f3)

+
k3

|f |3 Π(f, f3, f2) +
k2

f2
Π(f, f2, f1)

+
k1

|f |Π(f, f1, f0) + k0Π(f, f0, B) (5)

where fi , i = 0, 1, 2, 3, 4 are the knee frequencies between the
relevant power law regions, Ω is the variance of the Gaussian
region and B stands for the bandwidth of the oscillator. These
parameters can be readily evaluated based on the fact that
the overall oscillator power is conserved and that the PSD
is a continuous function at the knee frequencies. Finally, the
function Π(x, xl, xu) represents the window function:

Π(x, xl, xu) =
{

1, xl ≤ x ≤ xu

0, otherwise

Non-existing regions in the oscillator PSD should simply be
suppressed in (5). In the absence of 1/f4 and 1/f3 regions,
the deep-into-the-carrier region is Lorentzian and the sensor
output PSD can be expressed as follows:

S(f) =
k2

π2k2 + f2
Π(f, f2, f1) +

k1

|f |Π(f, f1, f0)

+ k0Π(f, f0, B) (6)

In the following we provide an illustration of the use of the
described spectral model for phase noise analysis.

C. Case Study: Biochemical Sensor Based on Acoustic Wave
Resonators [11]

In [11], a biochemical sensor based on interface biochemistry
using a film bulk acoustic wave resonator is presented. The
sensor detects mass differences on a biochemically prepared
surface that translates them into changes in the output os-
cillation frequency. A phase noise analysis of the sensor
is performed and it was found that at a frequency offset
in the region from 1 kHz to 10 MHz from the oscillation
frequency, the PSD followed a k2/f2 characteristic. Based on
the information available, a Lorentzian region is enough to
describe the given sensor PSD.

From the measurements provided in Fig. 8 in [11], we can
estimate the PSD parameters. We have that at a frequency
offset f = 1000 Hz, the phase noise level is −80 dBc/Hz.
Therefore, the coefficient k2 characterizing the Lorentzian type
PSD of the sensor is evaluated as:

k2

(103)2
= 10−8 ⇒ k2 = 0.01 (7)

According to the provided measurements, the sensor output
noise is generated from Brownian motion phase noise with
PSD as given below:

S(f) =
k2

π2k2 + f2
∼= 0.01

0.1 + f2
(8)

The phase noise variance relative to the carrier power can be
evaluated as the integral of (8) in the offset frequencies region
of interest.

6. CONCLUSIONS

The present paper presents an intelligent sensor software
architecture and discusses a novel parametric approach for
phase noise analysis in sensory systems. We show that it is
possible to incorporate the requirements of existing standards
in the area of intelligent transducers using a module based
approach for the hardware implementation of the fundamental
components of “intelligence” . Furthermore, we present an
evaluation of the drift and noise variance in sensors whose
operation is based on internal oscillators. It is the goal of
the authors to create a wide library of algorithms, both
parametric and non-parametric to perform fault detection and
drift estimation as discussed in the paper for a variety of
sensors and to build a prototype of the intelligent sensor.
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