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Abstract. In this paper we present a spatial gamut mapping algorithm
that relies on a perceptually-based variational framework. Our method
adapts a well-known image energy functional whose minimization leads
to image enhancement and contrast modification. We show how by vary-
ing the importance of the contrast term in the image functional we are
able to perform gamut reduction. We propose an iterative scheme that
allows our algorithm to successfully map the colors from the gamut of
the original image to a given destination gamut while preserving the col-
ors’ perception and texture close to the original image. Both subjective
and objective evaluation validate the promising results achieved via our
proposed framework.

Keywords: GamutMapping (GM),GamutMappingAlgorithm (GMA),
color contrast, variational methods.

1 Introduction

The color gamut of a device is the set of colors that this device is able to repro-
duce. Different display systems have different color gamuts, making a process
called gamut mapping (GM) essential: GM transforms colors from an input to
an output gamut with the intention that a viewer watching the same image in
different displays perceives the same colors. Intensive research has been carried
out in the GM area; however, it is still an open field due to the difficulty of the
challenges involved. One of the major tasks is to retain the perceived quality of
the original image into the gamut mapped image and most of the algorithms in
the literature lack in this regard.

A plethora of Gamut Mapping Algorithms (GMAs) exists in the literature and
the interested reader is referred to the excellent book by Morovič [19]. In general,
gamut mapping algorithms are classified into two broader categories. The first
category consists of global (also called non-local or non-adaptive) GMAs [9], [11],
[21], [22] that involve point-to-point mapping of colors (usually a predefined
lookup table) from source to destination gamut. The standard non-local GM
algorithm, Hue Preserving Minimum ΔE (HPMINDE), was proposed by Murch
and Taylor [21] where, in order to reproduce the image, the out-of-gamut colors
are clipped to closest points on the target gamut boundary along the lines of hue.
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The non-adaptive GMAs involve either clipping or compression and completely
ignore the spatial color configuration in the source image. In contrast, the second
category involves the GMAs that take into account the spatial color information
of the original image whilst fitting the color gamut of an image into the gamut
of a given device [1], [2], [3], [12], [18], [20], [23]. However, these algorithms
are often computationally expensive, or based on many assumptions and may
report halo artifacts. McCann [16], [17] proposed a Retinex-inspired framework
that performs spatial comparisons to reproduce the image while preserving the
local gradients at all scales as in the original image. A similar multi-resolution
GM approach that adapts to the original image content is suggested by Farup et
al. [10]. A cluster based approach is defined in [14] for the optimization of GM.
Alsam and Farup [2] proposed an iterative GMA that at iteration level zero
gives the result identical to gamut clipping. However, by increasing the number
of iterations, the solution approaches spatial gamut mapping. Unlike the global
GMAs, the potential of spatial GM methods is to preserve the color gradient
between two out-of-gamut colors instead of mapping them to the same in-gamut
color. Another fundamental motivation behind spatial gamut mapping, in order
to emulate the color perception properties of the Human Visual System (HVS),
is the need to formulate a strategy where two out-of-gamut colors with identical
lightness and chromaticity map to two different in-gamut colors depending on
their spatial context in the image [12].

One of the major problems in GM is the evaluation of GMAs. Usually, subjec-
tive comparisons are performed [6], [8]. The most common subjective method is
the pair comparison, where observers are asked to choose which of two different
gamut-mapped versions of an image is more faithful to the original. However,
subjective measures are time consuming, involve complexities, and do not pro-
vide clear cues to improve the given GMA. Recently, a perceptually-based color
image difference metric [15] has been proposed that particularly emphasises on
the assessment of gamut-mapped images. It is based on predicting the distortions
in lightness, hue, chroma, contrast and structure of the gamut-mapped images
by performing the comparison with the original images.

The contribution of this paper is to propose a perceptually inspired GMA
where gamut reduction is achieved through contrast reduction, by adapting a
framework [5], [4] that is inspired by the properties of contrast perception in the
HVS and closely related to the Retinex theory of color vision [13]. Our method
outperforms state of the art techniques ([2], [14]) both subjectively and according
to the aforementioned perceptually-based metric of [15].

