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Teaching Old Sensors New Tricks: Archetypes of
Intelligence

Dimosthenis Karatzas, Arsenia Chorti, Neil M. White, Christopher J. Harris

Abstract— In this paper a generic intelligent sensor software
architecture is described which builds upon the basic require-
ments of related industry standards (IEEE 1451 and SEVA BS-
7986). It incorporates specific functionalities such as real-time
fault detection, drift compensation, adaptation to environmental
changes and autonomous reconfiguration. The modular based
structure of the intelligent sensor architecture provides enhanced
flexibility in regard to the choice of specific algorithmic realiza-
tions. In this context, the particular aspects of fault detection
and drift estimation are discussed. A mixed indicative/corrective
fault detection approach is proposed while it is demonstrated
that reversible/irreversible state dependent drift can be estimated
using generic algorithms such as the EKF or on-line density
estimators. Finally, a parsimonious density estimator is presented
and validated through simulated and real data for use in an
operating regime dependent fault detection framework.

Index Terms— intelligent sensor, software architecture, drift es-
timation, fault detection, data fusion, density estimation, adapta-
bility, reliability, calibration

I. INTRODUCTION

THE TERM ”intelligent” when used to qualify a sensor has
at best a dubious meaning. Intelligent or smart sensors

traditionally refer to sensors offering additional functiona-
lity provided by the integration of microprocessors, micro-
controllers or application-specific integrated circuits (ASICs)
within the sensing element itself. In any case, the exact
functionality that would qualify a sensor as intelligent is not
as yet strictly defined. As a result, there are many flavors of
sensor intelligence available in the literature, ranging from
implementations including sensors coupled with application
dependent electronics [1], [2], [3], to Self-Validating (SEVA)
sensors [4], [5] which place an emphasis on their ability to
validate their output. In parallel, the issue of intelligent sensors
has been approached from a functional point of view in [6] and
[7]. This work concentrates not so much on how data is locally
processed but on which type or results should be provided by
an intelligent sensor in terms of available services.

To address intelligent sensors, the IEEE introduced the
IEEE 1451 family of standards [8], [9], [10], [11]. IEEE
1451 provides a formal definition of the basic requirements
of a smart transducer. These standards define the fundamental
element of intelligence as the ability to self-identify, and
complement this with on board memory and a set of digital,
analogue and mixed communication interfaces. IEEE 1451 has
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been received well by industry, with a number of compliant
products and implementations [12], [13].

While IEEE’s intelligent sensor provides basic functionality,
the SEVA sensors approach addresses the issue of intelligence
at a higher level suggesting that an intelligent sensor should
be able to validate its output and communicate sensor state
information to a higher level. The SEVA approach recently
became a British Standard (BS-7986) [14] which has already
been endorsed by parts of industry. BS-7986 defines a set of
state values and couples these with rules for the propagation
of the validated output and uncertainty values through any
modules comprising the intelligent sensor.

It is important to note two key facts, BS-7986 avoids the
need to specify how the validated values and uncertainties
are actually calculated or when specific sensor states should
be entered into, since this functionality is deemed to be
application-specific. In addition, it does not make any assump-
tions regarding the communication interface nor it provides
any standard way to identify the sensor. On the other hand, the
IEEE 1451 standard defines this lower level functionality but
avoids stepping into the realm of higher level data processing.
As such the two standards are essentially complementary, but
even so they still fail to propose a specific framework for
higher-level on-board data processing.

This paper fills this gap by addressing a multitude of com-
mon situations encountered in sensory applications through
a generic software architecture for intelligent sensors. It is
argued that an intelligent sensor should be able to perform on
board signal processing within the sensor’s software in order
to produce the optimal output signal in a variety of adverse
circumstances. The software architecture proposed provides
a generic framework to implement BS-7986, whilst building
upon the requirements introduced by IEEE 1451 to incorporate
the following functionality:
• Real-time fault and drift detection, fault isolation and

signal conditioning.
• Communication of sensor condition to the sensor mana-

gement level.
• Adaptation to environmental changes.
• Autonomous reconfiguration (where possible) to continue

effective sensor operation despite sensor degradation.
The key contribution of this paper is the presentation of

the intelligent sensor software architecture. The architecture
comprises modules which address common issues of real
world applications such as fault detection and drift estimation.
Through a modular approach, the architecture can be easily
adapted to fit specific applications, while retaining compati-
bility with industry standards. In addition to presenting the
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Fig. 1. Intelligent sensor software architecture

intelligent sensor software architecture, we discuss in detail
possible algorithmic approaches for the realization of the
key components: fault detection, drift estimation and sensor
modeling.

The paper is organized as follows: an overview of the
intelligent sensor software architecture is given in section II,
along with a detailed description of the comprising software
modules in subsections II-A to II-F. Section III offers a dis-
cussion on existing approaches to fault detection and proposes
an algorithm based on an Adaptive Kalman Filter (AKF)
enhanced with outlier identification capabilities. In section
IV, we analyze possible approaches for drift estimation and
demonstrate the identification of reversible state dependent
drift using the Extended Kalman Filter (EKF) algorithm. We
examine the possibility of using on-line density estimators
for irreversible state dependent drift estimation and present
a theoretical analysis for multiplicative drift in sensors that
include internal oscillatory systems as a result of phase noise.
Finally, in section V we demonstrate the use of a sparse density
estimator, while section VI concludes the paper.

II. INTELLIGENT SENSOR SOFTWARE ARCHITECTURE

We consider an intelligent sensor to be a system of primary
sensing elements and associated software modules acting as a
single entity. The software architecture addresses the following
issues:
• Specifies the functionality of the software modules.

• Defines how the modules are interconnected.
• Describes how data propagate between the modules.
• Explains how additional, specialized software modules

can be incorporated to tackle application specific tasks.

The software architecture supports input from multiple
sensing elements in different configurations, promoting redun-
dancy of information through the use of sensor arrays for
each of the quantities being measured. An overview of the
modular structure is presented in Fig. 1 to demonstrate the
key elements of the architecture. These are explained in more
detail in subsequent subsections.

