
IJDAR (2010) 13:187–207
DOI 10.1007/s10032-010-0120-x

ORIGINAL PAPER

Generation of synthetic documents for performance evaluation
of symbol recognition & spotting systems

Mathieu Delalandre · Ernest Valveny ·
Tony Pridmore · Dimosthenis Karatzas

Received: 16 December 2008 / Revised: 19 July 2009 / Accepted: 19 November 2009 / Published online: 28 May 2010
© Springer-Verlag 2010

Abstract This paper deals with the topic of performance
evaluation of symbol recognition & spotting systems. We
propose here a new approach to the generation of synthetic
graphics documents containing non-isolated symbols in a
real context. This approach is based on the definition of
a set of constraints that permit us to place the symbols on a
pre-defined background according to the properties of a par-
ticular domain (architecture, electronics, engineering, etc.).
In this way, we can obtain a large amount of images resem-
bling real documents by simply defining the set of constraints
and providing a few pre-defined backgrounds. As documents
are synthetically generated, the groundtruth (the location and
the label of every symbol) becomes automatically available.
We have applied this approach to the generation of a large
database of architectural drawings and electronic diagrams,
which shows the flexibility of the system. Performance eval-
uation experiments of a symbol localization system show that
our approach permits to generate documents with different
features that are reflected in variation of localization results.

1 Introduction

This paper deals with the topic of performance evaluation.
Performance evaluation is a particular cross-disciplinary
research field in a variety of domains such as Informationz
Retrieval [1], Computer Vision [2], CBIR1 [3], DIA2 [4],
etc. Its purpose is the development of frameworks to eval-
uate and compare a set of methods in order to select the
best-suited for a given application. Due to the heterogeneity

M. Delalandre (B) · E. Valveny · D. Karatzas
CVC, Barcelona, Spain
e-mail: mathieu@cvc.uab.es

T. Pridmore
SCSIT, Nottingham, England

of the fields where performance evaluation can be applied to
[1–4], it is difficult to find a common definition of “what a
performance evaluation framework is”. Two main tasks are
usually identified (Fig. 1): groundtruthing, which provides
the test and reference data to be used during the evaluation
(both for training and testing), and performance characteriza-
tion, which determines the metrics and the protocol to match
the results of a given method with the groundtruth in order
to give a measure of the performance.

In this paper, we are especially interested in the first of
these two tasks, applied to two particular topics of DIA: sym-
bol recognition & spotting. Figure 2 compares these two pro-
cesses. Symbol recognition is an active topic in the field of
graphics recognition. Several surveys [5–8] review the exist-
ing work on logical diagrams, engineering drawings, maps,
etc. In a very general way, a symbol has been defined as “a
graphical entity with a particular meaning in the context of an
specific application domain” and then, symbol recognition as
“a particular application of the general problem of pattern
recognition, in which unknown input patterns are classified
as belonging to one of the relevant classes (i.e. pre-defined
symbols) in the application domain” [7].

Usually, symbols do not appear isolated but are connected
to other elements of the document (connecting lines, back-
ground, other symbols, etc.). Thus, one of the major problems
of symbol recognition is to combine segmentation and recog-
nition. This problem is known as the segmentation/recogni-
tion paradigm in the literature [9]: a system should segment
the symbols before recognizing them but, at the same time,
some kind of recognition may be necessary to obtain a correct
segmentation. In order to overcome this paradox, research
has been directed to symbol spotting [10]. Since research on

1 Content Based Image Retrieval.
2 Document Image Analysis.

123

188 M. Delalandre et al.

Fig. 1 Performance evaluation

Fig. 2 Recognition/spotting of symbols

symbol spotting is just starting, definitions of symbol spot-
ting are still a little ambiguous. In [8], it is defined as “a way
to efficiently localize possible symbols and limit the compu-
tational complexity, without using full recognition methods”.
So, spotting is presented as a kind of middle-line technique
combining recognition and segmentation. While symbol rec-
ognition tries to find the location and label of every symbol in
the document, symbol spotting methods can be viewed as a
kind of retrieval system [11–16]. Spotting is usually initiated
with a query selected by the user from a drawing, what we
call a QBE.3 Then, the example is used as a model to find
similar symbols in the document database. At the end, the
system provides a ranked list of similar symbols along with
their localization data (i.e. url of the source document with
the coordinates of the symbol).

3 Query by Example.

In both cases (spotting and recognition), a hard problem is
how to obtain and compare experimental results from exist-
ing systems. Traditionally, this step was done independently
for every system [5–8], by comparing manually the results
with the original images and checking the recognition errors.
This process was unreliable as it raises conflicts of interest
and does not provide relevant results. Moreover, it does not
allow the comparison of different systems or support testing
with large amounts of data. In order to solve these problems,
research has been initiated over the last few years on the per-
formance evaluation of symbol recognition/spotting systems
[17], resulting in the organization of several international
contests on symbol recognition [18–21]. However, this work
has focused on the recognition of isolated symbols. They do
not take into account segmentation or spotting of symbols
in real documents. The main reason for that is the difficulty
of obtaining a large set of documents with the corresponding
groundtruth. Doing that manually would require an unafford-
able amount of time, as all the symbols in the document must
be precisely located and labeled.

In this paper, we propose a new approach to the auto-
mated generation of test documents to enable performance
evaluation of symbol recognition and/or spotting systems
in real context. The novelty in this approach is that it is
constraint-driven and general enough to be applied to differ-
ent domains. The constraints permit us to place the symbols
on pre-defined backgrounds. They are defined according to
a particular domain such as electronics, architecture or engi-
neering. Thus, by simply defining the set of constraints and
providing a few pre-defined backgrounds, we are able to pro-
duce a large amount of images resembling to real documents.
As documents are synthetically generated, the groundtruth
corresponding to the location and the label of every sym-
bol becomes automatically available. We have applied this
approach to the generation of large databases of architectural
drawings and electronic diagrams, which shows the flexibil-
ity of the system.

In the rest of the paper, first we will review in Sect. 2 the
previous work done on groundtruthing applied to symbol rec-
ognition & spotting. In Sect. 3, we will present our approach
to generate synthetic documents based on positioning con-
straints of symbols. In Sect. 4, we will introduce the graphical
user interface to define the constraints and generate the doc-
uments. The results of the application of the system, to the
generation of architectural drawings and electronic diagrams,
are presented in Sect. 5. Finally, in Sect. 6, we state the main
conclusions and future perspectives of this work.

2 Overview

The first step to evaluate any graphics recognition system is to
provide test documents with their corresponding groundtruth

123

Generation of synthetic documents 189

Table 1 Comparison of
groundtruthing systems

−−weak; ++good

Speed Realism Reliabilty Symbol per Symbol conntected Degradation
document

Real data

Tombre’06 [8] −− ++ – Many Yes No

Yan’04 [23] – ++ −− Many Yes No

Chhabra’98 [24] + ++ + Many Yes No

Synthetic data

Aksoy’00 [18] ++ −− ++ Many No Yes

Zhai’03 [25] ++ −− ++ One No Yes

Valveny’07 [17] ++ −− ++ One No Yes

data [22]. Concerning the specific topic of symbol recogni-
tion & spotting, several systems have been proposed in recent
years: [8,18,23–25] and [17]. They can be classified in two
main approaches: based on real or synthetic data. In the first
case, test data consist of real documents. The groundtruth
is defined from these documents by human operators using
GUI.4 Concerning synthetic data, the documents are built
automatically, or semi-automatically, with their correspond-
ing groundtruth by the systems, using some models of doc-
ument generation.