This paper is organized as follows; first, the image energy functional presented
in [5] for the perceptually inspired contrast enhancement is described in section
2. Then, in section 3, the contrast enhancement model is adapted to obtain our
GM method. In section 4, experiments and results are discussed. Finally, the
paper is concluded in section 5.
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2 Image Energy Functional

Bertalmı́o et al. proposed an image enhancement model in [5], where the image
energy functional is defined as

E(I) =
α

2
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I

(
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)2

dx+
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2

∫
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where α ≥ 0, β > 0, I is a color channel (R,G or B), w(x, y) is a normalized
Gaussian kernel of standard deviation σ, and I(x) and I(y) are two intensity
levels at pixel locations x and y respectively.

This functional has two competing parts. The positive competing terms are
global: the first one controls the dispersion from the middle gray value, which
is assumed to be 1/2 as described in the gray-world hypothesis [7], whereas the
second term in the functional penalizes the departure from the original image
I0. The negative competing term represents the local contrast. Therefore, by
minimizing the image energy E(I), the aim is to maximize the contrast, while
not departing too much from the original image, and to preserve the gray-world
hypothesis. It is formulated in [5] that the steady state of the energy E(I) can
be achieved using the evolution equation

Ik+1(x) =
Ik(x) +Δt

(
α
2 + βI0(x) +

1
2RIk(x)

)
1 +Δt(α+ β)

(2)

where the initial condition is Ik=0(x) = I0(x). The function RIk(x) indicates
the contrast function:

RIk(x) =

∑
y∈Iw(x, y)sm

(
Ik(x) − Ik(y)

)
∑

y∈Iw(x, y)
(3)

where x is a fixed image pixel and y varies across the image. We define the slope
function sm for a real constant m > 1, when d = Ik(x)− Ik(y), as follows

sm(d) =

⎧⎨
⎩

−1, if − 1 ≤ d ≤ − 1
m

m · d, if − 1
m < d < 1

m
+1, if 1

m ≤ d ≤ 1
(4)

In [4] it is shown that the presented model is related to the Retinex theory
of color vision proposed by Land [13] and that the model can be adapted to
perform contrast reduction by just changing the sign of the contrast term. In
the next section we will explain how we can use this contrast reduction property
for gamut mapping.
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(a)

(b)

Fig. 1. Perceptual GM Approach. (a): Gamuts on chromaticity diagram. (b): Top left:
original image. Top right: γ = −0.50. Bottom left: γ = −1.0. Bottom right: γ = −1.47.

(a) (b) (c) (d)

Fig. 2. Gradual mapping of colors. Out-of-gamut colors (in black) when (a): γ = 0,
(b): γ = −0.50, (c): γ = −1.0, (d): γ = −1.47.

3 Gamut Mapping Framework

In this section, we adapt the image energy functional defined in Eq. (1) to
perform gamut mapping from the gamut of the original image to the target gamut
of a given device. In order to control the strength of the contrast modification,
we add the contrast coefficient γ in the image energy functional E(I). Recall
that α controls the dispersion around middle gray. Since, in the case of gamut
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(a)

(b)

Fig. 3. Modified Perceptual GM Approach. (a): Gamuts on chromaticity diagram. (b):
Top left: original image. Top right: γ = −0.50. Bottom left: γ = −1.0. Bottom right:
γ = −1.47.

mapping, the HVS adapts to the luminance of the environment instead of the
luminance of the stimulus, we set α = 0 and the image energy model defined in
Eq. (1) becomes

E(I) =
β

2

∫

I

(I(x)− I0(x))
2
dx − γ

2

∫ ∫

I2

w(x, y)|I(x) − I(y)|dxdy (5)

and subsequently the evolution equation (2) reduces to

Ik+1(x) =
Ik(x) +Δt

(
βI0(x) +

γ
2RIk(x)

)
1 + βΔt

(6)

whereas, being γ ∈ R positive or negative depends on whether we want to
maximize or minimize the contrast, respectively [4]. In this paper, γ will always
be negative, since our goal is to reduce the contrast in order to perform GM.

