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ARTICLE INFO ABSTRACT

The study of visual illusions has proven to be a very useful approach in vision science. In this work we start by
showing that, while convolutional neural networks (CNNs) trained for low-level visual tasks in natural images
may be deceived by brightness and color illusions, some network illusions can be inconsistent with the per-
ception of humans. Next, we analyze where these similarities and differences may come from. On one hand, the
proposed linear eigenanalysis explains the overall similarities: in simple CNNs trained for tasks like denoising or
deblurring, the linear version of the network has center-surround receptive fields, and global transfer functions
are very similar to the human achromatic and chromatic contrast sensitivity functions in human-like opponent
color spaces. These similarities are consistent with the long-standing hypothesis that considers low-level visual
illusions as a by-product of the optimization to natural environments. Specifically, here human-like features
emerge from error minimization. On the other hand, the observed differences must be due to the behavior of the
human visual system not explained by the linear approximation. However, our study also shows that more
‘flexible’ network architectures, with more layers and a higher degree of nonlinearity, may actually have a worse
capability of reproducing visual illusions. This implies, in line with other works in the vision science literature, a
word of caution on using CNNs to study human vision: on top of the intrinsic limitations of the L + NL for-
mulation of artificial networks to model vision, the nonlinear behavior of flexible architectures may easily be
markedly different from that of the visual system.
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In the context of the efficient representation view of biological vi-
sion (Attneave et al., 1954; Barlow et al., 1961), VIs are not seen as

1. Introduction

A visual illusion (VI) is an image stimulus that induces a visual
percept that is not consistent with the visual information that can be
physically measured in the scene. An example VI can be seen in Fig. 1:
the center squares have the exact same gray value, and therefore send
the same light intensity to our eyes (as a measurement with a photo-
meter could attest), but we perceive the gray square over the white
background as being darker than the gray square over the black back-
ground. There are many types of VIs, involving for instance the per-
ception of brightness (White et al., 1979; McCourt et al., 1982; DeValois
et al.,, 1990, color Kitaoka et al., 2005; Zaidi, Ennis, & Lee, 2012;
Loomis et al., 1972; Hillis et al., 2005; Abrams, Hillis, & Brainard,
2007), texture (Blakemore et al., 1996; Ross et al., 1991; Foley et al.,
1997; Watson et al., 1997, motion Morgan, Chubb, & Solomon, 2006;
George Mather, Andrea Pavan, & Casco, 2008; Morgan & Chubb, 2011),
geometry (Weintraub et al., 1971; Westheimer et al., 2008), etc.
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failures but as a by-product of strategies to adapt to the statistics of the
images that the individuals typically encounter (Barlow, 1990; Clifford,
Wenderoth, & Spehar, 2000; Clifford et al., 2002; Clifford et al., 2007;
Laparra et al., 2015). This is the reason why VIs provide compelling
case examples which are useful to probe theories about how our per-
ception works. Following classical works in visual neuroscience and
visual perception (Hubel et al., 1959; Campbell et al., 1968) that suc-
cessfully predicted visual responses as a linear filtering operation fol-
lowed by a pointwise nonlinearity, the “standard model” of vision
(Olshausen et al., 2005) has become that of a filter bank or rather a
cascade of linear and nonlinear (L + NL) modules (Carandini et al.,
2012; Martinez-Garcia, Cyriac, Batard, Bertalmio, & Malo, 2018). The
design of artificial neural networks (ANNs) has also taken neurobiolo-
gical models as the source of inspiration (Haykin et al., 2009), and for
this reason Convolutional Neural Networks (CNNs) can be seen as
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Fig. 1. An example visual illusion. The squares have the same gray value, but
one is perceived as being brighter than the other.

constituted by a stack of L + NL modules as well.

Since 2018, a handful of works have found that CNNs trained on
natural images can also be “fooled” by VIs, in the sense that their re-
sponse to an image input that is a VI for a human is (qualitatively) the
same as that of humans, and therefore inconsistent with the actual
physical values of the light stimulus. In order to demonstrate the idea
that visual perception is the result of image statistics learned thought
goal-directed behaviour (Purves et al., 2003), Corney and Lotto (2007)
trained a CNN to identify the reflectance of target surfaces in synthetic
images, and saw that this CNN responded to some visual illusions in a
way similar to humans. Watanabe, Kitaoka, Sakamoto, Yasugi, and
Tanaka (2018) trained a CNN to predict videos and demonstrated that,
as a side effect, it was able to reproduce motion illusions. Gomez-Villa,
Martin, Vazquez-Corral, and Bertalmio (2019) showed that a CNN
trained for low-level visual tasks in natural images is able to reproduce
human perception in several instances of color and brightness illusions.
Kim et al. (YYYY) showed how a CNN trained for classification exhibits
the law of closure (a Gestalt principle), hence replicating visual com-
pletion illusions. Benjamin, Qiu, Zhang, Kording, and Stocker (2019)
studied the orientation bias in CNNs trained for classification, and
found that the early layers of these CNNs are capable of reproducing
orientation visual illusions. Sun and Dekel (2019) demonstrated that a
classification CNN is able to reproduce the Scintillating Grid visual il-
lusion. Ward et al. (2019) showed that a deep CNN trained for object
recognition is able to reproduce the Muller-Lyon illusion, a type of
geometric visual illusion. Benjamin et al. (2019) fine-tuned the last
layers of the AlexNet classification network to report perceived or-
ientation and proved it in several orientation and geometric visual il-
lusions. Linsley, Kim, Ashok, and Serre (2019) designed a deep re-
current neural network architecture based on the perception of the
orientation-tilt illusion which was able to surpass the state-of-the-art in
contour detection. Finally, Jacob, Pramod, Katti, and Arun (2019) run
several experiments (including reproduction of visual illusions such as
the Thatcher effect) in order to test perceptual capabilities of the CNNs.

This very recent line of research, devoted to the study of similarities
and differences between the VIs suffered by human viewers and arti-
ficial neural networks, may be relevant to explore the limitations of
simplified architectures and suggest better models of biological vision.

The reason for this is that CNNs still fail to emulate very basic
perceptual phenomena (Martinez, Bertalmio, & Malo, 2019; Geirhos
et al., 2019; Jacob et al., 2019; Geirhos et al., 2020) even when they
achieve state-of-the-art results in modeling cortical activity (Cadena
et al., 2019), and match human performance in vision tasks like face
recognition and object classification.

This work expands our initial findings on visual illusions that de-
ceive artificial neural networks, presented in Gomez-Villa et al. (2019).
Our contributions in this paper are:

1. Providing more insight on why some CNNs trained for basic visual
tasks in natural images are deceived by brightness and color illu-
sions while others do not.

2. Performing a linear eigenanalysis in a simple CNN trained for
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denoising and deblurring that reproduces illusions, which shows
that the network’s response is qualitatively very similar to the
human achromatic and chromatic contrast sensitivity functions
(CSFs), and consistent with natural image statistics.

3. Performing a psychophysical-like analysis of CNNs to show that,
while these artificial networks are deceived by illusions, their nature
might be significantly different to that of humans.

These contributions suggest the following.

From result (1) above, low-level VIs may appear as a by-product of
basic visual goals in natural environments, and simpler or more linear
network architectures seem to suffer from stronger illusions.