In the rest of this section, we will present and discuss both
approaches in Sects. 2.1 and 2.2. In addition to that, to support
this discussion, we compare the systems in Table 1 accord-
ing to different criteria: speed of the groundtruthing process,
realism of test documents, reliability, number of symbols per
image, generation of connected or disconnected symbols and
ability to add noise with degradation methods. Finally, con-
clusions are drawn in Sect. 2.3.

2.1 Real data

The natural approach to obtain the groundtruth is to define
it from real-life documents. In that case, GUI are used by
human operators in order to edit manually the groundtruth
data. Thus, the groundtruthing starts from raster images in
order to provide a vector graphics description of the con-
tent (e.g. graphical labels, region of interest, etc.). As the
groundtruth data are edited by humans, it is necessary to do
this task collaboratively with different operators [22]. In this
way, errors produced by a single operator can be avoided.

In the past, this approach has been mainly applied to the
evaluation of layout analysis and OCR5 systems [26–28].
Concerning symbol recognition & spotting, only the EPE-
IRES6 platform exists to date [8].7 It is presented in Fig. 3.

4 Graphics User Interface(s).
5 Optical Character Recognition.
6 http://epeires.loria.fr/.
7 None related publication exists about this platform, we refer the reader
to the description given in [8].

Fig. 3 The EPEIRES system

This system is based on a collaborative approach using two
main components: a GUI to edit the groundtruth data con-
nected to an information system. The operators obtain, from
the system, the images to annotate and the associated symbol
models. Groundtruthing is performed by mapping (moving,
rotating and scaling) transparent bounded models on the doc-
ument using the GUI. The information system allows users to
collaboratively validate the groundtruth data. Experts check
the groundtruth data generated by the operator by emitting
alerts in the case of errors.

Despite this existing platform, a problem still remains
[22]: the time and cost required to edit the groundtruth data.
Similar contributions made in OCR and layout analysis [26–
28] highlight that, in most of the cases, the groundtruthing
effort makes the creation of large databases very hard. An
alternative approach to avoid this problem is semi-automatic
groundtruthing. In this case, the key idea is to use a recog-
nition method to obtain an initial version of the groundtruth
data. Then, the user only has to validate and to correct the
recognition results in order to provide the final groundtruth
data. This approach has already been used in other applica-
tions like OCR [29], layout analysis [30], chart recognition
[31], etc.

123

http://epeires.loria.fr/

190 M. Delalandre et al.

Concerning symbol recognition & spotting, only the
system described in [23] has been proposed to date. This
system recognizes engineering drawings using a case-based
approach. It is mainly used to learning and recognition, but
it could be easily extended to groundtruthing. The user starts
by targeting a graphical object (i.e. a symbol) in an engi-
neering drawing. The symbol is next vectorized into a set of
straight-lines and represented as a model tree. This model
tree is used to localize and recognize similar objects in the
drawing. During the learning process, the system also takes
into account user feedback on positive and negative exam-
ples. It modifies the original tree by computing tolerances
about the primitives and their relations (length, angle, line
number, etc.).

In any case, the systems presented previously render the
groundtruthing impractical for constructing large-scale data-
bases. In [24], the authors propose an alternative way to
solve this problem. Their key idea is to use vector graph-
ics documents (e.g. “DXF, SVG, CGM, etc.”) and to con-
vert them into images. In this way, they can take advantage
of already existing groundtruth data: it is not necessary to
re-define it. Their system has been used to evaluate raster to
vector conversion [24]. However, it could be easily extended
to symbol recognition & spotting by using the symbol layer of
the CAD files. The remaining difficulty in this approach is to
collect and to record the electronic documents [32]. Several
problems still exist: to check the copyrights of documents, to
organize the documents in the database (to define single id,
to associate duplicates, etc.), to validate the formats and to
convert them to a standard one if necessary, to edit metadata
about the documents in order to index the database, etc.

2.2 Synthetic data

The systems using real-life documents result in realistic test
data but render the groundtruthing complex (errors, delay
and cost, copyright, database indexing, etc). A complemen-
tary approach, which avoids these difficulties, is to create and
to use synthetic documents. Here, the test documents are gen-
erated by an automatic system which combines pre-defined
models of document components in a pseudo-random way.
Test documents and groundtruth can therefore be produced
simultaneously. In addition, a large number of documents
can be generated easily and with limited user involvement.
Several systems have been proposed in the literature [18,25]
and [17], mainly used in the context of international con-
tests of symbol recognition. Figure 4 gives some examples
of documents produced by these systems.

The system described in [18] employs an approach to build
documents composed of multiple unconnected symbols.
Figure 4a gives an example of such a document. Each symbol
is composed of primitives (circles, lines, squares, etc.) ran-
domly selected and mildly overlapped. Next, they are placed

Fig. 4 Examples of synthetic documents [17,18,25]. a Random
symbol sets, b, c Distorted segmented symbols

on the image at a random location and without overlapping
with the bounding boxes of other symbols. The systems pro-
posed in [25] and [17] support the generation of degraded
images of segmented symbols as shown in Fig. 4b, c. In
these systems, the models of the symbols are described in a
vector graphics format. They use a random selection process
to select a model from the model database and apply to it a set
of transformations (rotations, scaling, and binary or vectorial
distortions).

2.3 Conclusion

In recent years, several pieces of work have been undertaken
to provide groundtruthed databases in order to evaluate sym-
bol recognition & spotting methods, using real [8,23,24] as
well as synthetic [17,18,25] data. As indicated in Table 1,
the time needed to collect and groundtruth the real-life docu-
ments makes their use, for constructing large-scale databases,
complex. Moreover, the groundtruthing is done by human
operators making the results unreliable. For that reason, syn-
thetic data have been mainly used to date for the evaluation
of systems, for example during the international contests of
symbol recognition [8,18,19,21]. With such data, test docu-
ments and groundtruth are produced simultaneously. Then, as
mentioned in Table 1, data can be generated quickly making
the production of statistically important groundtruth datasets
feasible. Moreover, the groundtruth is produced directly from
the models and, therefore, without errors. Finally, the content
of documents can be controlled, which is an interesting prop-
erty to evaluate the methods regarding scalability, geometry
invariance, noise robustness, etc.

The major problem when using synthetic data is the dif-
ficulty of reproducing the variability of real documents. The

123

Generation of synthetic documents 191

Fig. 5 Two document instances

systems proposed in the literature [17,18,25] only generate
documents composed of segmented symbols, no whole doc-
uments which is the original goal of groundtruthing systems.
Indeed, real-life documents (engineering and architectural
drawings, electrical diagrams, etc.) are composed of multiple
objects constrained by spatial relations (connectivity, adja-
cency, neighborhood, etc.). Systems capable of generating
whole synthetic documents would be very helpful. Such sys-
tems would provide a much more realistic context in which
evaluation could take place. In this paper, we present some
contributions in this direction that we will introduce in next
Sect. 3.