In the configuration of Fig. 1, the quantity of interest
(primary measurand) is measured by an array of sensors. Each
sensor is interfaced with the software architecture through a
Sensor Interface (SI) module (subsection II-A), which is re-
sponsible for communicating with the hardware and perform-
ing basic signal conditioning. The output of each SI module
is individually monitored by a Fault Detection (FD) module
(subsection II-C), which assesses each new measurement to
produce an associated uncertainty value. The outputs of the
FD modules in the array are subsequently combined by an
Internal Fusion (IF) module (subsection II-D) and the single
value and associated uncertainty is fed to the Drift Estimation
and Compensation (DEC) module (subsection II-E), which
monitors the behavior of the signal over longer timescale in
order to identify and compensate for drift or bias.
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Both the FD and the DEC modules generally use additional
information about the sensor in terms of precalculated sensor
models. A bank of such models is provided by the Sensor
Model Provider (SMP) module (subsection II-B). Depending
on the algorithm employed by the FD or the DEC module,
the theoretical model could refer to different types of sensor
models. Particular applications of a Kalman Filter (KF) based
FD module and an Extended Kalman Filter (EKF) based DEC
module will be described later on in sections III and IV
respectively.

In addition, it is possible that the selection of the theore-
tical model is also dependent on the particular environmental
conditions (regime) within which the intelligent sensor ope-
rates. Generally, the environment can be monitored by one
or more arrays of sensors (two in the scenario of Fig. 1)
measuring various environmental attributes. Modules such as
the SMP can use this information to facilitate the selection
of the appropriate theoretical model at any given time. A
parsimonious density estimator is proposed in section V as a
viable solution for the calculation of pdf models. Each attribute
monitored by the intelligent sensor is implemented by a branch
of modules. The Intelligent Sensor Control (ISC) module
(subsection II-F) is the final recipient of all information from
the module branches and is responsible to communicate the
final sensor output to higher level processes through an IEEE
1451 compliant communications interface.

There are various advantages of having a modular software
architecture. Each module is self-contained; it is therefore
trivial to exchange a specific module with another of the
same functionality without affecting the overall design. The
architecture specifies the functionality and the interconnections
for each module type, but does not dictate the use of a specific
algorithm to achieve the desired effect. The exact algorithm
used, is application-dependent and the end user will be able
to either choose from a library of alternatives, or produce an
application specific implementation. Another advantage of the
software architecture is that it allows modules to be combined
in a number of alternative ways. Two possible implementations
of the architecture are shown in Fig. 2 for illustration purposes.

In terms of data propagation, the software architecture is
fully compliant with standard BS-7986. All software modules
in the data pipeline communicate information using a data
structure comprising five pieces of information as required by
BS-7986:

i Validated value (V V ). This is the measurement possibly
after certain corrections have been applied to it.

ii Validated value status (V Vstatus). A byte (8-bit) value in-
dicating how the associated V V data has been generated.

iii Validated uncertainty (V U ). Error band of the associated
V V data value at 95% level of confidence represented in
the same units and with the same precision as the V V .

iv Validated uncertainty status (V Ustatus). A byte value in-
dicating how the associated V U data has been generated.

v Validated device status (V Dstatus). A byte describing
the status of the module reporting the above values (e.g.
maintenance information and hardware problems).

The intelligent sensor software architecture implements the
transition decision rules for V Ustatus and V Dstatus, as well as
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Fig. 2. Possible implementations of the intelligent sensor architecture

the rules for deriving V Vstatus as specified in the standard. In
general, the architecture assumes V V and V U to be vectors of
values. Software modules can be viewed as BS-7986 function
blocks with the exception of the SMP module, which provides
information outside the main data-pipeline. In the case of the
SMP module, the output refers to a theoretical sensor model
and the uncertainty value to the probability that this model is
valid for the current regime.

BS-7986 function blocks are defined as software functional
units. The function block output value (V Vout) is derived
from the function block input(s) by applying the algorithms
implemented in the block by its designer. So in the general
case:

V Vout = f(V V1, V V2, . . . , V VN ) (1)

where V Vout is the function block output at the corresponding
sample, f(·) is the function used to derive V Vout from the
inputs to the function block and V Vi, i = 1 . . . N is the
ith input to the function block. The function block output
uncertainty value is then derived from the inputs and their
uncertainties by applying (2):

U(V Vout)2 =
N∑

i=1

[
∂f

∂V Vi

]2

U(V Vi)2 (2)
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where U(V Vout) is the uncertainty associated with V Vout at
the corresponding sample time, U(V Vi) is the uncertainty
associated with V Vi and ∂f

∂V Vi
is the sensitivity coefficient

describing how V Vout varies with changes in V Vi. The
intelligent sensor software architecture modules maintain com-
patibility with the above notion of function blocks, with the
exception of the SMP as explained above.

An additional feature of the architecture is support for com-
munication between modules which is achieved through a mes-
saging mechanism. Although messaging is supported by all
modules by default, its use is not necessary for implementing
the basic functionality of the architecture. Nevertheless, it is
important for such a mechanism to exist, in order to implement
more advanced functionality, e.g. in the context of regime
change detection. The types of software modules that comprise
the intelligent sensor software architecture are described in
detail in subsections II-A to II-F. The functionality of each
module is defined, along with the standard implementation
and possible implementation alternatives where applicable.

A. Sensor Interface Module (SI)

The SI module is responsible for interfacing the sensing
element to the software architecture. As such, the possible
implementations of this module are as many and varied
as the sensing elements available. In order for a particular
sensing element to be supported by the architecture the single
requirement is that a SI implementation is provided for it. The
basic functionality of the SI module is to:
• Communicate with the sensing element hardware.
• Obtain measurements on demand.
• Perform basic signal processing (linearization, A/D con-

version, conversion to engineering units, etc.).
The standard implementation of the SI module reports the

sensor’s accuracy (known from the technical characteristics)
as the uncertainty value (V U ). Subsequent modules (such
as FDs) can ignore this information and produce their own.
Nevertheless, in the absence of such subsequent modules,
this is the best uncertainty that can be associated with the
measurement at this level.