From (2), and in line with error minimization explanations of visual
function (Laparra et al., 2015; Atick, Li, & Redlich, 1993; Twer &
MacLeod, 2001; MacLeod et al., 2003; Laparra, Jimenez, Camps, &
Malo, 2012), simpler CNNs trained for low-level visual tasks also de-
velop human-like achromatic and opponent chromatic channels with
band-pass/low-pass spatial frequency response because the optimal
removal of non-natural features (like noise or blur) leads to the iden-
tification of principal directions in natural scenes.

More interestingly, from (3), discrepancies with humans in quanti-
tative experiments imply a word of caution on using CNNs to study
human vision, in line with what’s argued in some very recent works
(e.g. see Jacob et al., 2019; Geirhos et al., 2020; Martinez et al., 2019
and references therein) and also as previously suggested in other con-
texts (with regards to L 4+ NL formulations) in the vision science lit-
erature (Wandell et al., 1995; Carandini et al., 2005; Olshausen, 2013).

The structure of the paper is as follows. In the Materials and Methods
section we introduce the stimuli used in the experiments, we describe
the considered architectures and the visual tasks used to train them, and
we discuss two alternative methods to describe the illusions that may be
found in the networks. In the Results section we compute the shifts of
the responses due to context and the corresponding pairs of the net-
works in asymmetric matching experiments. In the Linear Analysis
section, eigenanalysis of the networks reveals intrinsic filters which are
similar to the CSFs in opponent channels, and finally, the Discussion
analyzes the implications of the results in terms of complexity of the
networks and appropriateness to model human vision.

2. Materials and methods
2.1. The stimuli

In this work we deal with two sets of stimuli. First, experiments
using the classical visual illusions shown in Fig. 2 will be used to point
out that CNNs can have illusions that are qualitatively similar to those of
human viewers. The illusions in Fig. 2 present test regions that are
physically the same but are seen differently depending on their sur-
rounds. Sometimes the context induces assimilation (the perception of
the test shifts towards that of its surround), while others induces con-
trast (the perception of the test moves away from that of its surround).
The test regions are, in the Dungeon illusion (Bressan et al., 2001),
Fig. 2a, the large central squares, in Hong et al. (2004), Fig. 2b, the
middle rings, in the White illusion (White et al., 1979), Fig. 2c, the
small grey bars, and in the Luminance gradient (combination of Brucke,
1865; Adelson, 2000), Fig. 2d, the circles. The fact that the tests are
identical can be seen in the second and fourth to sixth rows of Fig. 2,
that plots the digital values along some line segments marked over the
visual illusions in the first and third rows. The Chevreul illusion (Ratliff
et al., 1965), Fig. 2e, presents homogeneous bands of increasing in-
tensity, from left to right, but these bands are perceived to be in-
homogeneous, with darker and brighter lines at the borders between
adjacent bands.

Then, a second experiment simulating asymmetric color matching is
performed with the networks to have results that are quantitatively
comparable to those of human viewers. In an asymmetric matching
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Fig. 2. Classical stimuli to check the existence of brightness and chromatic visual illusions. The first and the third rows show the selected grayscale and color stimuli
respectively. The second row plots the intensity values of the images at the lines marked over in magenta and cyan. Rows 4-6 show the profiles representing the RGB
digital values of the color stimuli at the lines depicted in the images. Equal digital values imply physically equal tests despite what we perceive.

(Heinemann et al., 1955; Ware et al., 1982), given a scene consisting of
a test t seen on an inducing surround s, the observer modifies a variable
stimulus seen on a neutral background to look for the corresponding pair
t’ that matches the perception of the test t. The surround induces an
illusion because in general t' # t. The magnitude of the illusion is
quantified by the displacement in chromatic coordinates required to
match the color perception. Fig. 3 illustrates the layout and the colors
used in our simulation of the Ware-Cowan experiments (Ware et al.,
1982).

2.2. The networks: architectures and training

We trained two CNN architectures for three low-level visual tasks:
denoising and deblurring (as in the work of Gomez-Villa et al. (2019))
and also restoration (a combination of the denoising and deblurring
problems). Hence, we have 6 models. The general setting to obtain the
parameters of the models is supervised learning (see Fig. 4).

For consistency with the spatial extent of the stimuli used in the

experiment with humans reported by Ware et al. (1982), we assume the
images subtend 1.83 deg with sampling frequency of 70 cpd (128 x 128
pixels).

The first architecture has input and output layers of size
128 x 128 x 3 pixels. The architecture has two hidden layers with eight
feature maps with a kernel size of 5 x 5 and no stride, and sigmoid
activation functions. The second architecture is a bit deeper and hence
with substantially more free parameters. It also has input and output
layers of size 128 x 128 x 3, but four hidden layers with 24 feature
maps. Kernel sizes and non-linearities are the same as in the first ar-
chitecture. The two hidden-layer architectures (shallow) are named
with respect to the task they are trained for: DN-NET (denoising net-
work), DB-NET (deblurring network), and RestoreNET (restoration
network). As for the four hidden-layer architectures (deep), we added
the “Deep” word to the corresponding shallow architecture name,
hence: Deep DN-NET, Deep DB-NET, and Deep RestoreNET.

Mean squared error was used as loss function in all the tasks and all
the models were implemented using Abadi et al. (2015). The maximum
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Fig. 3. (Top CIE xy diagram) test points (1-9) and inducing surrounds (in R,G,
and B) used in our simulation of the Ware-Cowan corresponding pair experi-
ment (Ware et al., 1982). Luminance of all colors was set to 30 cd/m?. The
highlighted colors illustrate one match: the effect of the red surround on test
number 9 implies a shift of the corresponding pair, in magenta. (Middle Panel)
The test seen on top of the neutral background at the right is modified by the
observer till it matches the color appearance of the test-surround scene (Bottom
panel).
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Fig. 4. In supervised learning the parameters, 6, of the models, m, are obtained
by minimizing a distance between the response of the model and a desired
result known by the supervisor. The networks we train here take degraded
photographic images as input stimuli, i, and the response is compared to the
known original, i.
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number of epochs was set to 100 and we stopped the optimization early
if there was no improvement in the validation set after 5 consecutive
evaluations.

The dataset used for training the above architectures is the Large
Scale Visual Recognition Challenge 2014 CLS-LOC validation dataset
(which contains 50 k images), leaving 10 k images for validation pur-
poses. This dataset is a subset of the whole ImageNet dataset
(Russakovsky et al., 2015).

For denoising, we corrupted the images with additive Gaussian
noise of o = 25 in each RGB channel (digital counts in the range [0,
255]). In the case of deblurring, we blurred the images with a spatial
Gaussian kernel of width o, = 0.03deg (2 pixels). As for restoration,
first we blurred the images with a Gaussian kernel of o, = 0.03 deg and
then we corrupted the images with additive Gaussian noise of o = 25.
Note that restoration combines the other two tasks, thus being more
general.

The above case-study architectures with 2 and 4 hidden layers' give
us the opportunity to check the behavior of the networks in a systematic
and comparable way. However, it is also interesting to explore the
eventual illusions happening in current much deeper networks used in
real image processing applications. To this end, we also explored the
behavior of the 17-layer CNN with batch normalization for denoising by
Zhang, Zuo, Chen, Meng, and Zhang (2017), and the 21-layer CNN with
recurrent units for deblurring by Tao, Gao, Shen, Wang, and Jia (2018).
These networks represent the state-of-the art in these tasks. In these
really deep cases we used the implementations pretrained and provided
by Zhang” and Tao® respectively.

Let us finally note that in this paper we selected low-level nets (i.e.
nets reconstructing signals in image domain) because the “physiolo-
gical” interpretation of their response is straightforward. This said, it
can not be discarded that networks trained for higher level tasks — such
as recognition and segmentation — may present different illusions, but
they may need to be studied using other techniques to relate their
outputs to observers’ answers.