3 Our approach

In this paper, we present a new approach to the building of
synthetic documents for the performance evaluation of sym-
bol recognition & spotting systems. Our key contribution is
the building of whole documents (drawings, maps, diagrams,
etc.), and the underlying aim of our work is to make the pro-
duced documents more realistic. The design of a suitable
process is a challenging task. Indeed, realistic documents
cannot be produced without importing human know-how into
the process. In our work, we have considered a shortcut way
to solve this problem. Our key idea observes that graphical
documents are composed of two layers: a background layer
and a symbolic one. We use this property to build several
document instances as shown in Fig. 5. We generate sev-
eral different symbolic layers and place them on the same
background obtaining different documents. In this way, the
building process is made easier and can be considered as a
problem of symbol positioning on a given document back-
ground.

In order to place randomly symbols on a given back-
ground, we have developed a building system based on the
use of positioning constraints. These positioning constraints
determine where and how the symbols can be placed on a
background image. Figure 6 presents the architecture of our

Fig. 6 System overview

system. It uses as input data a background image, a database
of symbol models and a file describing the positioning con-
straints. Using these data, it generates vector graphics docu-
ments with the corresponding groundtruth. These documents
are next rasterized and noise added, to generate the final test
images for evaluation. The central part of our system is the
building of documents. Two main processes take part: symbol
positioning and document generation. Symbol positioning
is in charge of placing symbols on the background accord-
ing to the parameters and conditions of given constraints.
Document generation controls the positioning process,
through a building loop including upstream and downstream
steps, to ensure the generation of correct documents. It starts
with empty documents and fills them with symbols in a
pseudo-random way. The interactions between the two pro-
cesses are explained in the workflow diagram presented in
Fig. 7. For each loop, a constraint and a symbol are selected.
Then, the symbol is placed on the background according to
the specifications of the constraint. After that, several tests
are carried out to ensure that the symbol is well positioned.
The process continues until some stopping criteria (concern-
ing the number of symbols and the amount of free space) are
satisfied.

In the rest of this section, we will introduce first in Sect. 3.1
the positioning constraints. Next, in Sects. 3.2–3.8, we will
describe all the steps (1)–(7) mentioned in the workflow dia-
gram of Fig. 7, and will detail how the constraints are pro-
cessed at each of these steps. The last Sect. 3.9 will give
details about the final test image generation process.

3.1 Positioning constraints

The key mechanism employed in our system is symbol posi-
tioning using constraints. Figure 8a, b explain how it works.
The constraints specify which symbols can be placed and
where in a background (Fig. 8a). Each constraint defines a
set of symbol models to instantiate, a shape to specify where
symbols can be placed on the background (either a single
point, a straight-line or a polygon), and some parameters

123

192 M. Delalandre et al.

Fig. 7 Building workflow

that specify how these symbols are placed (concerning geo-
metric transformations and the definition of control points).
Then, a symbol is placed in such a way that its control point
will match a point inside the shape defined in the constraint
(Fig. 8b). More specifically, a constraint addresses the fol-
lowing issues:

Symbol models The list of symbol models that can be
selected to instantiate symbols to place.

Constraint size The maximum number of symbols that can
be placed using this constraint.

Constraint satisfaction It specifies whether the constraint
is mandatory (at least one instance of a symbol must be
placed using this constraint) or not.

Geometric transforms Geometric transformations (rota-
tion, scaling) along their associated parameters to apply
to the symbols before placing them on the background.

Positioning shape It defines where the symbols can be
placed on the background. It can be a single point, a
straight-line or a polygon. In the two last cases, the exact
locations of symbols will be selected at random within
the straight-line or the polygon.

Positioning control The parameters to compute the control
points used to position the symbols within the shape.

Fig. 8 Positioning constraint. a Model/constraint link, b positioning
mechanism

Fig. 9 Rule declaration

Figure 9 gives an example of a rule declaration used in the
positioning. It is composed of a model and an associated con-
straint. This specifies mainly the link(s) between the model
and the constraint and the parameters used for the position-
ing (the control point and the shape coordinates). Additional
parameters can be employed to produce more complex rules.
Table 2 gives the full explicit list of parameters we use in
our rules. These are employed at different steps (1)–(7) of
our building process shown in Fig. 7. We will detail each of
them in next subsections.

3.2 Constraint & model selection

To initiate a building loop in our workflow (Fig. 7), we have to
select a symbol model and an associated constraint. We have
implemented two selection modes: a constraint-based selec-
tion and model-based selection. The motivation for defining

123

Generation of synthetic documents 193

Table 2 Rule parameters
Parameter Default value Description

Model Url Required Url of the model file

Constraints Required Constraint(s) linked to the model

Morph 1.0 To control the thickness of symbol lines

Constraint Name Required Name of the constraint

Rigid True To specify if the constraint is mandatory

Scale 1.0 To scale the symbols

Rotation 0.0 To rotate the symbols

Polar {0.0;0.0} Parameters to compute the control point

Align 0.0 Parameter used for the rotation alignment

Shane Required Coordinates of the shape

Overlap False The symbol can overlap the other ones

Overflow False To coerce the positioning within the shape

Size 1 Maximum number of symbol to place

Fig. 10 Constraint satisfaction

two selection strategies is that some constraints are manda-
tory to be satisfied while others are optional, as illustrated
in Fig. 10. For instance, doors and windows are mandatory
in order to close the house, and a bed is also required in
a bedroom while a sofa is optional. Constraint-based selec-
tion permits to ensure that all mandatory constraints are taken
into account in the generation of the document, while model-
based selection also includes optional constraints.

The constraint-based selection selects the constraints first
and the symbol models next. This way, it will coerce the
positioning i.e. the constraint will be satisfied. Figure 11a
details the selection process we use. It is done by managing
a constraint stack. All the constraints defined as “manda-
tory” in the constraint file are loaded and pushed into this
stack. Then, when starting a building process these con-
straints (c1, . . . , ci) are popped-up from the stack at each
loop. A symbol model (sk) linked to this constraint is next
selected at random using a uniform probability distribution
(p1, . . . , p j). When the stack is empty, the document gen-
eration shifts to the model-based selection as illustrated in
Fig. 7.

The model-based selection works in the opposite way.
It selects symbol models first and linked constraints next.
The selection of symbol models is performed so that it will

Fig. 11 a Constraint selection, b model selection

satisfy a maximum number of constraints among documents.
We favor symbols linked to several constraints, or those
linked to weak associated constraints. The constraints are
next selected at random with an uniform probability distribu-
tion. This guaranties a better spatial distribution of symbols
among documents, and thus a better visual rendering of doc-
uments. Figure 11b presents the method we use to achieve
this. First, a weight wc is computed for each constraint based
on the number of symbols ns associated with it. The weight
ws of a symbol is next obtained by summing the weights wc

of constraints linked with it. The obtained ws are at last nor-
malized by the total number of constraints nc to obtain the
selection probabilities ps of symbols. Using these probabil-
ities, a symbol model can be selected at random. This way,
the system increases the selection probabilities of symbols

123

194 M. Delalandre et al.

Fig. 12 Geometric transforms. a Morphing, b rotation

linked to several constraints, or those linked to weak associ-
ated constraints like, respectively, s3 and s6 in Fig. 11b.