B. Sensor Model Provider Module (SMP)

The SMP module acts as a repository of pre-calculated
sensor models. The basic functionality of the SMP module is
to store and communicate pre-calculated models for a specific
sensor (or range of sensors), given a model type.

Although a theoretical sensor model is sensor-specific in-
formation, it has been a design decision not to include this
information in the SI module for two reasons. First, it is a
common situation to have an array of same sensors (which
share the same models) in the design. Including sensor model
information in each instance of the SI would be superfluous.
Instead a single SMP module can serve any number of
subsequent modules. Second, there are cases where the sensor
models refer to a virtual sensor1 as opposed to a real one. An

1The “virtual sensor” refers to the theoretical system that has the same
macroscopic properties and characteristics with the array/set of the real
sensors.

example of such a situation will be discussed later on in the
context of drift estimation and correction. In such situations
an SMP module can still act as a model repository.

The definition of a sensor model is intentionally left open
to mean any set of information that can describe the operation
of the sensor. Three model types are already defined:

i Linear State-Space models (intended to be used with
KF based implementations of software modules).

ii Non-linear State-Space models (intended to be used
with EKF based implementations of software mod-
ules).

iii pdf models (intended to be used with probabilistic
hypothesis based implementations of software mod-
ules).

Models are nevertheless not restricted to the above types,
and users can enrich the list of model types with their own. The
selection of a specific model in the standard implementation
is based on a single attribute; the model type. The standard
implementation does not dictate a specific model selection
algorithm in the case where more than one model is avail-
able. Derived implementations, of course, can make use of
additional information and elaborate algorithms to facilitate
model selection. Such extra information can be, for example,
environmental regime data as discussed in section V.

C. Fault Detection Module (FD)

The FD module is responsible to assess and correct the
incoming data and produce an uncertainty value. The basic
functionality of the FD module is defined as:
• Produce an uncertainty value for each input data value.
• Correct incoming data if possible.
Compliant to the BS-7986 standard, the uncertainty value

denotes the error band of the associated data value at 95%
level of confidence and is represented in the same units and
with the same precision as the data value. The uncertainty
value is typically calculated by assessing the new data value
in the context of recent data history. Specific algorithms for
achieving that are discussed later on in section III.

D. Internal Fusion Module (IF)

The IF module enables the configuration of sensors into
arrays. It combines an arbitrary number of input data values
and associated uncertainties to produce a single sensory output
and uncertainty value. Additionally, the IF module is able
to identify cases when an input value is inconsistent, and
take action to report the problem. The functionality of the
IF module is summarized to the following:
• Generation of a single value and associated uncertainty

from multiple inputs.
• Filtering of inconsistent values.
The standard implementation of the IF module is based on

the Optimal Weight Measurement Fusion (OWMF) algorithm
[15]. Let V Vi be the ith input value of the IF module and V Ui

its uncertainty value at 95% level of confidence. Assuming that
the input values are drawn from the Gaussian distributions
N(V Vi, σ

2
i ), where 2σi = V Ui, a typical method to perform
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data fusion is by combining the inputs based on a minimum
mean square error criterion, where the combined output V Vout

is computed as follows:

V Vout = f(V V1, V V2, . . . , V Vn) =
∑N

i=1 σ−2
i V Vi∑N

i=1 σ−2
i

(3)

The variance associated with the combined values is given by:

σ2
out =

( N∑

i=1

σ−2
i

)−1

(4)

(4) is the solution to (2) with f(·) given by (3). As such the
OWMF algorithm satisfies the BS-7986 requirements for data
propagation through function blocks as detailed in the previous
section.

Although in most practical cases, the original measurements
are drawn from normal distributions this assumption may not
always stand. In such cases an application specific implemen-
tation of the IF module can be provided. In addition, alternative
implementations may perform advanced cross-validation of
input measurements and perform fault detection at the sensor
array level. Other alternatives for IF include an approach to
consistency checking and data fusion between SEVA sensors
proposed in [16].

E. Drift Estimation and Compensation Module (DEC)

The DEC module, aims to detect drift mechanisms based on
the data, and subsequently correct for the introduced measure-
ment bias. This exercise aims to elongate the useful life span
of the intelligent sensor and provide advanced maintenance
information to higher level processes. The basic functionality
of the DEC module is therefore summarized as:
• Estimate the drift (or bias) from historical data.
• Correct the input for drift and update the uncertainty

value accordingly.
Most of the algorithms for drift estimation and compensation
tend to be application specific so the standard implementation
acts as a placeholder and simply propagates the received data.
Specific algorithms and implementations to address particular
types of drift are discussed in section IV.

The DEC module, similarly to the FD module may make
use of additional information about the sensor in the form of
a theoretical sensor model.

F. Intelligent Sensor Control Module (ISC)

The ISC module is responsible for managing the rest of
the software modules in the architecture while it acts as the
gateway to the world. As such, it is responsible for maintaining
compatibility with industry standards. The basic functionality
of the ISC module is defined as:
• Communicate with higher level processes (IEEE 1451

interface).
• Manage the software modules (i.e. messaging, timing).
The standard implementation of the ISC module implements

a STIM (Smart Transducer Interface Module) as per IEEE
1451.2 [9] with a single channel for the primary measurand

data of type ”buffered data sequence sensor” (IEEE 1451.2),
so that internal timing is left with the Intelligent Sensor.
Functional addresses open for industry read extensions are
used to communicate the rest of the BS standard data to higher
processes on demand [8], [9], [10], [11].

The ISC module also takes care of module messaging
as a means for modules to exchange information. This can
be achieved either by one-to-one communication between
modules, or by one-to-many communication, where modules
announce information to all interested listeners. Messaging is
important for the implementation of advanced functionality
(e.g. the selection of a sensor model based on environmen-
tal data). In the rest of the paper we discuss algorithmic
approaches for the implementation of the fault detection,
drift estimation and stochastic modeling of adverse sensory
systems.