2.3. Strategies to measure the illusions in CNNs

In this work we use two alternative strategies to measure the visual
illusions of the network. The first strategy is inspired from physiology
while the second simulates psychophysics.

The physiological-like strategy consists of measuring the shifts in
the response of the CNN for identical test values surrounded by dif-
ferent contexts (the classical VIs shown in Fig. 2). This approach im-
plicitly assumes that the CNN output is akin to the human perception of
the input. However, while it is useful to spot and compare trends be-
tween the CNN output and the human opinion (e.g. if the CNN is in-
creasing the gray value of a test region this would be consistent with
humans perceiving this regions as a lighter gray), it is not adequate to
perform quantitative comparisons with human responses. For this, we
employ the psychophysical-like strategy, using the CNN as an observer
to simulate perceptual matches, as it’s done in psychophysics. In this
manner, the units to quantify the strength of the illusion of the network
are exactly the same as in human psychophysics, so the performance of
CNNs and humans can be compared quantitatively.

It is worth noting that comparisons with humans through simulated
psychophysics can be applied to analyze CNNs trained to more general
goals (not involving image reconstruction). Matching the responses at
specific inner layers is always possible regardless of the nature of the
output. This would inform about which layers have a human-like image
representation. Proposition of comparison criteria at different layers is a
matter of active research (Jacob et al., 2019).

! Source code will be made publicly available.
2 See https://github.com/cszn/DnCNN.
3 See https://github.com/jiangsutx/SRN-Deblur.
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3. Results

We did two numerical experiments with the shallow and the deep
CNNs trained according to the low-level visual tasks considered above:
the first experiment, presented in Section 3.1, uses a physiological-like
strategy and measures shifts in the response of the CNN, while the
second experiment, presented in Section 3.2, uses a psychophysical-like
strategy and matches corresponding pairs in color induction tests.

In these experiments where the networks are applied to the illusion-
inducing stimuli, it is convenient to think of stimuli, the images, i, and
responses, I, as column vectors where the subindexes t and s denote
respectively the test and surround part of the stimuli that are spatially
disjoint, i.e. in different rows of the corresponding column vector. This
is just a formalism that we use for the equations. In practice since we
work with images, what we have are masks indicating which pixels
correspond to the test and surround parts of the stimuli. Schematically,

i i
i=[i] and 1‘=[rs},
: (€Y

where, considering n X n X 3 color images, i and r are (n?-3) X 1 vec-
tors.

3.1. Shifts in the response

This experiment consists of computing the response of the network
for the physically identical tests seen in different spatio-chromatic
contexts (the stimuli in Fig. 2). It reduces to applying the kth model to
each stimulus, i, to compute the corresponding response, r:

(2)

where m represents the model response function that depends on the
parameters 6, learnt with certain architecture and task. With 2 archi-
tectures and 3 tasks, k = 1, ...,6. As stated above, we also consider the
response of two pretrained really deep nets which are state-of-the-art in
denoising (Zhang et al., 2017) and deblurring (Tao et al., 2018).

The qualitative interpretation of the behavior of the responses in
different settings can be done by checking if the response shifts in
certain direction. For instance, in the achromatic cases, is the response
departing from average brightness? and if so, in which direction, darker or
brighter? In the color cases, The kind of questions could be are the values
of the response departing from the input hue?, and if so, in which direction,
towards orange or towards green?

r=m(i, &),

3.1.1. Achromatic case

Figs. 5 and 6 show the response profiles obtained from the different
CNNs considered in this work when they are fed with the achromatic
illusion-inducing images from the first row of Fig. 2. Below each panel,
the words “Lighter” and “Darker” describe the direction of the shift of
the CNN response for the test region, and the font color indicates if it is
human-like (in black), weak (in gray), or non-human (in red).

These figures show that the simpler networks have shifts in per-
ceived brightness in similar directions as humans in about 80% of the
cases, while the deeper networks trained for similar goals have very
small brightness illusions, and in most cases (about 60%), not in the
human direction.

3.1.2. Chromatic case

Shifts of the chromatic responses are more difficult to assess since
three curves have to be evaluated at the same time. See for instance a
small fraction of the results in Fig. 7. For this reason, we are going to
discuss each visual illusion at a time in the following way. First, we will
refer to Fig. 2 (third row) to describe verbally the color shifts of the tests
in each illusion. Second, we will focus on the numerical values of the
responses at the central pixels of the tests. Reporting the original input
values and the response values is a more concise way to give this
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information. This is systematically presented in Tables 1 and 2, where
we also add symbol marks to identify how the tests shift in hue or
brightness: a green “check” mark when the shift is human-like, a red
“cross” mark when it is non-human, or a red “~” mark for a very weak
effect.

Dungeon: For humans the left test shifts towards orange/yellow and
the right shifts towards green. All the simpler networks have sub-
stantially bigger R response in the left test and substantially bigger G
response in the right test (see Fig. 7, and the Dungeon column in
Table 1). That is why all these cases are labeled as human-like. On the
contrary, note that the variations of the responses for the networks of
Zhang and Tao are substantially smaller (particularly for Zhang). That
is why we labeled them as very weak.

Hong-Shevell: The left test shifts towards green while the right test
shifts towards orange/yellow in the case of humans. Therefore, a net-
work qualifies as human-like if it gives substantially bigger G response
at the left and substantially bigger R response at the right. This is the
case in all simple networks except for the deblurring nets, hence labeled
as weak effect. Zhang network introduces totally negligible changes in
the values, and Tao network leads to slightly more reddish response at
the right, but the relative differences are much smaller than in simpler
networks. That is why both have been labeled as very weak.

White: The rectangle at the right is darker and more reddish for
human observers. When network responses at the right have relatively
bigger R than G compared to the left, the behavior has been labeled as
human-like. This happens in all the simpler networks except for Deep
DB-Net (in which the green response at the right does not reduce much,
meaning it may be perceived lighter). Again for both state-of the-art
networks the illusion is negligible.

Gradient: For humans the dots at the right are seen greener (con-
trast effect). Therefore, networks with bigger G component at the right
are said to reproduce the illusion. This is not the case in any of the
simpler networks. On the contrary, it is the case in both state-of-the-art
nets (though weak in Zhang).

Chevreul: Humans perceive the left side of the regions as lighter.
Therefore, in this reddish case, we qualify as non-human behavior when
the R response at the left is not higher than at the right. All the simple
networks have higher R response at the left, but in the denoising net-
works the other responses decay a bit, so we have labeled this behavior
as weak. Both state-of-the-art networks have non-human behavior (no
illusion or shift in the opposite direction).

To summarize the results on color shifts in Tables 1 and 2, we have
seen that simpler architectures lead to substantial human-like illusions
in 66% of the considered cases. This rate is bigger, up to 80%, for the
(more general) restoration task. On the contrary, the state-of-the-art
networks only develop strong human-like shifts in 20% of the cases.

These trends in the color results are consistent with the previous
achromatic results. In this (qualitative) experiment based on the shift of
the responses, the behavior of simpler (more rigid) networks is more
similar to the human behavior than the considered much deeper ar-
chitectures.