3.3 Symbol loader

Once a model is selected, we instantiate the corresponding
symbol by loading its model file. These model files are kept
inside our database as illustrated in Fig. 6. They are in a vector
graphics format, describing the symbols using geometrical
primitives (straight-lines, arcs and circles) with their associ-
ated thickness attributes. Once loaded, the symbols have to
be adapted to the background image. Indeed, these back-
ground images are made from real-life document images
(web images, digitized documents, etc.) picked-up at ran-
dom. As they are not adapted to our symbol library, we must
apply a set of geometric transformations (scaling, morphing
and random rotation) to the symbols before placing them on
the background.

Scaling aims to adapt the symbols to the size of the back-
ground image. It employs a single parameter defined in the
positioning constraint, to scale the symbols in relation to their
gravity centers. In the same manner, the morphing operation
adapts the thickness of the symbols to the background image.
Figure 12a gives two examples of a symbol placed on a back-
ground, without and with thickness adaptation. In a last step,
the symbols are rotated. This rotation is done using a param-
eter that can be null, a fixed value or a range. In the last case,
the final value is selected at random inside the range. A gap
can also be defined to sample the rotation values within the
range. The key objective of making these rotations random
is to increase the variability of the documents. Figure 12b

Fig. 13 Symbol control

gives an example of a tub rotated in two different ways using
a same constraint. In this example, the range is

{
π
2 , 3×π

2

}

with a π gap.

3.4 Symbol control

Once a symbol is loaded, our system initiates the positioning.
The first step is to compute the control point of the symbol as
detailed in Fig. 13. We define this control point in relation to
the bounding box of the symbol. Indeed, the bounding box
is a common way to handle graphical objects inside a doc-
ument analysis system. The method we employ to compute
it is given in Annex A1. It takes into account the thickness
of the lines and permits also to apply an alignment rotation,
both to the symbol and the control point. It allows the symbol
to be aligned to the background elements. Figure 13 gives an
example of a symbol (a sofa) aligned to a background ele-
ment (a wall).

In our approach, we have made the computation of con-
trol points fully independent of the symbol models. Like this,
we make the association of different models to a single con-
straint easier i.e. it is not necessary for a user to define a
specific control point for each of the models. For that pur-
pose, we have defined the control points in our constraints
with polar coordinates as shown in Fig. 14. The key process
is then, starting from a control point p defined in the polar
space, to find for a given symbol i the right control point pi

in its bounding box. In the polar space, the control points
p are represented using two coordinates (L , θ). We use then
some standard geometric methods to find the right length and
direction (Li , θi) for a given symbol (see Annex A2).

123

Generation of synthetic documents 195

Fig. 14 Definition of control points

Fig. 15 Random positioning. a Straight line, b polygon

3.5 Shape positioning

Once the control point is computed, we position the symbol
on the background. It is based on the matching of the con-
trol point with a positioning one defined on the background.
The symbol will be then positioned so that its control point
matches with the positioning one. In order to introduce some
variability in the built documents, we employ different pos-
sibilities to select the positioning point in a constraint. It can
be defined as being a fixed point (x, y) or can be selected
at random inside a straight line (the point is selected at ran-
dom along the line) or a polygon (the point is selected at
random inside the polygon). Figure 15a,b gives examples
of random positioning in both cases. To perform the ran-
dom selection, we employ different computational geometry
methods detailed in Annex A3.

3.6 Checking of constraints

When a straight-line or a polygon is used to select the posi-
tioning point, their boundaries could also be employed as
delimiters to constraint the positioning of the whole symbol.
Figure 16a,b present some examples where this option could
be useful. In the case of Fig. 16a, the straight-line delimits
the positioning of the sofa to a wall part. In this way, a sofa

Fig. 16 a Line delimiter, b polygon delimiter

Fig. 17 Overflow of symbols

Fig. 18 Multiple positioning. a Straight-line, b polygon

will not be placed in front of the room entrances. The case of
Fig. 16b shows how a polygon could constrain the position-
ing of a table within a hall. Then, this table will not obstruct
the way to the window or be placed along the flat’s wall.

In our system, we allow the user to choose if a constraint
has to be used as delimiter or not. Such a choice will depend
on the context of the constraint and the user will decide
then in regard to his domain know-how. However, position-
ing might fail. Such failures appear when parts of a symbol
overflow the area of the constraint. To check it, we use over-
flow tests between the symbols and the straight-line/polygon
shapes defined in the constraints (Fig. 17). Both are based
on some standard overlapping and line intersection methods
as detailed in Annex A4. A positive result will cancel the
positioning. Afterward the document generation will initiate
a new building loop.

Another particularity related to the use of straight-lines or
polygons in the constraint is that more than one symbol could
be positioned. Figure 18 gives some examples of that. In the

123

196 M. Delalandre et al.

Fig. 19 a Side by side symbols, b building layers

case of Fig. 18a, several sinks are placed along a wall using
a straight-line. Concerning the case of Fig. 18b, the furni-
ture composing a living-room is placed at random inside a
polygon. Thus, in our approach, we have allowed the user to
specify a maximum number (between 1 and n) of symbols
to position per constraint. When a constraint becomes “full”,
the positioning is canceled.

3.7 Space management

In addition to the checking, the system also continuously
monitors the document space. Indeed, during the building
process, the document is filled gradually. The system has to
ensure that any new generated symbol falls entirely within
the image and do not overlap with the existing symbols. Such
detection is achieved using overlapping tests (see Annex B5)
between the bounding box of the new symbol and all the
already positioned in the document.

However, it could appear than some symbols have to be
mildly overlapped. This case appears when we want to make
connect some symbols on the background. Figure 19a gives
examples of that in a bathroom and in a cellar. In order to
take into account these cases in our system, we work with two
building layers as illustrated in Fig. 19b. In the first layer, we
forbid the overlapping as detailed previously. In the second
layer, we allow a mildly overlapping between symbols. We
use the line width of symbols as a threshold to control the
overlapping degree. At the end, the symbols placed in this
second layer are overlayed to the first layer and the back-
ground, to produce the final document. The selection of a
given layer for a constraint is set up by the user. Like this, the

Fig. 20 Generation of test images

mildly overlapping between symbols will be allowed accord-
ing to his needs.

3.8 Stopping criterion

Our building system starts with empty documents and fills
them in a pseudo-random way with generated symbols. The
building process is stopped when the maximum number of
symbols to position in the document is reached. This number
corresponds to the sum of the maximum numbers of allowed
symbols per constraint. However, in some cases, a complete
satisfaction of all constraints could be difficult to achieve.
The user could define a large number of symbols per docu-
ment that will be hard to achieve without relaxing the defined
constraints. The system must then detect and count these
cases, and stop the building if necessary in order to avoid an
infinite building process.

To achieve this, we use the checking and space manage-
ment tests presented in Sects. 3.6 and 3.7. When the results
of these tests are negative, we trigger a building failure as
shown in Fig. 7. We count then these building failures and
compare them to a threshold set up by the user. He defines
it in relation to the edited constraints, the considered domain
and background image, his satisfaction requirement, etc. If
the number of building failures becomes greater than this
threshold, we stop the process.

3.9 Generation of test images

Once vector graphics are documents obtained, we convert
them into raster images for performance evaluation. How-
ever, to test recognition systems one needs noisy images.
In our system, we use two different workflows to add noise
to the images (Fig. 20): scan-based and web-based. The first
one aims to distort the images in a way similar to the scan-
ning process, whereas the second produces low-resolution
and lossy compressed images as the ones found on the Web.