For completeness, an example realization of the intelligent
sensor software architecture in the particular case of a piezore-
sistive pressure sensor can be found in the Appendix.

III. FAULT DETECTION

The objective of the FD module is to assess incoming data,
and produce an uncertainty value to characterize the output.
A further desirable characteristic of fault detection, as listed
in subsection II-C, is the ability to produce a corrected output
if possible. Hereon the former approach, namely the simple
assessment of individual measurements, will be referred to
as indicative fault detection. The latter approach, involving
the correction of input measurements will be referred to
as corrective fault detection. Correction here refers to the
estimation of the most probable value at the specific time
instance given a known history and a new measurement.

There are advantages and disadvantages associated with
each approach which stem from their distinct response in par-
ticular scenarios. Indicative fault detection is able to identify
the existence of outliers in the input data, but there is no
mechanism to ensure the continuation of the intelligent sen-
sor’s operation after such an event. Indicative fault detection
is discussed in more detail in subsection III-A.

The actual performance of corrective fault detection on the
other hand is dependant on how much confidence the algo-
rithm places on new measurements versus a-priori knowledge.
Assuming higher confidence on a-priori knowledge, results in
an algorithm robust to the presence of invalid data, but slow to
respond to changes in the measurement statistics. Corrective
fault detection is discussed in more detail in subsection III-B.

Ultimately, a fault detection algorithm should be reactive
and robust to the presence of invalid data as well as able
to provide a corrected output. A combination of the above
approaches is desirable, hence a method is presented in section
III-C, based on the use of an AKF to provide corrected output
values, whilst in parallel it assesses new measurements online
in order to identify invalid data.

A. Indicative Fault Detection

In indicative fault detection each incoming measurement
is assessed individually. Typically the assessment is achieved
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Fig. 3. Normalized KF innovations versus iteration index. A threshold equal
to 4 correctly identifies the introduced outlier

by comparing the incoming data to an estimate calculated
based on a priori knowledge of the process and previous
measurement history.

Assuming a linear stochastic system, residual-based indica-
tive fault detection can be implemented based on a KF. In this
case the innovation E produced by the KF is used to assess
new data. The magnitude of the inconsistency can be assessed
in relation to the known a-priori observation R and state Q
noise covariance matrices (for more information on system
identification see [17]). The weighted innovation is given by:

r =
E

σ
, where σ =

√
R + CQCT (5)

where C is the observation mapping matrix of the KF.
In Fig. 3, the ratio r defined by (5) is plotted against the

iteration index for simulated data including an outlier at the
1000th iteration. Since r is given relative to σ, a threshold
T = 4 would ensure that in normal operation 99.994% of the
innovations will fall below the threshold.

B. Corrective Fault Detection

In corrective fault detection, the objective is to calculate
the current best estimate given new observations as they
arrive. In this section we will discuss the use of an Adaptive
Kalman Filter (AKF) [18], [19] for corrective fault detection
to illustrate the modus operandi of such algorithms.

For fault detection, we are only interested in estimating the
observation noise online, since we can typically assume that
the process’ characteristics are invariant. The system model
considered here for illustration is a linear, discrete, stochastic
sequence given by:

xk = Axk−1 + wk (6)
yk = Cxk + nk (7)

where x is the state vector, A is the state transition matrix, y is
the observation vector, C is the observation mapping matrix,
w is the state noise and n is the observation noise. The noise

terms w and n are assumed white Gaussian noise sequences
with covariance matrices Q and R respectively. The state noise
is assumed zero-mean, while if systematic errors occur the
observation noise mean will be non-zero.

The method to estimate the mean and covariance of the
observation noise is based on a limited memory algorithm
proposed by Myers and Tapley [20]. An approximation to the
observation noise sample rk is:

rk = yk − Cx̂−k (8)

where x̂−k is the a-priory estimate of xk at time k. An unbiased
estimator for r is the sample mean estimated over N samples.
It can then be shown [20] that the unbiased estimate of R is
given by:

R̂ =
1

N − 1

N∑

i=1

[
(ri − r̂)(ri − r̂)T − N − 1

N
CP̂−k CT

]
(9)

where P̂−k is the a priori state covariance estimate at time k.
The selection of the buffer size N implies a trade-off

between building a non-responsive filter and one prone to the
presence of outliers in the observation sequence. The optimal
size of the buffer is problem specific (e.g. Mehra [19]). For
illustration purposes, the response of a filter with A = 1,
C = 1 and Q = 0.4 to simulated data (a step change of the
real R) is shown in Fig. 4 for buffer sizes N = 500, N = 1000
and N = 2000 points.

An alternative approach to corrective fault detection is to
base the estimate on the pdf of the process at the current
iteration. This entails the ability to update the pdf on-line as
new data become available. Existing methods for calculating
a pdf based on a data distribution are designed to work off-
line and their extension to the on-line domain is difficult. An
example of such a method is discussed in section V.

C. Mixed Fault Detection

Let us consider again the use of the AKF as the basis of
a fault detection algorithm. A reasonable choice for the AKF
buffer size, in the case of the example shown above, would be
around N = 1000. To examine the response of such a fault
detection algorithm to the presence of outliers, an outlier was
introduced in simulated data and the filter’s response is shown
in Fig. 5.

This demonstrates that invalid data 2 may alter the statistics
of the AKF buffer dramatically. Moreover, since the data are
weighted equally in the sample mean and (9), the effect of
invalid data lasts until they exit the buffer. Instead of increasing
the buffer size, resulting in a low-responsive fault detection
module, it is better to employ an indicative fault detection
approach to identify invalid data and prohibit their use in the
estimators. A mixed fault detection approach is proposed here
as an extension to the basic AKF algorithm.