It is important to note that the trends mentioned above are in-
dependent of two common implementation issues: (1) the initialization
of the weights, and (2) the choice of the nonlinearity in each con-
volutional unit. These implementation points apply to the simpler
networks that have been defined and trained for this work. Note that
the more flexible networks have not been trained, but used with default
parameters. Separate exhaustive analysis in the specific RestoreNET
(results not shown) indicates that the above choices are not an issue in
the observed performance of the models. On the one hand, variance
over 10 random initializations of the shallow and deep architectures are
very small and do not change the qualitative trends described. On the
other hand, regarding the nonlinearity, we selected sigmoid functions
because, in principle, it seems more biologically plausible. However
experiments on RestoreNET using the ReLU nonlinearity show that the
response profiles also follow the same trends, and hence this choice is
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but weak effect. And those in red mean non-human shifts.
less relevant than the task and the complexity of the architecture.

3.2. Corresponding pairs in color induction

In this experiment we replicate the Ware-Cowan approach of Ware
et al. (1982). Given a fixed test-surround configuration, i = [i; i,]", the
observer looks for the corresponding pair, t’, that seen on a neutral re-
ference background, w, matches the perception of t (see Fig. 4).

While human observers look for the corresponding pair by physi-
cally changing the color in the lab, we say that the network matches the
perception when, given these two responses,

r; i I iy
() e[}

3

it holds r; = r,. Therefore, the cost function for the numerical corre-
sponding pair experiment is just:
i/ = argmin, s | e ([iF 1)) — w(li L) L. )
The optimization is solved by means of an exhaustive search in a
discretized RGB space between 0 and 255 with a step size of 8. Results
for this experiment are shown in Figs. 8-10. In these figures, the black
squares represent the test colors, while the magenta squares represent
the corresponding pair required by the model to match the responses.
The red, green and blue squares are the inducers. The first row in Fig. 8
presents the results obtained by the human observers (Ware et al.,
1982). The rest of rows in Fig. 8 show the results for the shallow CNNs,
while Fig. 9 presents the results for our deep CNNs. Finally, Fig. 10
shows the results for the recent methods of Zhang (denoising) and Tao
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(darker or lighter). Descriptions in black indicate the shift is in the same direction as humans. Descriptions in gray also mean correspondence with humans but weak

effect. And those in red mean non-human shifts.

(deblurring).

In Figs. 8 and 9 we see that the simpler CNNs require different t’ to
match the response of t. Exhaustive experiments using multiple random
initalizations with shallow and deep RestoreNET (results not shown)
indicate that the cluster of corresponding pairs found, t’, do not overlap
with the test t in 93% of the cases. This means that the illusions are
significant. That said, in shallow networks the magnitude of the illu-
sions is substantially smaller than in humans. Interestingly, the 4-layer
versions of these networks do have illusions as strong as humans.
However, in both cases these networks develop assimilation instead of
the contrast effect suffered by humans.

Fig. 10 shows that Zhang network displays virtually no illusion
while Tao does (with smaller strength than our 4-layer network). In-
terestingly, displacements in Tao go away from the inductor, i.e. it is
developing a contrast effect. This last result relates to the behavior
obtained for the Gradient illusion in Section 3.1.2, where the Tao (and
also weakly Zhang) were the only ones presenting the contrast effect.
This connection was to be expected, as the Gradient illusion is the
closest one to the Ware-Cowan experiment of all the illusions studied
there.

3.3. Summary of the experimental results

On the one hand, the (qualitative) experiment based on the shift of
the responses, shows that simpler (more rigid) networks are more si-
milar to humans than the considered really deep architectures, which
have negligible or non-human illusions.

On the other hand, the (quantitative) experiment simulating
asymmetric matching psychophysics shows the following. Simpler
networks do have significant illusions, and in particular the magnitude
of the illusions in the 4-layer networks is similar in strength to human
illusions. However, the direction of the illusions is the opposite: the
simpler CNNs perceive assimilation while humans perceive contrast. As
in the qualitative response experiment, here the Zhang network also
seems to have negligible illusions. But now the Tao network does have
substantial illusions, although their magnitude is smaller than those of
human observers. Interestingly, the Tao network is able to reproduce
the human-like contrast behavior.

4. Linear analysis of the networks
Results of the numerical experiments with the networks trained for

low-level visual tasks confirm that they do have illusions, as anticipated
before (Gomez-Villa et al., 2019), but they do not necessarily have the
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same illusions as humans do. This section analyzes why, particularly for
the assimilation effect seen in Ware-Cowan experiments.

Here we show how the behavior of these CNNs can be understood
through the analysis of the linear approximation of their response.
Specifically, consider the following first order approximation of Eq. 2:

r=m(0, 6) + Vim(0, 6;)i ~ M@k'i 5)

where the matrix M, is the Jacobian of the network response w.r.t. the
input at 0, and we assumed that the response for the null stimulus is
also zero. Note that in end-to-end networks with error-minimization
tasks (denoising/deblurring/restoration) this assumption is reasonable:
m(0, 6;) ~ 0 should hold to keep deviation with the input small. We
explicitly checked this in all the considered networks and found that the
mean and variance of the response to a null image is always 2 orders of
magnitude smaller than the maximum possible response. The matrix
M, is fixed for a certain architecture/task combination.

The Jacobian for different points gives important information about
the behavior of the network and could be computed analytically for any
input (Martinez-Garcia et al., 2018). However, for our purposes here
(we need it only at the origin, 0), it can be estimated through plain
linear regression. Once some architecture has been trained for certain
task, the resulting model, characterized by the parameters 6;, can be
applied to a set of N stimuli. Then, by stacking the vectors representing
the N stimuli and the N responses in the (n?-3) X N matrices,
I = [iVi®@-..iM], and Rg, = [rWr®...r™], respectively, we have:

Mg, = R, I (6)

where I' is the pseudoinverse of the rectangular matrix with the input
images and M, is then a (n?-3) X (n?-3) square matrix.

While CNNs are, in general, difficult to understand (Samek et al.,
2019), if the proposed linear approximation captures a substantial
fraction of the energy of the response, it can be very useful for two
reasons: (1) it allows the use of well understood linear algebra tools in
the analysis, and (2) it allows the comparison with classical linear de-
scriptions of human vision.

In particular, here we perform two kinds of linear analysis, where
the second is justified by the results of the first:

1. First, we make no extra assumptions (apart from linearity) and we
perform an eigenvector analysis of the matrix M. This analysis
shows that this kind of networks are stationary (shift invariant),
they are roughly spatio-chromatically separable, they implicitly
operate in a color opponent space, and they have markedly different
spatial bandwidth in these chromatic channels.
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Table 1
Input and model responses for the simpler CNNs (2-layers shallow CNNs and deep 4-layer CNNs) for the considered color illusions.
DN-NET
DN-NET
Dungeon \/ Hong-Shevell \/ White \/ Gradient X Chevreul ™~
In Out-L  Out-R In Out-L  Out-R In Out-L  Out-R In Out-L  Out-R In Out-L  Out-R
R | 0.58 0.77 0.27 0.58 0.39 0.72 1 0.85 0.92 0.5 0.43 0.61 1 0.92 0.91
G 1 0.38 0.76 1 0.74 0.53 0.5 0.64 0.36 0.5 0.63 0.36 0.5 0.5 0.51
B 0 0.47 0.51 0 0.44 0.37 0 0.074 0.13 0 0.079  0.079 | 0.5 0.49 0.51
DB-NET
Dungeon / Hong-Shevell ™~ White \/ Gradient X Chevreul \/
In Out-L  Out-R In Out-L  Out-R | In Out-L  Out-R In Out-L  Out-R | In Out-L  Out-R
R | 058 0.68 0.22 0.58 0.21 0.44 1 0.81 0.94 0.5 0.37 0.64 1 0.92 0.9
G 1 0.36 0.75 1 0.62 0.39 0.5 0.55 0.39 0.5 0.6 0.38 0.5 0.47 0.45
B 0 0.34 0.44 0 0.25 0.21 0 0.058 0.12 0 0.078  0.075 | 0.5 0.48 0.46
RestoreNET
Dungeon \/ Hong-Shevell \/ White \/ Gradient X Chevreul \/
In Out-L  Out-R In Out-L  Out-R | In Out-L  Out-R In Out-L  Out-R | In Out-L  Out-R
R | 058 0.77 0.24 0.58 0.3 0.67 1 0.85 0.93 0.5 0.36 0.64 1 0.92 0.9
G 1 0.36 0.76 1 0.64 0.41 0.5 0.55 0.39 0.5 0.6 0.37 0.5 0.49 0.48
B 0 0.43 0.53 0 0.38 0.34 0 0.057 0.11 0 0.073  0.075 | 0.5 0.48 0.47
Deep DN-NET
Dungeon \/ Hong-Shevell \/ White Gradient X Chevreul ™~