We exploit three processing steps to produce the scan-
based images: scaling, rasterization and image degradation.
Vector graphics documents are first scaled with their

123

Generation of synthetic documents 197

Fig. 21 Image degradation. a Kanungo, b Low resolution

corresponding groundtruth. Indeed, our synthetic documents
are produced from pre-defined background images. These
are selected at random from digital libraries and there-
fore, appear at different scales. Thus, we resize all the
produced documents in order to put them at a same
scale in our datasets. The groundtruth data are also
resized in order to keep them valid. Next, we raster-
ize the vector graphics documents using tools such as
ImageMagick8 or Inkscape9 Rasterized images are obtained
in gray-level, we binarize them using a fixed thresh-
old. In a final step, we employ the image degradation
algorithm of [33]. This algorithm tries to reproduce the
process of printing and acquisition. It has been used in
different applications of DIA (especially OCR), and in
all the past contests on symbol recognition [18–21].
Figure 21a gives examples of degraded images using this
algorithm.

Web-based images are produced using a similar workflow.
Vector graphics documents are also scaled with their corre-
sponding groundtruth to make them homogenous and are
next rasterized. However, they are scaled at lowest levels to
obtain low resolution images as the ones found in the Web.
Figure 21b gives some examples of degradation at lowest
resolutions (from scales 1/1 to 1/4). In a final step, we com-
press the rasterized images with the jpeg lossy compression
algorithm.

8 http://www.imagemagick.org/.
9 http://www.inkscape.org/.

4 Graphics user interface

In previous Sect. 3, we have presented our system to generate
synthetic documents and their corresponding groundtruth at
the symbol-level. The system relies on the use of position-
ing constraints. It employs different entry data, a background
image, a set of symbol models and a file describing the posi-
tioning constraints. As presented previously, the position-
ing process exploits various operations (scaling, morphing,
random and alignment rotation, etc.). Therefore, a constraint
file is expected to contain a lot of data depending on the num-
ber and the complexity of constraints. Thus, it can be difficult
to edit it manually.

In order to help the user, we have developed a GUI allow-
ing different editing tasks: loading and attaching a back-
ground image, loading a model database, creating and placing
constraints, linking constraints to models, setting constraints,
saving and loading constraint files, etc. Figure 22 gives a
snapshoot of this GUI with some edited constraints. In prac-
tice, it is difficult to edit the constraints without observing
their effect on document building. In order to make the edit-
ing easier, we have plugged our GUI to our building engine
as shown in Fig. 23a. Using this plugin, the editing of con-
straints is done in interaction with the user in three steps: (1)
editing process in progress (2) running of the engine (3) dis-
play of the building result. This last step relies on a building
viewer presented in Fig. 23b.

An editing process could take 1–3 hours per background,
depending on the number and complexity of constraints
(from 20 to 40). A user must be familiar with the document
domain (architectural, electrical, etc.). In addition, he must
be trained about the constraint mechanism employed in our
system that involves some skills in computer science. Thus,
this system is mainly intended for people working on the
computer vision field, interested in the performance evalua-
tion aspects. At this time, it has been employed by different
Master and PhD Students following a short training (half a
day).

Once all the constraints are edited from a background
image, the user can produce a full database of synthetic doc-
uments using the main GUI. It is only necessary to specify
the total number of documents to be generated and stored in
the database. The system will export the test documents to a
directory with the corresponding groundtruth files. Ground-
truth files contain metadata about the symbols composing the
test documents: locations of bounding boxes, labels, orien-
tations, scaling and morphing parameters. Annex D gives an
example of the content of groundtruth files. Test documents
are in a vector graphics format (i.e. with vectorial data for
the symbol layer and a raster image for the background). In
a final step, we use batch processing to rasterize the vector
graphics documents and to add noise to the obtained images,
as explained in Sect. 3.9.

123

http://www.imagemagick.org/
http://www.inkscape.org/

198 M. Delalandre et al.

Fig. 22 GUI to edit the
positioning constraints

Fig. 23 a GUI/Engine plugging, b building viewer

5 Experiments and results

In this section, we present the experiments performed and
the results obtained with our system. The main objective of
these experiments is to create collections of test documents,
with the corresponding groundtruth, to be used in evalua-
tion frameworks of symbol recognition & spotting systems.
To achieve this, we set up our system so that it generates
different collections of test documents. Our key objective is
to highlight the flexibility of our approach.10 Table 3 gives
the details about these collections in terms of the numbers

10 Our system has been also used to produce geographic maps to eval-
uate text/graphics separation algorithms.

Table 3 Collections of test documents

Collections Datasets Images Symbols Models

Bags 16 1,600 15,046 25–150

Floorplans 10 1,000 28,065 16

Diagrams 10 1,000 14,100 21

36 3,600 57,211

of datasets, images, symbols placed on the documents and
models used. All these collections are free and downloadable
from our website.11 In next Sects. 5.1–5.3, we will present
the collections of documents we have produced, and how we
have set up our system to do it. In Sect. 5.3, we will highlight
how our approach is suitable for performance evaluation,
by presenting characterization results of a spotting system
obtained on our document collections.

5.1 Bags of symbols

We have built a first collection composed of “bag of sym-
bols” documents. Figure 24 presents some examples of these
bags. In them, the symbols are positioned at random on an

11 http://mathieu.delalandre.free.fr/projects/sesyd/.

123

http://mathieu.delalandre.free.fr/projects/sesyd/.

Generation of synthetic documents 199

Fig. 24 Examples of bag of symbols. a None transformation, b rotated,
c scaled, d rotated & scaled

empty background, without any connection, and using dif-
ferent rotation or scaling parameters. These bags present an
“easy” localization problem. The key idea of this collection
is to establish a bridge with the datasets provided during the
past contests on symbol recognition held during the GREC12

Workshop [8,19,21], composed of only one segmented sym-
bol per image.

To produce this collection, we have used the symbol model
library13 created during the previous editions of the GREC
contest. This library is composed of 150 models of architec-
tural and electrical symbols. Based on this library, we have
set up our system with a single square zone constraint sur-
rounding an empty background. In order to produce bags
of a reasonable size, we have resized the original symbol
models of the past contest editions13 from 512 × 512 to
256 × 256 pixels. Based on this symbol size, we have gen-
erated bags of 1,024 × 1, 024 pixels composed of around
10 symbols each. This corresponds to a symbol density of
0.625 (2562×10

1,0242), which respects a well-balanced partitioning
between the background and the foreground parts as shown
in Fig. 24.

Using these size parameters, we have generated 16 data-
sets of 100 bags each. This corresponds to an overall num-
ber of 1,600 bags composed of around 15,000 symbols as
indicated in Table 3. These 16 datasets have been generated
by respecting the protocol used during the previous runs of
the contest13. First we have used different model numbers
(25, 50, 100 and 150) in order to test the scalability of the
methods. Next we have applied and combined different geo-
metrical operations as illustrated in Fig. 24a–d. These trans-

12 Graphics Recognition.
13 http://epeires.loria.fr/.

Fig. 25 Examples of built floorplans

formations have been set up as follows: from 0 to 2 × π for
the random rotation with a gap of 2×π

1000 , and from 75 % to
125% for the scaling with a gap of 0.05% (50

1,000).