We propose the use of the algorithm described in subsection
III-A for the identification of invalid data. Data points that are
identified as invalid are subsequently suppressed in the AKF
algorithm, which calculates the estimates of the mean r̂ and

2Even a single point, depending on the size of the buffer used.
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Fig. 4. AKF algorithm with buffer sizes, from top to bottom, N = 500,
N = 1000, N = 2000

covariance R̂ of the observation noise based on the remaining
data. Alternatively, if an indication of the event is desirable, the
invalid data point may be considered momentarily (resulting
in a higher estimate of R), but removed from the buffer later
on, avoiding an alteration of the AKF buffer statistics for the
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Fig. 5. AKF algorithm response to the presence of an outlier. AKF buffer
size N = 2000

length of the buffer.
The algorithm outline is summarized as:
1) At step k, calculate the a priori estimates for x̂−k and P̂−k

based on the standard KF equations. If the measurement
at time k−1 was identified as invalid and if the estimates
used in the KF calculations were derived including this
information (see step 4), set P̂−k = P̂−k−1.

2) Assess the validity of the new measurement yk based
on its innovation using (5). The covariance R used for
this step is the previous estimate R̂k−1.

3) Estimate the new values for the mean r̂k and the variance
R̂k based on the sample mean and (9) taking into
account the new data point.

4) If the data point is identified as invalid:
• If it is desirable to indicate this event to higher level

processes, use the estimated observation noise mean
r̂k and variance R̂k for the rest for the calculations
(resulting in a higher reported covariance). If it is
desirable to suppress this event use the mean and
variance values of iteration k − 1, r̂k−1, R̂k−1.

• Set the observation noise sample rk to the mean of
the valid ri in the buffer to suppress the use of this
data point:

rk =
Pk

i=k−N airiPk
i=k−N ai

where ai =
{

1 if point i is valid
0 if point i is invalid

(10)

5) Complete this iteration of the KF and go back to step 1.
The response of the fault detection module for the same

data used to produce Fig. 5 is shown in Fig. 6. Fig. 6 (a)
shows the implementation where the estimates r̂k and R̂k are
used momentarily to produce an indication of the existence of
invalid data and suppressed afterwards. Fig. 6 (b) shows the
implementation where invalid data are completely suppressed.

The identification of invalid data enables the fault detection
module to eliminate undesirable effects in the AKF buffer
statistics without necessitating the use of a larger buffer,
retaining therefore the responsiveness of the fault detection
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Fig. 6. Mixed fault detection with suppression of invalid data

algorithm. The mixed fault detection algorithm described in
this section is the default implementation for the FD module
of the intelligent sensor architecture and has been employed
in the example realization of the intelligent sensor software
architecture discussed in the Appendix.

IV. DRIFT ESTIMATION ALGORITHMIC APPROACHES

Various uncertain influences (e.g. ageing, environmental
conditions, “poisoning” etc.) may generate drift in a sensor’s
response, introducing the need for self-calibration and self-
validation. As previously argued, to avert these effects an
integral part of the intelligent sensor is a drift compensation
module [16]. A unique generic and universal approach for drift
estimation (either additive or multiplicative) cannot, however,
be proposed due to the essentially different underlying mech-
anisms responsible for its generation.

In the literature, specialized approaches have been proposed,
e.g. van Putten et. al. [21] compare the “chopping” method,
the “sensitivity variation” approach and the “geometrical van
Putten method” for drift estimation. Commonly, research have
been focused on quantitative analyses (physical models) of
either the drift generation mechanisms [22], [23] or of the
resulting drift itself [24]. We propose a unifying approach for
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Fig. 7. ADXL203 dual-axis accelerometer power spectral density for a
driving frequency of 1100 Hz at a temperature of 120 oC

drift classification inferred from the dynamic and stochastic
properties of the output. A central point we introduce in the
drift estimation discussion regards the matter of whether drift
stems from processes stochastically related to the sensory
operation. Furthermore, distinguishing between reversible and
irreversible biases, we can classify drift into four major
classes:

A. Reversible state dependent drift.
B. Reversible state independent drift.
C. Irreversible state dependent drift.
D. Irreversible state independent drift.

In the following subsections each of these classes is dis-
cussed in detail, along with proposed approaches for their
identification and compensation in specific cases; e.g. additive
drift due to sensor nonlinearities and multiplicative drift due
to phase noise of internal oscillators in the sensory system. We
have used an Analog Devices ADXL203 dual-axis accelerom-
eter as a case study to test the possible implementations of
drift compensation modules for these four classes of drift. The
analysis commences with a simple high level model of the
accelerometer.

We have performed spectral analyses of measurements and
plot in Fig. 7 the Power Spectral Density (PSD) of the x-
axis output when the accelerometer was driven by an acoustic
vibrator having a sinusoidal input of 1100 Hz. From the
sensor PSD we obtain a qualitative representation of the
accelerometer/vibrator system as a weakly nonlinear system of
order four with the second, third and fourth harmonics being
clearly distinguishable in the graph. Furthermore, by simple
inspection of the PSD at low frequencies we can identify a 1/f
type power-law process. This kind of low-frequency processes
are considered to arise due to intrinsic electronic noise sources
in the accelerometer circuit. Finally, the spectral broadening
around the vibrating frequency of 1100 Hz and its harmonics
due to phase noise can be modeled as a multiplicative gain drift
as stems from theoretical analyses in [25]. A more detailed
analysis of this effect is presented in subsection IV-D.
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TABLE I
ACCELEROMETER WEAK NONLINEARITY COEFFICIENTS

Polynomial coefficient (Pc) Pc mean value Pc variance

a0 0.0503 2.0419 · 10−8

a1 0.1411 1.076 · 10−6

a2 −0.0023 1.1431 · 10−8

Based on the previous remarks, we can model the ac-
celerometer following the input/output relation:

y(t) = d(t) + n(t) + b(t)
4∑

k=0

akx(t)k (11)

where d(t) represents additive 1/f type noise sources, n(t) is
a zero-mean white Gaussian process, b(t) is the multiplicative
gain drift due to phase noise, ak is the kth order coefficient
in the Taylor (or Volterra) series expansion of the system time
domain response. x(t) is the measurand process, commonly
modeled as a Gaussian random process.