In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R
R | 0.58 0.77 0.27 0.58 0.42 0.63 1 0.94 0.97 0.5 0.47 0.49 1 0.96 0.95
G 1 0.38 0.72 1 0.57 0.4 0.5 0.61 0.38 0.5 0.54 0.48 0.5 0.49 0.49
B

0 0.5 0.57 0 0.56 0.49 0 0.028 0.056 0 0.027 0.03 0.5 0.52 0.52
Deep DB-NET
Dungeon / Hong-Shevell ™~ White X Gradient X Chevreul \/
In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R
R | 0.58 0.67 0.29 0.58 0.36 0.45 1 0.89 0.97 0.5 0.5 0.45 1 0.95 0.92
G 1 0.27 0.72 1 0.51 0.25 0.5 0.48 0.47 0.5 0.56 0.41 0.5 0.52 0.45
B 0 0.41 0.57 0 0.52 0.36 0 0.024 0.094 0 0.068 0.052 | 0.5 0.53 0.46
Deep RestoreNET
Dungeon \/ Hong-Shevell \/ White \/ Gradient X Chevreul \/
In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R
R | 0.58 0.74 0.28 0.58 0.31 0.58 1 0.93 0.97 0.5 0.48 0.55 1 0.93 0.91
G 1 0.39 0.7 1 0.5 0.42 0.5 0.51 0.39 0.5 0.48 0.46 0.5 0.53 0.5
B 0 0.49 0.56 0 0.49 0.53 0 0.036 0.075 0 0.074 0.073 | 0.5 0.5 0.48
Table 2
Input and model responses for the (more flexible) state-of-the-art CNNs for the considered color illusions.
Zhang et al.
Zhang et al.
Dungeon Hong-Shevell ™~ White ™ Gradient \/ Chevreul X
In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R
R | 0.58 0.60 0.56 0.58 0.58 0.59 1 1 1 0.5 0.52 0.49 1 1 1
G 1 0.96 0.98 1 0.99 0.98 0.5 0.5 0.49 0.5 0.49 0.51 0.5 0.48 0.51
B 0 0.008 0.008 0 0.02 0.02 0 0.012 0.012 0 0.012 0.012 | 0.5 0.48 0.51
Tao et al.
Dungeon ~ Hong-Shevell ~ White ™~ Gradient \/ Chevreul X

In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R In Out-L.  Out-R

R | 0.58 0.72 0.55 0.58 0.56 0.69 1 0.98 0.95 0.5 0.47 0.55 1 0.99 0.99
G 1 0.83 0.89 1 0.98 1 0.5 0.47 0.47 0.5 0.43 0.58 0.5 0.49 0.5
B 0 0.17 0.2 0 0.12 0.13 0 0 0 0 0.02 0 0.5 0.5 0.5
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Fig. 8. First row: Results for the human observers in the Ware-Cowan corresponding pair experiment. Second to last raw: Results for the shallow CNNs studied in the
Ware-Cowan corresponding pair experiment. We can see that the displacements are small, and in the opposite direction than for human observers (they suffer from
assimilation with the inductor as opposed to contrast happening in human observers). Note that the inductors used by Ware & Cowan in their psychophysical
experiments are slightly more saturated than those used in our numerical psychophysics. This is because we were using images expressed in digital counts.
Nevertheless, this small difference in the inductors does not justify the differences in the corresponding pairs. Therefore, qualitative conclusions about the differences
of behavior between networks and humans are valid.

2. The above results imply that extra assumptions can be done on Before going into the details of the above linear analysis, first we
top of linearity and hence they justify an analysis of the transfer visually illustrate that the linear approximation done in Eq. 5 is rea-
functions of the networks in the Fourier domain. sonable by showing the output of a restoration network and its line-

arized version. Then we address points 1 and 2. Finally, we come back
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Fig. 9. Results for the deep CNNs studied in the Ware-Cowan corresponding pair experiment. We can see that the displacements of the 4 layer networks (Deep DN-
NET, deep DB-NET, and deep RestoreNET) are comparable in magnitude to the human illusions, but again in the opposite direction than for human observers.

to the quantification of the nonlinear nature of the networks in dis-
cussing the amount of illusion depending on their complexity/flexibility
(Tables 3 and 4).

4.1. Linear approximation is representative and shift invariant

Fig. 11 shows a representative example that illustrates the accuracy
of the linear approximation. We show the behavior of the shallow Re-
storeNET and its linearized version with the kind of images used in the
training and with the kind of stimuli used in the simulations of the
visual illusions. We applied Eq. 6 to 1.3-10° image patches subtending
0.23deg (16 X 16 pixels, i.e. vectors i and r of dimension
16 X 16 x 3 = 768). Therefore this specific illustration required the
pseudoinverse of a matrix of size 768 X 1.3-10°.

In this example we see that: (1) The network carries out the visual
task (i.e. it is reducing the degradation). (2) The network visually be-
haves as classical restoration techniques (e.g. Wiener, Tikhonov Wiener
et al., 1949; Tikhonov & Arsenin, 1977), see Gutiérrez, Ferri, and Malo
(2006) for visual examples. (3) The network seems to have a stationary
behavior, which may not be surprising given the stationary nature of
the degradation learnt (signal-independent blur and noise). (4) Given
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the above, a linear version of the network may be sensible. (5) The
intuitive meaningfulness of the linear approximation is confirmed by
the results shown at the right column. First, note the visual resemblance
of the actual and linear responses, particularly in natural images (where
My, came from). Second, note the large fraction of energy of the re-
sponse captured by the linear approximation in these particular images
(for a larger dataset of natural images the figure is about 93%). In-
cidentally, for this specific image the linear approximation to the CNN
gives a slightly better restoration result than the actual CNN, but this is
not representative of the whole natural image dataset. And finally, (6)
note that the effect of the network on the Ware-Cowan image (bottom
row of the figure) is spreading the surround into the test, thus leading to
the assimilation effect. The linear approximation also has this effect.
Fig. 12 explicitly shows the matrix Mg, for the RestoreNET example
considered in Fig. 11. We can see in this figure (1) The existence of well
defined submatrices in My, (highlighted in red in Fig. 12) that corre-
spond to similar spatial processing in the different chromatic channels.
This suggests that the behavior of the network maybe roughly separable
in chromatic and spatial terms. (2) The Toeplitz-like structure of the
submatrices, that confirms the spatially stationary (roughly convolu-
tional-like) behavior of the network. (3) The equivalent convolution
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Fig. 10. Results for the state-of-art (really) deep networks of Zhang and Tao. The net of Zhang has the smallest displacements of all explored networks. However, in
some cases we got contrast (departure from inductor) as in human observers, but in any case, illusions of very small magnitude. The net of Tao present largest
displacements than that of Zhang, specially for the green inducer, and, it some cases it get contrast as in human observers.