5.2 Architectural floorplans

Our second collection aims to provide whole documents
using filled backgrounds. For that purpose, we have dedi-
cated this collection to architectural floorplans. We have cho-
sen architectural floorplans in recognition of their interesting
properties concerning the connectivity and the orientation of
symbols. Figure 25 presents some examples of floorplans
automatically produced by our system.

In order to generate these floorplans, we have defined first
a set of architectural symbol models. Our set is composed
of 16 models, Fig. 26 gives their thumbviews and labels. In
this set, the sizes of the symbols respects existing propor-
tions appearing in real-life floorplans. We give in Fig. 26 the
scales of thumbviews14 regarding the real sizes of symbols
in floorplans.

14 Ratios of thumbview sizes to corresponding symbol sizes in floorp-
lans.

123

http://epeires.loria.fr/.

200 M. Delalandre et al.

Fig. 26 Thumbviews of architectural models labels with scales14

Then, we have used these models and some background
images in order to produce our constraints. Figure 27a
explains the process we use. First, to create our backgrounds,
we have picked-up at random some images of real floorp-
lans (digitized documents, web images, etc.). We have next
cleaned these images by deleting elements like texts, sym-
bols, arrows, dimensions, etc. Once the background images
are obtained, we use our GUI to edit the constraints and to
link them to the symbol models. As we want the documents
to be as real as possible, we use during the editing step, the
original images in order to reproduce the domain rules in the
constraints. Figure 27b gives some examples of the original
floorplans, and the documents we have built from them. The
initial information concerning the types and the locations of
symbols has been preserved in the constraints.

We have created our whole floorplan collection using 10
different backgrounds. However, to address the time com-
plexity problem of symbol recognition & spotting processes,
we restrict ourselves to background images composed of
a small number of rooms. Like this, we produce floorplan
images of reasonable dimensions. The number of edited con-
straints per background image changes from 21 to 41. Using
these constraints, we have generated 100 instances of doc-
uments per background. Our final collection of documents
is composed of 1,000 images and around 28,000 symbols to
locate as indicated in Table 3. This corresponds to a mean
number of 28 symbols per image, with a minimum of 18 and
a maximum of 40. In a final step, we have scaled all the pro-
duced images to make their resolution homogenous across
the whole database. The scaling parameter has been defined

Fig. 27 a Edition process, b real-life versus built documents

in order to reach a symbol size of 192 × 192 for the smallest
symbol models and 460 × 460 for the biggest ones (corre-
sponding respectively to the scaling parameters 1.0 and 2.4
of Fig. 26).

5.3 Electrical diagrams

Our last collection is concerned with electrical diagrams. Our
key objective here is to show that our approach is not domain
dependent, and could be applied therefore to build other doc-
ument types. Figure 28 shows some examples of diagrams
we produce.

To build these diagrams, we have first created a model
library of electrical symbols. Figure 29 gives thumbviews of
them, our set is composed of 21 models. Then, the process
we have used to construct this collection is similar to the one
of floorplans. In a first step, we have picked-up at random
some images of real diagrams and cleaned them to obtain
the backgrounds. The obtained background images contain
only wires joining empty symbol places. Next, we have used
our GUI to edit constraints for the obtained backgrounds by
reproducing domain rules of original diagrams.

We have generated our whole collection of diagrams from
10 different backgrounds. We restrict ourselves to diagrams
composed of a few number of components, in order to address

123

Generation of synthetic documents 201

Fig. 28 Examples of built diagrams

Fig. 29 Electrical models

Fig. 30 Representation phase of [15]

the time complexity problem of the symbol recognition &
spotting processes. Then, in the case of diagram collection,
the number of edited constraints per background image var-
ies from 7 to 26. Using these constraints, we have generated
100 instances of documents per background. Our final collec-
tion of documents is composed of 1,000 images and around
14,000 symbols to locate as indicated in Table 3. This cor-
responds to a mean number of 14 symbols per image, with
a minimum of 7 and a maximum of 26. In a final step, we
have scaled all the produced images to make their resolution
homogenous across the whole database. The diagrams have
been produced in order to respect a mean symbol size of
192 × 192 (from 57 × 57 for the smallest ones to 288 × 288
for the biggest ones).

5.4 Application to performance evaluation

In past Sects. 5.2 and 5.3, we have illustrated how our
system can produce documents that look realistic, by repro-
ducing domain rules of true-life documents in positioning
constraints. Using these constraints, our system generates
document instances i.e. different symbolic layers on a same
background. In this subsection, we illustrate how these doc-
uments are suitable for performance evaluation. To do it, we
have employed them to evaluate the symbol localization sys-
tem of [15]. This system detects parts of documents that may
correspond to symbols, without a priori knowledge about the
type of the document. It provides a set of ROIs15 correspond-
ing to potential symbols, without any information about their
classes. It relies on a structural approach using a two-step
process.

First, it extracts topological and geometric features from
an image and organizes them through an ARG16 (Fig. 30).
The image is first vectorized into a set of quadrilateral prim-
itives. These primitives become nodes in the ARG (labels
1, 2, 3, 4), and the connections between them, arcs. Nodes
have, as attributes, relative lengths (normalized between 0
and 1) whereas arcs have the connection-types (L junction,

15 Regions Of Interest.
16 Attributed Relational Graph.

123

202 M. Delalandre et al.

Table 4 Dataset used for experiments

Drawing level Symbol level

Floorplans Setting Backgrounds 5 Models 16

Dataset Images 100 Symbols 2,521

Diagrams Setting Backgrounds 5 Models 17

Dataset Images 100 Symbols 1,340

T junction) and relative angles (normalized between 0◦ and
90◦).

In the second step, the system looks for potential ROIs
corresponding to symbols in the image. It detects parts of
the graph that may correspond to symbols i.e. symbol seeds.
Scores, corresponding to probabilities of being part of a sym-
bol, are computed for all edges and nodes of the graph. They
are based on features such as lengths of segments, perpendic-
ular and parallel angular relations, degrees of nodes, etc. The
symbol seeds are detected next during a score propagation
process. This process seeks and analyzes the different short-
est paths and loops between nodes in the graph. The scores of
all the nodes belonging to a detected path are homogenized
(propagation of the maximum score to all the nodes in the
path) until convergence, to obtain the seeds.

To evaluate this system, we have constituted a dataset
of synthetic documents using our collections. Table 4 gives
details about it. It is composed of architectural floorplans and
electrical diagrams. We have selected 100 drawings produced
using 5 different background images (20 drawings are gener-
ated per background image) for each domain. Thus, the whole
dataset contains 200 documents composed of 3,861 sym-
bols (2,521 architectural and 1,340 electrical). These sym-
bols belong to 16 and 17 architectural and electrical models,
respectively, appearing in the selected backgrounds.

Our key objective here is to illustrate that our documents
are suitable for performance evaluation. To do it, we propose
to analyze the variability of the localization results, obtained
by the system [15], on our dataset. We compute for each
test image a symbol detection rate. This rate is obtained by
comparing the bounding boxes of the localization results and
the groundtruth (see Annex B5 for details about the overlap-
ping test). We exploit the overlapping relations to identify
matching cases as detailed in Table 5. The detection rate of
a given document corresponds to d = s

n , with s the num-
ber of single localization, and n the number of symbols in
groundtruth.