A. Reversible, state dependent drift
Reversible, state dependent drift results from non-idealities

in the sensor response (the most common example being pre-
sented by nonlinearities). In the case where a weak-stationarity
requirement is fulfilled, it is possible to develop approximate
state space models of such sensors using the EKF [26]. In
that aspect, a tangible estimation of the mean drift/offset in
the sensor output as a function of the internal state moments
is possible.

Of greatest practical interest is when the sensor is a non-
linear device. A variety of sensors have been described by a
nonlinear model [27], and various approaches have been used
for the circumvention of such natural phenomena [28]. In order
to demonstrate the alternative use of the EKF in such sensory
systems, we proceed by considering the specific case where
the sensor output can be described by a low-order polynomial,
representing the sensor as a weakly nonlinear system.

For the derivation of an approximate 2nd order polynomial
model for the ADXL203 dual-axis accelerometer during the
design of the EKF, we have measured the sensor response for a
driving frequency of 100 Hz and obtained N = 30 sets of n =
5000 measurements. We have used 20 of the sets to obtain a
unique averaged 2nd order model for the accelerometer, while
using these parameters we algorithmically estimated the drift
in the remaining 10 sets. The estimated coefficients of the 2nd
order polynomial are included in Table I.

The algorithmic estimation of the drift due to the second
order nonlinearity is based on the subsequent equations:

xk = xk−1 + wk (12)
yk = a0 + a1xk + a2x

2
k + nk (13)

σ2
x ' σ2

x̂k
=

(k − 1)σ2
x̂k−1

+ x̂2
k

k
(14)

dck =
(k − 1)dck−1 + a2σ2

x̂k

k
(15)

Overall drift
dc = dck + a0 (16)
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Fig. 8. Estimation of state dependent drift of an accelerometer. The solid lines
represent estimations while the dot-lines are calculated as the set empirical
offsets

where variances of the white zero-mean Gaussian processes w
and n are Q = 0.0063 and R = 10−12 respectively. Assuming
that x is a Gaussian random process, the above expressions
converge to the actual variance and mean respectively. (14)
and (15) represent the mean values of the variance and dc
offset respectively based on the EKF a-posteriori estimates x̂k,
while (16) accounts for the overall drift taking into account
the polynomial coefficient a0.

Fig. 8 compares the estimated and empirical (calculated as
the mean of the sample set) drift values for the 10 test sets of
measurements. The mean estimated drift is 49.2 mV, less than
1% different from the mean empirical drift. Fig. 8 also shows
the rapid convergence of the proposed algorithm, with approx-
imately 1000 samples being necessary for a convergence better
than 5% error. The proposed algorithm is employed in the
example realization of the intelligent sensor in the case of a
piezoresistive pressure sensor included in the Appendix.

The algorithmic drift estimation discussed in the present
section is not conceptually confined to the case of nonlin-
earities, but encompasses the whole class of state dependent
drift. The non-ideal sensor time-domain response h(·) along
with H(·), the Jacobian matrix of its partial derivatives (with
respect to x), have to be suitably modified. As an example, the
additive drift in the accelerometer x-axis due to a linear cross-
correlation to the y-axis can be evaluated through the following
simple modifications; a coupled EKF should be constructed for
the two accelerometer axes based on relations of the type:

hx(x, y) = a1x + λxyy (17)
Hx(x, y) = a1 (18)
hy(x, y) = β1y + λyxx (19)
Hx(x, y) = β1 (20)

In (17) λxy represents the cross-correlation of the x-axis to
the y-axis, while λyx in (19) represents the cross-correlation
of the y-axis to the x-axis and a1, b1 represent linear gains in
the two axes.
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B. Reversible, state independent drift

Reversible state independent drift can generally be evalu-
ated. A representative example of this class of drift is the
gravitational offset (g-offset) in an accelerometer, generated
from its relative to the ground angle. A commonly-encountered
approach for the accelerometer calibration is through the
use of a pair of accelerometers at known relative positions.
Alternatively, in the case where the dc component of the sensor
output is of no interest, ac coupling or the use of differential
circuits in the output is an effective low-cost method for its
elimination.

C. Irreversible, state dependent drift

Drift due to irreversible state dependent phenomena is the
result of sensor non-stationarity (dynamic behavior) in the time
interval of interest3. Such drift can severely compromise the
performance of a sensory based system, such as an electronic
nose. It generally follows a specific trend [29] and various ap-
proaches for its compensation have been reported in literature
[30] (multiplicative step drift), [31] (additive dynamical drift).

On-line density estimation algorithms specifically designed
for systems that are governed by rapid dynamics are currently
being researched. In [32] a novelty detection based approach is
outlined using recursive dynamic principal component analysis
for gas sensor arrays, while in [33] the use of independent
component analysis is demonstrated for non-Gaussian data.
Conversely, a density estimation approach for drift compen-
sation could be based on the on-line implementation of the
density estimation algorithm discussed in section V.

D. Irreversible, state independent drift

Irreversible state independent drift is due to the long-term
mean of intrinsic noise sources (such as 1/f noise in electronic
sensors). In general it is the most difficult part of drift to
identify and compensate. In the following we will present
a theoretical result for the multiplicative drift estimation in
the case of oscillatory-based systems such as accelerometers,
direct frequency output vibrating gyroscopes [34] or surface-
acoustic-wave and surface-transverse-wave based gas sensors
[35] in the presence of phase noise in the internal oscillatory
systems. In the case of the latter, close-to-the-carrier phase
noise can be the major limiting factor to the sensor noise and
its resolution.

As discussed in detail in [25], real oscillators suffer
from phase noise that distorts the system long-term stabi-
lity. The effect is manifested through a spectral broadening
(indicating energy spreading) around the oscillation fre-
quency and is modeled by means of power-law phase
noise processes with PSD of the type kαf−α, where α ∈
{0, 1, 2, 3, 4} and f is the frequency in Hz.