Table 3
Nonlinearity, Performance & Illusion Strength (Denoising)
Shallow Deep Zhang et al.
Fract. Lin. Resp. 90% 93% 84%
Error NonLin. 11.2% 10.8% 7.5%
Error Linear 12.5% 12.1% 15.9%
Illusion Strength ++ +++ -
Table 4
Nonlinearity, Performance & Illusion Strength (Deblurring)
Shallow Deep Tao et al.
Fract. Lin. Resp. 88% 93% 94%
Error NonLin. 17.1% 16.3% 15.0%
Error Linear 19.0% 17.1% 15.6%
Illusion Strength ++ +++ +

kernels (equivalent receptive fields) of the network are a combination of
a Gaussian-like blurring operator for the channel at hand, and center-
surround operators at adjacent channels. And finally, (4) the width of
the equivalent receptive fields explains how the surround spreads into
the test.

These features qualitatively resemble the properties of LGN cells,
but additional insight is definitely required. The diagonalization of the
matrix Mg, done in the next section helps to obtain extra intuition on
the inner working of the network.

4.2. Eigenvector/ eigenvalue analysis

The eigendecomposition of the linear transform Mp, identifies the
stimuli that are considered by the system in a special way. By definition,
the eigenfunctions, b, are stimuli whose response is just an attenuated
version of the input: 1;b® = Mg, -b®, and hence, Mg, = B-1-B~1, where

B = (bWb®@...b@), Moreover, the eigendecomposition ranks the ei-
genfunctions according to the eigenvalues.

Therefore, the eigendecomposition describes the response of the
network as a linear autoencoder:
r=B2A-B7Li )
where the rows of B~! contain the encoding functions, and the columns of
B contain the decoding functions.

In this interpretation of the action of the network, the encoder, B,
transforms the input stimuli into a new representation. This is the inner
eigenrepresentation of the network. In this inner representation, coef-
ficients of the signal are dimension-wise attenuated by the diagonal
matrix 4, and then the final response is synthesized by the decoder B.

Fig. 13 shows the eigenfunctions (columns of B) of the considered
Mp,. The most relevant stimuli for the network appear first.

The diagonalization of Mg, shows that: (1) Eigenfunctions are os-
cillating stimuli of different frequencies extended over the spatial do-
main (stationary textures over the spatial domain). (2) Oscillations
appear on the achromatic direction and in two very specific chromatic
directions: namely pink/green, and yellow-orange/blue. (3) The most
important functions are the achromatic ones and only afterwards there
are functions that display chromatic variations (but also brightness
oscillations of different frequency). These facts strongly suggest that the
network is implicitly analyzing the stimuli in a frequency-domain re-
presentation in a color opponent space.

In order to clarify this intuition, we did the following analysis: first
we computed the change of basis matrix that transforms the CIE XYZ
primaries into the color basis defined by the extreme colors of the pink/
green, yellow-orange/blue, and dark/light gray directions found in the
eigenfunctions. This matrix allows to compute the color matching
functions in the new basis. The perceptual meaningfulness of the in-
trinsic color basis of the network is demonstrated in Fig. 14.

Then, in order to estimate the spatial bandwidth of the network in
these chromatic channels just found, we accumulated the spectra of the
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Fig. 11. Representative response of RestoreNET on a natural image and on a illusion inducing stimulus. In the restoration example (top) Degradation represents the
RMSE of the considered signal (either input signal or response -restored signal-) referred to the square root of the average energy of the original stimulus. The Fraction
of Response is the RMSE difference between the linear response and the actual (nonlinear) response referred to the square root of the average energy of the network

response.

eigenfunctions decomposed in this color space and weighted the spectra
by the corresponding eigenvalues. This is how images decomposed in
this color space would be weighted when passing through the network.
The result of such analysis is shown in Fig. 15. According to it, the
intrinsic representation of the network can be interpreted as a color
decomposition of stimuli in certain opponent color space (which is si-
milar to human opponency), and the application of filters of markedly
different bandwidth in the achromatic and the chromatic channels.

These filters could be compared with the achromatic and chromatic
Contrast Sensitivity Functions (CSFs) of human viewers (Campbell
et al., 1968; Mullen et al., 1985), but the frequency resolution of this
eigenanalysis is limited by the size of the image patches used in com-
puting the matrix Mp,.

Note that the only assumption or approximation made so far is
linearity. Fortunately, the properties of Mg, and B found in the network
allow us to make extra assumptions beyond linearity that make possible

Rout

I
Gout

Bout

rnxn Lixn y (deg)

Selected Receptive Field
- 1  acting on channel R;,

a more accurate analysis.

4.3. Spatial Fourier analysis in opponent channels

The properties found above for linear approximations using small-
size image patches justify a straightforward Fourier analysis of the
transfer functions of the network. After finding that the network im-
plicitly operates in an opponent color space and that it is shift-invariant
or stationary, and hence it has eigenfunctions which are Fourier-like,
we did the following analysis. For 2046 full-size images subtending
1.83 deg (128 x 128 pixels) we computed the quotient of the Fourier
spectra of the input stimuli and the output responses, both decomposed
in a classical opponent space (Hurvich et al., 1957), the one of the color
matching functions represented in Fig. 14 (right). In this way, the filters
will be directly comparable to the human CSFs. These filters are shown
in Fig. 16, and the actual CSFs are plotted for convenient reference in

Selected Receptive Field Selected Receptive Field

acting on channel G, acting on channel B,
0.08 0.08
0.06 0.06
0.04 { 0.04
0.02 / 0.02

x (deg)

Fig. 12. Linear version of RestoreNET: the matrix Ms. In order to interpret the matrix (at the left) remember that, as we pointed at the beginning of the section, here
we are rearranging n X n color images as column vectors of dimension n X n x 3. Specifically, the pixels of each RGB channel are organized as a column, and
vertically stacked one after the other into a single vector. This is represented by the i, elements in red, green and blue. In this linear approximation, Eq. 5, every row
of the matrix (as for instance the one highlighted in green) acts on the input column vector arranged in this specific way. Therefore, as each response is the scalar
product of the corresponding row times the input vector, these rows represent the receptive fields of the linear version of the network. Large submatrices highlighted
here by red lines represent the spatial processing within each color channel, and then these responses are linearly combined to lead to the final responses. The
properties of the receptive field corresponding to one row of the matrix are more evident by undoing the vector arrangement. The surfaces at the right correspond to
the spatial arrangement of the R, G and B portions of the receptive field weights in the highlighted row. Then, we can see that this is a center-surround sensor tuned to
the central location of the image with excitatory center mainly tuned to green (it receives more input from G) and inhibitory purple surround (with an input of the

form -(R + B)).
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Fig. 13. Eigenfunctions (left) and eigenvalues (center) of the linear network. Eigenfunctions (columns of B) are sorted sorted (left-to-right and top-to-bottom)
according to the associated eigenvalues. The CIE xy chromatic diagram (right) displays the chromatic coordinates of the colors in the 50 eigenfunctions with bigger
eigenvalue. Note that as the input stimuli in the considered dataset are given in digital counts the eigenfunctions are also given in digital counts. Therefore, the
representation of the colors of the eigenfuncitons in the chromatic diagram involved the assumption of a standard display calibration conversion (Malo & Luque,
2002). Note also that, given the fact that Mg, is almost symmetric (see Fig. 12), B is almost orthonormal and hence, the encoding functions (rows of B~1, not shown)

are very similar to the decoding functions represented here.

the bottom row of Fig. 17.