The evolution equation (6) has a steady state for each particular set of values
for β,Δt and γ. For example, in Fig. 1a, a chromaticity diagram is shown with
different gamuts (visible spectrum, sRGB gamut, original gamut, target gamut
and reproduced gamut). It can be seen that when γ = 0 the steady state of
the evolution equation is equivalent to the original image. In the same figure
we show that as γ decreases, the steady state of Eq. (6) has a gamut which is
gradually smaller. Fig. 1a shows that, just by selecting an enough small gamma
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(a) original image (b) σ = 25 (c) σ = 100 (d) σ = 200

Fig. 4. Effect of standard deviation(σ)

Fig. 5. Original sRGB images. Row 3; images 1, 2, 3, and Row 4; image 5 are from
CIE [8]. Rest of the images are courtesy of Kodak.

(γ = −1.47 in this case) we are already performing a gamut mapping algorithm.
However, in this case, colors that were originally inside the target gamut move
inwards too much, and the appearance of the image becomes washed-up, as Fig.
1b shows.

In order to improve the previous result, we present an iterative method in
terms of the contrast coefficient γ. At iteration 1, we set β = 1 and γ = 0, and
therefore the original image is obtained as the steady state. We leave untouched
the pixels that are inside the destination gamut, and we move to iteration 2,
where we decrease γ (for example, setting γ = −0.05) and run Eq. (6) to steady
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Fig. 6. Gamut mapping results. Column 1: original images. Columns 2: output of
HPMINDE clipping [21]. Column 3: output of Lau et al. [14]. Column 4: output of
Alsam et al. [2]. Column 5: output of our algorithm.

state. In this second iteration, we check whether any of the points that were out-
side the gamut at the previous iteration have been moved inside the destination
gamut. If this is the case, we leave them untouched for the following iterations.
We keep iterating by decreasing γ until all the out-of-gamut colors come inside
the destination gamut. An example of this iterative procedure is shown in Fig.
2, where black pixels represent out-of-gamut pixels left in that iteration. It can
be seen in Fig. 3a, that the reproduced gamut is covering a much wider range of
colors than previously. It is shown in Fig. 3b that the colors are better preserved
as compared to the previous example (see Fig. 1b).

4 Experiments

We work in the RGB domain by fixing the parameters β = 1, Δt = 0.10 and
iterate by decreasing the parameter γ (γ ≤ 0) until the colors of the original
image come inside the target gamut. For each value of γ we run Eq. (6) to steady
state, which we assume that has been reached when the difference between two
consecutive steps falls below 0.5%. We have noticed that the standard deviation
σ of the Gaussian kernel w is of great importance; we observe in Fig. 4 that
a small value of σ leads to the preservation of colors but introduces artifacts,
whereas for the larger values of σ each color pixel is strongly influenced from
the surrounding colors. Therefore, we compute the gamut mapped images Iσ
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Fig. 7. Preserving details, all images are cropped from Fig. 6. Column 1: original
cropped images. Column 2: output of HPMINDE [21]. Column 3: output of Lau et al.
[14]. Column 4: output of Alsam et al. [2]. Column 5: output of our algorithm.

by using four different values of standard deviations σ ∈ {50, 100, 150, 200}.
Subsequently, in order to obtain a final gamut mapped image Ifinal, we combine
all the outcomes Iσ with respect to the original image Iorig, in Lab color space,
by using the Delta-E measure.

Ifinal(x) = argmin
Iσ

(Lab(Iσ(x)) − Lab(Iorig(x)))2 , σ ∈ {50, 100, 150, 200}
(7)

We are confident that varying these parameters according to the application
and image characteristics would give better results. However, our choice of pa-
rameters is the same for all the results shown in this paper.