In order to quantify the resulting drift effect, we begin with
considering the complex valued oscillation:

ψ(t) = ej(ωosct+φ(t)) (21)

3Any real system exhibits non-stationary behavior if observed for a suffi-
ciently long time. In that context systems can be modeled as stationary as long
as their dynamic behavior is negligible for application concerned purposes.

where ψ(t) is an analytic version of a real oscillator at
ωosc = 2πfosc assuming negligible amplitude noise. In [25]
the correspondence in terms of mean and variance between
a real valued oscillator and its complex valued counterpart
(analytical representation) is provided. In (21) we can isolate
the effect of the phase noise component as a multiplicative
term b(t),

b(t) = ejφ(t) (22)

with φ(t) representing the phase noise process. Modeling φ(t)
as a zero-mean Gaussian random process, we can estimate the
expected value of the process b(t) as a function of the variance
σ2

φ(t) of the phase noise process φ(t):

E[b(t)] = E[ejφ(t)] = e−
σ2

φ(t)

2 (23)

where E[·] denotes statistical expectation.
(23) expresses the actual multiplicative drift in the oscillator

output. As a result, drift in the output of oscillatory systems
corrupted by phase noise is expressed as a function of the
overall variance of the phase noise process and can be time
dependent in the case of non-stationary phase noise4. The
above approach can be incorporated in the design process of
sensors based on oscillators and can be particularly useful in
early simulation stages.

V. OFR WITH LOO TEST SCORE AND LOCAL
REGULARIZATION SPARSE DENSITY ESTIMATION

Fundamental to fault detection algorithms for complex non-
linear sensors is the ability to generate an efficient pdf for the
underlying process, so that a metric of its output measurement
uncertainty can be evaluated (and propagated through a fusion
process) as well as its utilization in a fault detection algorithm.
Nonparametric kernel based approaches provide an efficient
framework for the estimation of pdfs of representative sample
sets (e.g. of size at least N = 100). A number of density
estimation methods are available with the Parzen windows [36]
being the most widely used and universal approach.

Recently, however, sparse density algorithms have become
available, [37], [38], [39], in view of the need for decrease
in CPU time and memory size for the representation of a
probabilistic system model. In applications related to intel-
ligent sensing, the requirement for sparsity is acute. More
importantly though, a parsimonious stochastic representation
of a sensory system is in better agreement with intuition about
the actual physical processes being modeled. In contrast to
the Parzen window where the number of kernels employed to
represent the system is equal to the size of the representative
sample set (100s), sparse kernel density approaches only use
a small number of kernels (< 10). The physical system is
expected to have a more “concentrated” behavior.

In the present section, we employ the use of the Orthogonal
Forward Regression with Leave-One-Out test score and local
regularization (OFR-LOO) algorithm [37] for the construction
of a sparse probabilistic model for the sensory system. The
main motivation behind using the above algorithm is the

4σ2
φ can be a function of time.
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fact that the Leave-One-Out test score, a powerful cross-
validation technique in nonparametric modeling, is convex in
regard to the model complexity. In the case of kernel-based
approaches, model complexity is simply represented by the
number of kernels employed. The use of the OFR-LOO as
a construction5 algorithm allows the automatic termination of
the model selection procedure.

In the following we will demonstrate and validate the use
of the OFR-LOO algorithm through a simulated example and
then move to the modeling of an accelerometer at different
operation conditions. In this context, the proposed use of the
OFR-LOO is for the provision of sparse kernel models in
operating conditions identified by the Sensor Model Provider
module.

In the simulated example we have considered the case of
a piezoresistive pressure sensor. In [27] is argued that such
sensors are sensitive to the operating temperature T , with their
resistance R being described by an expression of the type:

R(T ) = R(0)(1 + αT + βT 2) (24)

with α, β ∈ R, β < α. The dependance of the sensor resistance
on the temperature as described in (24) introduces the follow-
ing implications: (i) there exists a temperature dependent dc
offset in the sensor output (ii) the actual gain K of the sensory
element is temperature dependent. As a result of the above,
for the same set of pressure measurands P , the probabilistic
model that describes the sensor output has an increasing mean
and variance with increasing temperature.

The above effects are demonstrated in the simulated piezore-
sistive pressure sensor, where the output voltage is modeled
as:

V = K(T ) · P (25)
K(T ) = K0(1 + αT + βT 2) (26)

In our simulation we have chosen the values α = 0.001 and
β = 0.0001 that are of the same order of magnitude with
estimated values in [21]. In Fig. 9 we present the stochastic
modeling of the simulated piezoresistive pressure sensor, using
the OFR-LOO algorithm and compare the results with a Parzen
window of N = 106 samples that represents the actual pdf (the
Parzen window converges to the actual pdf when the sample
size is infinite). The pressure measurand is modeled as a zero-
mean Gaussian process of unit variance and the OFR-LOO pdf
is estimated over N = 100 samples. The OFR-LOO window
length was estimated through cross-validation as σ = 1.08
while the window length of the Parzen window is calculated
as σ = 1.

The OFR-LOO pdf matches well with the Parzen window
pdf in all examined temperatures, thus validating the use of
the OFR-LOO for pdf estimation, even when a small number
of samples (N = 100 in the specific example) are available.
In the same graph is also shown the slight drift in the mean
value of the sensor output pdf, inferring the possible use of

5We “construct” the model starting from a single kernel and moving to
higher order representations following a tree based approach for the search
of the optimal overall sub-path at each stage of the construction. The process
is terminated when a minimum in the LOO test score is achieved
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Fig. 9. Comparison of the pdf of a simulated piezoresistive pressure sensor,
using the OFR-LOO algorithm with window length σ = 1.08 and Parzen
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TABLE II
PDF ESTIMATION FOR THE SIMULATED PIEZORESISTIVE PRESSURE

SENSOR

Temperature Mean number of kernels Std. in kernel number

0oC 1.4 0.7818

50oC 1.43 0.6553

100oC 1.54 0.7577

150oC 1.45 0.7961

the on-line version of the OFR-LOO for drift estimation. More
importantly, it is clearly shown that different stochastic models
(e.g. distinguishably different variance) should be employed as
a result of variations of the environmental conditions.