In this context in which models and linear approximations are ob-
tained from large image databases an important safety check was ne-
cessary. For this specific illustration we not only trained the networks
with images from the massive database CLS-LOC (Russakovsky et al.,
2015) (uncalibrated images and eventually subject to uncontrolled
manipulations), but we also did a separate training with images coming
from two calibrated databases (images in CIE XYZ with no spatial
manipulation Gutmann, Laparra, Hyvidrinen, & Malo, 2014; Laparra,
Jimenez, Camps, & Malo, 2012; Parraga, Vazquez-Corral, & Vanrell,
2009; Vazquez-Corral, Parraga, Baldrich, & Vanrell, 2009). Results
were qualitatively the same (see Fig. 17 first row). This implies that the
database CLS-LOC can be trusted with regard to the average spatio-
chromatic spectra (covariance matrix) of the image samples.

A similar conclusion to that of Fig. 13 can be drawn by looking at
the first few layers of other deep networks (Krizhevsky, Sutskever, &
Hinton, 2012). This is a related result, but note that the eigenanalysis is
different and more powerful in some ways. In Krizhevsky et al. (2012)
the frequency filters in color opponent spaces explicitly emerge in the
weights of the linear part of the layers, while here the linear approx-
imation displays center-surround filters, and not narrow frequency

06

Opponent Color Matching Functions of Network
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sensors. In our case, these frequency sensors are revealed only after the
eigenanalysis of the learned weights. More interestingly, the eigen-
analysis shows the different gain (or sensitivities) for the different fre-
quencies (the eigenvalues), which is not obvious from the raw receptive
fields in Krizhevsky et al. (2012). The frequency sensitivities in oppo-
nent channels is what can be compared to the human CSFs. Such
comparisons with specific psychophysical results (CSFs and spectral
sensitivities) are not mentioned at all in Krizhevsky et al. (2012) nor
computable from their results.

4.4. Linear approximation and strength of illusions

The linear approximation of the simpler networks (2-hidden layers
and 4-hidden layers) reveals a number of human-like characteristics in
their intrinsic image representation, namely the chromatic opponent
channels and filters of bandwidths similar to the CSFs.

In relatively rigid networks (simpler architectures) the emergence of
this specific frequency selectivity to fulfill the low-level visual task
explains that color and luminance profiles in the stimuli are distorted in
the response of the network in specific ways. The responses at certain
region changes depending on the spatial context (e.g. Figs. 5-7), thus

Opponent Color Matching Funclions
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750

Fig. 14. Intrinsic color matching functions of the network (left) compared with the classical opponent color-matching functions of human color vision (by Hurvich
et al. (1957), on the right). Both systems of primaries have an achromatic channel (all-positive color matching function in black), and two opponent chromatic

channels (with positive and negative values).
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Fig. 15. Accumulated spectra of eigenfunctions decomposed in their intrinsic color space and weighted by eigenvalues. Limited frequency resolution is due to the fact
that this result comes from small 16 x 16 image blocks. This may give rise to artifacts in the spectra.

leading to significant visual illusions in these networks.

The emergence of these properties can be understood from the re-
lation of image restoration methods with the statistics of natural
images: if the goal is removing non-natural features, the network will
learn transfer functions matched to the statistics of the signal to filter
out undesired features. And it is known that the covariance of natural
colors (Buchsbaum et al., 1983; Lee, Wachtler, & Sejnowski, 2002) and
natural color images (Wachtler, Lee, & Sejnowski, 2001) is consistent
with the opponent color representation and eigenfunctions found by
our analysis.

As a by-product, the effect of the context due to the width of the
equivalent kernels of the linear network explains the shifts in perceived
brightness in similar directions to that happening in humans. But the
simplicity of this behavior, e.g. as in Fig. 11, also explains why the
illusions may be markedly different from those of humans in some color
cases.

For instance, when the spatial layout of the stimulus is relatively
simple, as in the Gradient color illusion or in the center-surround setting
in the Ware-Cowan experiment, the simple filtering found in Fig. 11
only leads to penetration of the surround in the region corresponding to
the test thus leading to assimilation instead of the contrast found in
human observers. This eventually simple behavior revealed by the
linear analysis certainly applies to the six models with not that many
layers (DN-Net, Deep DN-Net, etc.).

However, the situation may be different for more flexible archi-
tectures for which the linear filter view may not be that appropriate,
like the 17-layer CNN of Zhang et al. (2017) or the 21-layer CNN of Tao
et al. (2018). In the following we compare the quality of the simpler
CNNs trained in this work with the state-of-the-art networks and their
respective linear approximations.

In Tables 3 and 4, we list the following descriptors. The Fraction of
Linear Response is the proportion of the energy of the response ex-
plained by the linear approximation. The error measurements (either for
the nonlinear network or for its linear approximation) correspond to the
fraction of the energy of the clean signal not recovered by network
(either in denoising or in deblurring), and the final row qualitatively
describes the magnitude of illusions found.

In these tables, the linear approximations of the networks were es-
timated using Eq. 6 and 2-10° input-output pairs of image patches of
size 20 X 20 from the CLS-LOC 2014 ImageNet validation dataset
(Russakovsky et al., 2015). In the denoising case the images were de-
graded with the same kind of distortions used in the training of the
shallow and deep networks. In the deblurring case the images were
degraded with Gaussian blur of the same width used in the training and
with double width. The fraction of the response captured by the linear
approximation and the performance measure were computed with 103

image patches not included in the training set of the linear approx-
imation. The deviation over 10 realizations was found to be about 0.1%
in all cases, and hence not included in the table for the sake of clarity.

In the specific case of the simpler networks (Shallow and Deep), the
increased complexity does not make a big difference in terms of their
nonlinear nature, which explains the similarity of their intrinsic filters
and the slight improvement in performance for the deeper net.
However, the state-of-the-art network of Zhang el al. is the more non-
linear. Interestingly, the state-of-the-art network for deblurring is very
well described by a linear approximation.

From a pure machine learning perspective, it is obvious that the
nonlinear nature of the networks and their performance in the goal
have to increase when substantially increasing the number of para-
meters. However, regarding the magnitude of the illusions (and more in
general, regarding the eventual similarity with the visual system) this
does not necessarily increase with the complexity of the model.

This can be understood in the following way: increasing the com-
plexity usually leads to systems that are too specialized in the specific
goal. Therefore, it is reasonable that the networks by Zhang et al.
(2017) and Tao et al. (2018) do not show visual illusions with the
considered stimuli, because these stimuli lack the perturbations (noise,
blur) that these highly specialized deep neural networks were trained to
remove.

5. Discussion and final remarks

This work confirms and expands our original report (Gomez-Villa
et al., 2019) on color and brightness illusions suffered by CNNs trained
to solve low-level visual tasks. Specifically, we explored a range of five
classical brightness illusions and their color counterparts (a total of 10
different illusions) to point out the existence of illusions in CNNs and
assess their qualitative correspondence with human behavior. Ad-
ditionally, we proposed a quantitative comparison by studying CNN
illusions through asymmetric color matching experiments as done by
humans (Ware et al., 1982). In those experiments we explored simple
CNN architectures (with 2 or 4 hidden layers) trained for image de-
noising, deblurring and restoration (simultaneous denoising and de-
blurring). And we also studied the behavior of recent, much deeper
CNNs trained for the same kind of tasks: the 17-layer architecture of
Zhang et al. (2017) pretrained for denoising and the 21-layer archi-
tecture of Tao et al. (2018) pretrained for deblurring.