Figure 31 presents plots of results we have obtained on
architectural floorplans and electrical diagrams. In these
plots, the detection rates are grouped per drawings produced
from the same background image. Each curve gives the
rates for a set of document instances (i.e. documents gen-
erated from a same background). Each set is composed of

Table 5 Matching cases between groundtruth and results

Single An object in the results matches
with a single object in the
groundtruth

Misses An object in the groundtruth
doesn’t match with any object in
the results

False alarm An object in the results doesn’t
match with any object in the
groundtruth

Multiple An object in the results matches
with multiple objects in the
groundtruth (merge case) or an
object in the groundtruth matches
with multiple objects in the
results (split case)

20 document instances, and each plot gives results for 5 sets
for an overall number of 100 documents. To draw the curves,
we have sorted the detection rates per set from highest to
lowest values.

These curves illustrate the variability of synthetic
documents produced using our system. Variations in the
symbol layer impact in a significative way the results of
the system, despite the use of a same background image
to produce the drawings. In order to quantify this vari-
ability, we present in Table 6 a statistical analysis. For
each drawing set, we have computed the mean detection
rates μb and their corresponding standard deviations σb.
σb is the mean standard deviation of the drawing sets,
whereas σw is obtained from the whole dataset (compar-
ing documents generated from different backgrounds). In
these experiments, we obtain σb � 1

2σw. These results
show that our method can produce, for a given back-
ground, drawings with different features. Depending on
the number and type of symbols and constraints, these
features can significantly affect the performance of sym-
bol localization and thus, be used for performance evalua-
tion.

6 Conclusion and perspectives

In this paper, we have presented a system for the genera-
tion of synthetic documents for the performance evaluation
of symbol recognition & spotting systems. Our key contri-
bution is the building of whole documents (drawings, maps,
diagrams, etc.) and, our underlying aim, to make these doc-
uments more realistic. To do it, we have exploited the layer
property of graphical documents in order to position sym-
bol sets in different ways using the same backgrounds. This
way, we obtain a large amount of documents that look real-
istic by simply providing, a small number of constraints,

123

Generation of synthetic documents 203

Fig. 31 Localization results (plots)

and a few predefined backgrounds. The groundtruth (the
locations and the labels of symbols) becomes automatically
available along with the produced documents. We have
employed this system to produce documents of architectural
and electronic domains which proves the flexibility of our
approach. In addition, using these documents, we have done
performance evaluation experiments of a symbol localization
system. They show that the different parameters used in our
system result in generated documents with different features
that are reflected in variation of the localization results of the
system.

As a continuation of this work, our challenge is the com-
parison of synthetic documents with real ones in terms of
performance evaluation. The goal will be to compare local-
ization results, of one (or several) system(s), on real and
on synthetic documents. The generation parameters (num-
ber and type of symbols, constraints and noise) used in our
system should establish some kind of relation and compari-
son to the same parameters in real documents. However, this
is not an straightforward task due to the lack of groundtruthed
datasets of real documents and characterization methods. To
the best of our knowledge, it is not possible to achieve such a

Table 6 Localization results (tables)

Floorplans Diagrams

μb σb μb σb

b1 0.8552 0.0273 b1 0.0000 0.0000

b2 0.7691 0.0428 b2 0.9300 0.0506

b3 0.7503 0.0629 b3 0.8269 0.1167

b4 0.6018 0.1025 b4 0.7679 0.0952

b5 0.5539 0.0654 b5 0.5938 0.0517

σw = 0.1247 σ̄b = 0.0602 σw = 0.1568 σ̄b = 0.0628

μ̄b = ∑n
i=1 μbi , σw =

∑n
i=1 (μbi −μ̄b)2

n , σ̄b = ∑n
i=1 σbi

comparison today, because no groundtruthed dataset of real
scanned documents exists. In addition, performance charac-
terization metrics must be reformulated to take specificities
of whole documents into account. With whole documents,
characterization becomes harder because it has to be done
between symbol sets. These symbol sets can have different
sizes, and gaps can also appear concerning the locations of
symbols. Different matching cases then exist, and the char-
acterization methods must be able to detect them properly.
Some recent research work on these problems can be found
in [34,35]. Additional methods should be proposed by the
graphics recognition community and compared, in order to
identify the best-suited one for performance characteriza-
tion.

Acknowledgments This work was partially supported by the
Spanish project TIN2006-15694-C02-02, the fellowship 2006 BP-B1
00046 and by the Spanish research programme Consolider Ingenio
2010: MIPRCV (CSD2007-00018). The authors wish to thank Jean-
Yves Ramel (LI laboratory, Tours, France) for his collaborations and
help about this work.

Appendix: organization of the annexes

123

204 M. Delalandre et al.

Annex A: positioning methods

A1: Computation of bounding boxes

See Annexes B1 and B2 for the point offset and direction
inclusion test within an arc.

A2: Computation of control points

A3: Generation of random points

See Annexes B1 and B3 for the point offset and point
inclusion test within a polygon.

A4: Overflow tests

See Annexes B5 and C for the overlapping tests and line
intersection methods.

Annex B: computational geometry methods

B1: point offset

123

Generation of synthetic documents 205

B2: direction inclusion test within an arc

See Annex B4 for the clockwise angle computation
between straight-lines.

B3: point inclusion test within a polygon

See Annex B4 for the clockwise angle computation
between straight-lines.

B4: clockwise angle computation between straight-lines

B5: overlapping tests

Annex C: line intersection methods

123

206 M. Delalandre et al.

Annex D: groundtruth format

References

1. Greengrass, E.: Information retrieval: A survey. Tech. Rep.
TR-R52-008-001, Center for architectures for data-driven infor-
mation processing (CADIP), University of Maryland, US (2000)

2. Thacker, N., Clark, A., Barron, J., Beveridge, J.R., Courtney, P.,
Crum, W., Ramesh, V., Clark, C.: Performance characterisation in
computer vision: A guide to best practices. Comput. Vis. Image
Underst. 109, 305–334 (2008)

3. Muller, H., Muller, W., Squire, D., Marchand-Maillet, S., Pun,
T.: Performance evaluation in content-based image retrieval: Over-
view and proposals. Pattern Recognit. Lett. 22(5), 593–601 (2001)

4. Haralick, R.: Performance evaluation of document image algo-
rithms. In: Workshop on Graphics Recognition (GREC), Vol. 1941
of Lecture Notes in Computer Science (LNCS), (2000), pp. 315–
323

5. Chhabra, A.: Graphic symbol recognition: An overview. In: Work-
shop on Graphics Recognition (GREC), Vol. 1389 of Lecture Notes
in Computer Science (LNCS), (1998), pp. 68–79

6. Cordella, L., Vento, M.: Symbol and shape recognition. In: Work-
shop on Graphics Recognition (GREC), Vol. 1941 of Lecture Notes
in Computer Science (LNCS), (1999), pp. 167–182

7. Lladós, J., Valveny, E., Sánchez, G., Martí, E.: Symbol recognition
: Current advances and perspectives. In: Workshop on Graphics
Recognition (GREC), Vol. 2390 of Lecture Notes in Computer
Science (LNCS), (2002), pp. 104–127

8. Tombre, K., Tabbone, S., Dosch, P.: Musings on symbol recogni-
tion. In: Workshop on Graphics Recognition (GREC), Vol. 3926 of
Lecture Notes in Computer Science (LNCS), (2005), pp. 23–34.