In Table II we present the results of 100 independent runs of
the OFR-LOO algorithm for the simulated piezoresistive pres-
sure sensor and have calculated the mean number of kernels
employed in the proposed stochastic modeling along with the
standard deviation in the number of kernels. It is worth noting
that the stochastic process can be reliably represented by 1
or 2 kernels, in contrast to traditional stochastic models that
make use of the totality of the sample set (N = 100).

The previous discussion demonstrates that density esti-
mation algorithms can be employed in the realization of
novelty detection based fault detection operations. Moreover,
on-line parsimonious density estimators are suitable for the
identification of irreversible state dependent drift as discussed
in subsection IV-D. In the rest of the section we use the OFR-
LOO algorithm on real ADXL203 accelerometer data.

The OFR-LOO algorithm has been used for the modeling
of the accelerometer in different operating temperature condi-
tions, when driven by an acoustic vibrator at 100 and 200 Hz
and have found that the pdfs coincide for these two driving fre-
quencies, inferring that the probabilistic accelerometer model
is independent of the measurand harmonics. Furthermore, the
accelerometer pdf was estimated for a range of operating
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TABLE III
PDF ESTIMATION FROM REAL ACCELEROMETER DATA

Temperature Mean number of kernels Std. in kernel number

0oC 3.01 0.1

50oC 2.56 0.4989

100oC 2.22 0.4399

125oC 2.98 0.1407

temperatures, 0oC, 50oC, 100oC and 125oC over N = 100
samples with Gaussian kernels of length estimated through
cross-validation as σ = 0.0285. The results are presented in
Fig. 10.

Using 100 sets of N = 100 measurements, we have
repeated the above pdf calculation and have estimated the
mean number of kernels and the standard deviation in the
number of kernels required from the OFR-LOO algorithm to
model the accelerometer in the previously mentioned operation
conditions. The results are presented in Table III.

Two main conclusions can be drawn from the above. There
appears to be a noticeable drift in the accelerometer output
as shown by the mean of the pdf in different temperatures.
Although we believe that this is an artefact of the experimental
set-up due to accelerometer rotating during the measurements,
it is clear that on-line density estimation can provide infor-
mation about drift. Secondly, the shape of the pdf at 125oC
is distinguishably different from the pdf of the rest of the
operating temperatures. The nominal temperature operating
range is defined as 0oC-110oC and as a result the stochastic
modeling employing the OFR-LOO algorithm can separate the
“normal” sensor output from the “corrupted” due to operating
outside the range of nominal conditions.

The benefit of the approach is that it utilizes sensor data
alone, no a-priory physical models are necessary and con-
ventional statistical hypothesis fault condition algorithms can
be used directly with the derived pdfs. Such abstract sen-
sor representations capture the underlying physical processes
avoiding the development of detailed quantitative models.

Also, the approach is particularly amenable to sensors with
nonlinearities dependent on the operating regime.

VI. CONCLUSIONS

In this paper we have proposed a generic, modular software
architecture as an advantageous intelligent sensor implementa-
tion. Such an approach enables on-board signal processing to
produce the optimal signal output. The proposed architecture
bridges the gap between existing industry standards (IEEE
1451 and BS-7986) by exposing higher level signal processing
(BS-7986) while adhering to low-level prerequisites set by
IEEE 1451. The software architecture aims at addressing the
totality of the intelligent sensor goals, namely optimal data
fusion, real-time fault detection, calibration and autonomous
reconfiguration.

We have examined a variety of possible algorithmic im-
plementations of the above operations and have proposed a
mixed indicative/corrective approach for fault detection. In
terms of drift estimation, we have shown that the EKF can
be employed in reversible state dependent drift estimation,
while on-line density estimation can be utilized when the
drift is irreversible state dependent. Furthermore, a state of
the art sparse density estimation algorithm was used in a
parsimonious model selection context. It was demonstrated
that it can be used with a statistical hypothesis algorithm to
generate fault condition, even when no physical sensor model
is available over a range of operating regimes.

A snapshot of the developed demonstrator of the intelligent
sensor software architecture is included in the Appendix, using
synthetic data.

APPENDIX

The example implementation illustrated in Fig. 11 features
a piezoresistive pressure sensor as the primary sensing element
while temperature sensors are used to monitor the environment
and choose the right sensor model for drift compensation dur-
ing the operation. The current implementation of the intelligent
sensor software architecture is developed in software using
an object oriented language to facilitate the specialization of
modules as necessary. However, as long as the architecture’s
definition is adhered, all or parts of the modules of the
architecture can be implemented in hardware where this offers
an advantage.

A drift estimation and compensation module is used for
calibration of the pressure sensor output V . The dependance
of V on the measurand P and the temperature T is described
below:

V = K(T )(P + 0.01P 2) (27)
K(T ) = 1.5 · 10−4T + 4.3 · 10−6T 2 (28)

As a result, the pressure sensor suffers both from additive
drift because of the second order nonlinearity in (27) and from
multiplicative gain drift as expressed in (28). The additive drift
is evaluated using the EKF algorithm as outlined in subsection
IV-A. For the identification of the multiplicative gain drift
we use the temperature measurements for a straightforward
evaluation based on (28).
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Fig. 11. Demonstrator of the intelligent sensor software architecture featuring a piezoresistive pressure sensor as the primary sensor and temperature sensors
as environmental conditions monitoring sensors

As far as the temperature sensors are concerned (two in the
specific implementation), a mixed indicative/corrective AKF
based approach is used, as discussed in subsection III-C,
for fault detection before the internal fusion module. In the
snapshot, two outliers are identified in the output of the first
temperature sensor and are removed before the temperature
measurements are fused.
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