Qualitative analysis shows that the simpler networks do modify
their response in the same direction as the humans in most cases, and
that the more complex networks lead to negligible or non-human illu-
sions.

On the other hand, quantitative results on asymmetric color
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Fig. 16. Filters estimated for DB-net, DN-net and RestoreNET assuming a classical opponent space and assuming the Fourier representation. The filters for the deeper
version of these networks are similar. Note that, following classical ideas from optimal filtering and regularization (Wiener et al., 1949; Tikhonov & Arsenin, 1977),
the denoising filters happen to be low-pass, the deblurring filters happen to be highpass, but of course, also preserving the low-frequencies, and the restoration filters

are a combination of both.

matching show that the simpler networks in center-surround settings
have substantial illusions, but of opposite nature to those of humans
(while a human observer perceives chromatic contrast, the CNN shows
assimilation) and the much deeper networks display illusions which are
either negligible or of less magnitude than humans.

The proposed eigenanalysis of simple networks reveals interesting
similarities with human vision, showing that these simple networks

implicitly operate in an opponent color space, with low-pass filtering for
the chromatic channels and band-pass filtering for the luminance. This
simple linear description may explain why in the color-matching ex-
periment the CNNs suffer from assimilation, unlike humans: in center-
surround settings, the low-pass nature of the filtering in the chromatic
channels shifts the hue of the test towards the hue of the surround.
From the results and associated analysis, these considerations may
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Fig. 17. Top row: Filters estimated for DB-net, trained with images coming from two calibrated databases (images in CIE XYZ with no spatial manipulation). Results
are qualitatively the same that for the large uncalibrated dataset. Bottom row: Human CSFs for convenient reference (Achromatic CSF from the Standard Spatial

Observer [?], and chromatic CSFs from Mullen et al. (1985)).

follow. Visual illusions and image statistics: The findings in this work are
consistent with the long-standing tradition in vision science that con-
siders low-level visual illusions as by-product of optimization of visual
systems to perform basic tasks in natural environments (Barlow, 1990;
Clifford et al., 2000; Clifford et al., 2002; Clifford et al., 2007). More
specifically, the results of our linear analysis link the behavior of the
networks with (a) the statistical basis of the image restoration problem
and, more interestingly, with (b) optimal coding theories of human
vision. First, it is interesting to note that our linear analysis of the
networks leads to functions that resemble the principal directions of
natural colors (Buchsbaum et al., 1983; Lee et al., 2002), and natural
color images (Wachtler et al., 2001; Hyvarinen, Hurri, & Hoyer, 2009).
However, note that in our analysis we are not diagonalizing the cov-
ariance matrix of natural signals. In fact, signal decorrelation or in-
dependence was not enforced in anyway. Therefore, although similar,
our result should not be attributed to information maximization or
sparse coding (Olshausen et al., 1996; Wachtler et al., 2001). Instead, as
stated above, if the goal is removing non-natural features from stimuli,
Wiener or Tikhonov ideas (Wiener et al., 1949; Tikhonov & Arsenin,
1977) naturally lead to filters matched to the signal spectrum. With this
in mind, and given the relation between the average spectrum of the
signals, their autocorrelation and their covariance, it makes sense that
the optimal filter obtained from our linear approximation is very si-
milar to the covariance of the natural signals. Therefore, our result to
reconstruct signals with minimum error turns out to be very similar to
the PCA result. Nevertheless, the reason why CNNs trained for image
restoration develop opponent chromatic channels and CSF-like filters

would be more in line with signal/noise explanations of visual function
(Atick, Li, & Redlich, 1992). Note that error minimization and in-
formation maximization are similar, but not the same (see Lloyd et al.,
1982 for the original account, and see Twer & MacLeod, 2001; MacLeod
et al., 2003; Laparra et al., 2012; Laparra et al., 2015 for sequels in
vision science).Some implications on the use of artificial neural networks to
study vision The analysis of the fraction of response captured by the
linear approximation would suggest that more ‘rigid’ (less non-linear)
networks suffer from stronger illusions; a possibility is that the key for a
quantitative replication of human behavior resides in the (small or even
tiny) nonlinear part. But more importantly, our psychophysical-like
analysis of ANNs shows that while they are deceived by illusions, their
response might be significantly different to that of humans. These dis-
crepancies with humans in quantitative experiments imply a word of
caution on using ANNs to study human vision, a point that has been
getting significant attention lately, e.g. see Jacob et al. (2019), Geirhos
et al. (2020) and references therein. In particular, when fitting flexible
nonlinearities to specific goals it is easy to miss basic psychophysical
phenomena if the proper precautions are not taken (Martinez et al.,
2019).

More generally, as mentioned earlier, ANNs were inspired by clas-
sical biological models of vision, and for this reason they share the
L + NL formulation (Haykin et al., 2009) of the “standard” model of
vision (Olshausen et al., 2005). But this model is questioned in the vi-
sion science literature.

Vision models and ANNs use L + NL modules derived from fitting
some data, and in every case either the linear filters are constant or the
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models do not have general rules as to how the filters should be mod-
ified depending on the input (Betz, Shapley, Wichmann, & Maertens,
2015; Li, Wang, Hu, & Yang, 2019). This is an essential weakness of all
these models as visual adaptation shows. Visual adaptation, an essential
feature of the neural systems of all species, produces a change in the
input-output relation of the system that is driven by the stimuli (Wark,
Fairhall, & Rieke, 2009). Therefore, it requires that the linear and/or
the nonlinear stages of a L. + NL model change with the input in order
to explain neural responses (Meister et al., 1999; Coen-Cagli, Dayan, &
Schwartz, 2012; Jansen et al., 2018), thus resulting in a crucial weak-
ness of these L + NL models.

L + NL models are not tests of how well the linear filter of a neuron
describes its behavior, they have been obtained simply by assuming that
the neuron performs a linear summation and then searching for the
best-fitting linear model. In visual perception, experimental data con-
tradicts in many situations the central notions of L + NL models
(Wandell et al., 1995), which fail to predict image appearance in the
general case (Fairchild et al., 2013). The state-of-the-art deep learning
metric for perceived appearance (Zhang et al., 2018) — designed to
predict perceptual image error like human observers and trained on a
large scale dataset of 160 K images with close to 500 K human judge-
ments- has been shown to correlate poorly with human observer re-
sponses (Zamir et al., YYYY; Bertalmio et al., 2019). In visual neu-
roscience, the standard model was able to explain in 2005 at the most a
40% of the data variance in V1 (Olshausen et al., 2005), and fifteen
years later this value has increased just to ~ 50% (Cadena et al., 2019).
The prevailing belief, as pointed out in Jacob et al. (2019), appears to
be that ANNs can be treated as accurate models of vision and that the
differences are only a matter of degree that will eventually be solved.
But the limited performance of even deep ANNs suggests that a much
more complex network nonlinearity is at work in the visual system than
what L + NL models are capturing (Carandini et al., 2005). Even fur-
ther, it has even been proposed (Olshausen, 2013) that the standard
model is not just in need of revision, but it is the wrong starting point
and needs to be discarded altogether.
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