9. Yoon, S., Kim, G., Choi, Y., Lee, Y.: New paradigm for segmen-
tation and recognition. In: Workshop on Graphics Recognition
(GREC), (2001), pp. 216–225

10. Tombre, K., Lamiroy, B.: Graphics recognition—from re-engineer-
ing to retrieval. In: International conference on document analysis
and recognition (ICDAR), (2003), pp. 148–155

11. Dosch, P., Lladós, J.: Vectorial signatures for symbol discrimina-
tion. In: Workshop on Graphics Recognition (GREC), Vol. 3088 of
Lecture Notes in Computer Science (LNCS), (2004), pp. 154–165

12. Tabbone, S., Wendling, L., Zuwala, D.: A hybrid approach to detect
graphical symbols in documents. In: Workshop on Document Anal-
ysis Systems (DAS), Vol. 3163 of Lecture Notes in Computer
Science (LNCS), (2004), pp. 342–353

13. Zuwala, D., Tabbone, S.: A method for symbol spotting in graphical
documents. In: Workshop on Document Analysis Systems (DAS),

Vol. 3872 of Lecture Notes in Computer Science (LNCS), (2006),
pp. 518–528

14. Locteau, H., Adam, S., Trupin, E., Labiche, J., Heroux, P.: Symbol
spotting using full visibility graph representation. In: Workshop on
Graphics Recognition (GREC), (2007), pp. 49–50

15. Qureshi, R., Ramel, J., Barret, D., Cardot, H.: Symbol spotting
in graphical documents using graph representations. In: Workshop
on Graphics Recognition (GREC), Vol. 5046 of Lecture Notes in
Computer Science (LNCS), (2008), pp. 91–103

16. Rusiñol, M., Lladós, J.: A region-based hashing approach for sym-
bol spotting in technical documents. In: Workshop on Graphics
Recognition (GREC), Vol. 5046 of Lecture Notes in Computer
Science (LNCS), (2008)

17. Valveny, E. et al.: A general framework for the evaluation of sym-
bol recognition methods. Int. J. Doc. Anal. Recognit. 1(9), 59–
74 (2007)

18. Aksoy, S., et al.: Algorithm performance contest. In: International
conference on pattern recognition (ICPR), Vol. 4, pp. 870–876,
(2000)

19. Valveny, E., Dosch, P.: Symbol recognition contest: A synthesis. In:
Workshop on Graphics Recognition (GREC), Vol. 3088 of Lecture
Notes in Computer Science (LNCS), pp. 368–386, (2004)

20. Dosch, P., Valveny, E.: Report on the second symbol recogni-
tion contest. In: Workshop on Graphics Recognition (GREC), Vol.
3926 of Lecture Notes in Computer Science (LNCS), pp. 381–397,
(2006)

21. Valveny, E., Dosch, P., Fornes, A., Escalera, S.: Report on the third
contest on symbol recognition. In: Workshop on Graphics Recog-
nition (GREC), Vol. 5046 of Lecture Notes in Computer Science
(LNCS), pp. 321–328, (2008)

22. Lopresti, D., Nagy, G.: Issues in ground-truthing graphic doc-
uments. In: Workshop on Graphics Recognition (GREC), Vol.
2390 of Lecture Notes in Computer Science (LNCS), pp. 46–66,
(2002)

23. Yan, L., Wenyin, L.: Interactive recognizing graphic objects in engi-
neering drawings. In: Workshop on Graphics Recognition (GREC),
Vol. 3088 of Lecture Notes in Computer Science (LNCS), pp. 126–
137, (2004)

24. Chhabra, A., Phillips, I.: The second international graphics recog-
nition contest—raster to vector conversion : a report. In: Workshop
on Graphics Recognition (GREC), Vol. 1389 of Lecture Notes in
Computer Science (LNCS), pp. 390–410, (1998)

25. Zhai, J., Wenyin, L., Dori, D., Li, Q.: A line drawings degradation
model for performance characterization. In: International confer-
ence on document analysis and recognition (ICDAR), pp. 1020–
1024, (2003)

26. Yanikoglu, B., Vincent, L.: Pink panther: A complete environment
for ground-truthing and benchmarking document page segmenta-
tion. Pattern Recognit. 31(9), 1191–1204 (1998)

27. Lee, C., Kanungo, T.: The architecture of trueviz: A ground-
truth/metadata editing and visualizing toolkit. Pattern Recog-
nit. 36(3), 811–825 (2003)

28. Antonacopoulos, A., Karatzas, D., Bridson, D.: Ground truth for
layout analysis performance evaluation. In: Workshop on Docu-
ment Analysis Systems (DAS), Vol. 3872 of Lecture Notes in Com-
puter Science (LNCS), pp. 302–311, (2006)

29. Kim, D., Kanungo, T.: Attributed point matching for automatic
groundtruth generation. Int. J. Doc. Anal. Recognit. 5(1), 47–
66 (2002)

30. Ford, G., Thoma, G.: Ground truth data for document image anal-
ysis. In: Symposium on document image understanding and tech-
nology (SDIUT). pp. 199–205, (2003)

31. Yang, L., Huang, W., Tan, C.: Semi-automatic ground truth gen-
eration for chart image recognition. In: Workshop on Document
Analysis Systems (DAS), Vol. 3872 of Lecture Notes in Computer
Science (LNCS). pp. 324–335, (2006)

123

Generation of synthetic documents 207

32. Phillips, I., Ha, J., Haralick, R., Dori., D.: The implementa-
tion methodology for the cd-rom english document database, In:
International Conference on Document Analysis and Recognition
(ICDAR), pp. 484–487 (1993)

33. Kanungo, T., Haralick, R., Baird, H.S., Stuezle, W.D.M.: A statisti-
cal, nonparametric methodology for document degradation model
validation. Pattern anal. mach. intell. 22(11), 1209–1223 (2000)

34. Delalandre, M., Ramel, J., Valveny, E., Luqman, M.: A perfor-
mance characterization algorithm for symbol localization, In:
Workshop on Graphics Recognition (GREC), Vol. 8, pp. 3–11,
(2009)

35. Rusiñol, M., Lladós, J.: A performance evaluation protocol for
symbol spotting systems in terms of recognition and location indi-
ces. Int. J. Doc. Anal. Recognit. 12(2), 83–96 (2009)

123

	Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems
	Abstract
	1 Introduction
	2 Overview
	2.1 Real data
	2.2 Synthetic data
	2.3 Conclusion

	3 Our approach
	3.1 Positioning constraints
	3.2 Constraint & model selection
	3.3 Symbol loader
	3.4 Symbol control
	3.5 Shape positioning
	3.6 Checking of constraints
	3.7 Space management
	3.8 Stopping criterion
	3.9 Generation of test images

	4 Graphics user interface
	5 Experiments and results
	5.1 Bags of symbols
	5.2 Architectural floorplans
	5.3 Electrical diagrams
	5.4 Application to performance evaluation

	6 Conclusion and perspectives
	Acknowledgments
	Appendix: organization of the annexes
	Annex A: positioning methods
	A1: Computation of bounding boxes
	A2: Computation of control points
	A3: Generation of random points
	A4: Overflow tests

	Annex B: computational geometry methods
	B1: point offset
	B2: direction inclusion test within an arc
	B3: point inclusion test within a polygon
	B4: clockwise angle computation between straight-lines
	B5: overlapping tests

	Annex C: line intersection methods
	Annex D: groundtruth format
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