4.1 Qualitative Results

In this section, we apply our method on a rather challenging target gamut as
shown in Fig. 1a. The original sRGB images used are illustrated in Fig. 5. Given
an image in sRGB, our algorithm maps the gamut of the original image into
the destination gamut. The results presented in Fig. 6 show that our proposed
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Table 1. Quality assessment: perceptual difference measure [15]

HPMINDE
Clipping [21]

Lau et al. [14] Alsam et al. [2] Our Algorithm

Caps Image 0.1027 0.1022 0.0821 0.0711

Raft Image 0.0772 0.0747 0.0857 0.0471

Barn Image 0.0268 0.0242 0.0134 0.0088

Girl Image 0.0825 0.0695 0.0359 0.0209

Birds Image 0.1829 0.1119 0.0923 0.1086

Motorbikes Image 0.0330 0.0396 0.0322 0.0155

Boat Image 0.0255 0.0187 0.0035 0.0008

Beach Image 0.0168 0.0151 0.0077 0.0046

Party Image 0.0569 0.0878 0.0487 0.0280

Portrait Image 0.0235 0.0393 0.0209 0.0104

Picnic Image 0.0954 0.0954 0.0448 0.0638

Window Image 0.0514 0.0591 0.0443 0.0326

Woman with Hat Image 0.1313 0.0882 0.0528 0.0410

Sailing Boats Image 0.0183 0.0287 0.0195 0.0130

Statue Image 0.0025 0.0061 0.0053 0.0020

Model Image 0.0292 0.0736 0.0398 0.0390

Ski Image 0.1899 0.1964 0.1734 0.1040

Table 2. Quality assessment: statistical data

Mean Median RMS

HPMINDE Clipping [21] 0.0674 0.0514 0.0873

Lau et al. [14] 0.0665 0.0695 0.0807

Alsam et al. [2] 0.0472 0.0398 0.0627

Our Algorithm 0.0360 0.0280 0.0485

framework works well in preserving the colors, texture and color gradients from
the out-of-gamut regions while staying faithful to the perception of the original
image. For example, in Fig. 7, rows 1 and 4, it can be seen that the colors
reproduced by our GM algorithm (fifth column) are much more saturated than
those of HPMINDE [21] (second column), and the state of the art algorithms of
Lau et al. [14] (third column) and Alsam et al. [2] (fourth column). Similarly,
in Fig. 7, row 2, our algorithm not only reproduces the color efficiently but also
preserves a great amount of texture. In Fig. 7, row 3, we can see our method
accurately represents the difference in the lightness of identical hue (see the pink
socks and pink beanie). Results show that our algorithm outperforms not only
the widespread method [21] but also the state of the art algorithms [2], [14].

4.2 Objective Quality Assessment

Visually, the results presented so far underline the good performance of our
GMA in terms of visual quality. This subjective outcome is backed by using the
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perceptual color quality measure presented in [15]: the Color Image Difference
(CID) metric estimates the perceptual differences given by the changes, from
one image to the other, in features such as hue, lightness, chroma, contrast and
structure.

Comparisons using the CID metric are provided in Table 1. In this table we
can see that our algorithm outperforms the other methods in 15 out of 17 test
images. Moreover, the statistical data (mean, median and root mean square)
is also presented in Table 2. These results show that our method produces a
gamut mapped image which is, perceptually, more faithful to the original image
as compared with the other methods.

5 Conclusions

In this paper, we have presented a gamut mapping algorithm based on a per-
ceptually inspired variational framework. We have shown how to modify the
variational framework in order to perform gamut mapping reduction. The main
advantage of our method is its perceptual inspiration, that allows us to mimic
some basic properties of the HVS while performing the mapping, and this is
corroborated by the good scores we obtain with a perceptual metric for color
and contrast distortion.

One subject left untreated in this paper is the need to develop a GMA that
is capable of mapping colors from a smaller gamut to a larger gamut. In this
direction, we are currently working on adapting our formulation to the problem
of gamut extension.
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