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Abstract

In this thesis we focus on two different image processing challenges: high dynamic
range (HDR) image/video generation, and colour matching. In both cases, we
redefine these tasks by taking into account the prior knowledge from the different
processes the camera performs when capturing the image.

High dynamic range techniques have recently become very popular, thanks
to the emergence of HDR recording and displaying technology. We propose two
different approaches for HDR creation, one for still images, and one for video
creation. In case of still images, most of previous methods follow a multiple
exposure combination approach. These methods share a set of building assump-
tions: i) the full dynamic range of the scene can be recovered, ii) colour channels
are independent, and iii) the camera response function remains constant while
varying the exposure time. First, we highlight how these assumptions do not
apply in general for digital cameras, and then, we propose a method to improve
multiple exposure combination. Our results outperform state-of-the-art multiple
exposure techniques.

In case of HDR video, we present a simple and affordable method to generate
high quality video from an HDR scene. Our input is an interlaced video alternating
row pairs with different ISO values, as some DSLR camera models can provide.
The proposed algorithm involves two main steps: i) the computation of two
single-ISO full-frame images (one for each ISO value) using an inpainting-based
deinterlacing method, and ii) the linear combination of the full-frame ISO’s into a
single HDR frame. Finally, the results are tone-mapped into an LDR frame ready
for display. Results are free of ghosting artefacts and present little noise.

Colour matching approaches attempt to transfer the colours of a reference
image, to another source image. In this context, we focus on colour matching
two images taken from the same scene. First, we propose a method that modifies
logarithmic encoded images, used in cinema for HDR content, in order to behave
as gamma encoded images, used in most digital cameras. Then, we extend a
previous approach defined just for gamma encoded images. We redefine the
transformation between the two images, by considering a projective transform,
and we estimate the method parameters in a single optimisation step. The method
outperforms the state-of-the-art methods and can handle real-life examples.
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Resum

En aquesta tesi ens centrem en dos problemes de processament d’imatges diferents:
generació d’imatge/vı́deo d’alt rang dinàmic (HDR) i coloració. En tots dos casos,
redefinim aquestes tasques tenint en compte el coneixement previ dels diferents
processos que realitza la càmera en capturar la imatge.

Actualment, les tècniques d’alt rang dinàmic s’han tornat molt populars,
gràcies a l’aparició de la tecnologia per capturar i visualitzar HDR. Proposem
dos enfocaments diferents per a la creació d’HDR, un per a imatges i un altre
per a la creació de video. En el cas d’imatges, la majoria de mètodes combinen
múltiples exposicions. Aquests mètodes comparteixen un conjunt d’hipòtesis: i)
la recuperació del rang dinàmic complet de l’escena, ii) els canals de color són
independents, i iii) la funció de resposta de la càmera es manté constant mentre es
varia el temps d’exposició. En primer lloc, destaquem com aquestes suposicions
no s’apliquen, en general, a les càmeres digitals, i després proposem un mètode
per millorar aquesta tècnica. Els nostres resultats superen l’estat de l’art.

En el cas de vı́deo HDR, presentem un mètode senzill i assequible per generar
vı́deos d’alta qualitat d’una escena HDR. El nostre input és un vı́deo entrellaçat
alternant parells de fileres amb diferents valors d’ISO, com alguns models de
càmeres DSLR poden proporcionar. L’algorisme inclou dos passos principals: i)
el càlcul de dues imatges full-frame ISO (una per a cada valor d’ISO) utilizant un
mètode de desentrellaçat basat en inpainting, ii) la combinació lineal dels ISOs
full-frame en un HDR únic. Finalment, els resultats es mapegen tonalment per
obtenir un LDR per mostrar per pantalla. Els resultats no tenen artefactes de
ghosting i presenten poc soroll.

Els mètodes d’igualació de colors intenten transferir els colors d’una imatge
de referència, a una altra imatge d’origen. En aquest context, ens centrem en el
cas de dues imatges capturades a la mateixa escena. En primer lloc, proposem
un mètode que modifica imatges codificades logarı́tmicament, utilitzades en el
cinema per a continguts HDR, per tal de comportar-se com imatges gamma
codificades, que s’utilitzen en la majoria de les càmeres digitals. A continuació,
extenem un mètode definit prèviament només per imatges gamma codificades,
redefinint la transformació entre les dues imatges, considerant una transformació
projectiva i estimant els paràmetres del mètode en un únic pas d’optimització. El
mètode supera l’estat de l’art i pot tractar exemples de la vida real.

xi



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xii — #12



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xiii — #13

Contents

Nomenclature xix

List of Figures xxvi

List of Tables xxviii

1 INTRODUCTION 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 HUMAN VISUAL SYSTEM: FROM LIGHT TO COLOUR VI-
SION 13
2.1 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Biology of the human eye: optics and retina . . . . . . . 16

2.1.2 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . 20

Visual adaptation: Photoreceptor Response . . . . . . . 22

Dark and Light Adaptation . . . . . . . . . . . . . . . . 23

2.2 Colour matching experiments . . . . . . . . . . . . . . . . . . . 24

2.2.1 Chromatic Adaptation . . . . . . . . . . . . . . . . . . 26

2.3 Colour spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Standard colorimetric colour space . . . . . . . . . . . . 27

xiii



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xiv — #14

2.3.2 Perceptually uniform colour spaces . . . . . . . . . . . 32

2.3.3 Other colour spaces . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Colour metrics . . . . . . . . . . . . . . . . . . . . . . 35

3 DIGITAL IMAGE FORMATION 39
3.1 Image acquisition: Exposure Control . . . . . . . . . . . . . . . 40

3.1.1 Exposure Control . . . . . . . . . . . . . . . . . . . . . 40

3.2 Camera Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . 44

3.3 In-Camera Colour Processing Pipeline . . . . . . . . . . . . . . 45

3.3.1 White balance . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Demosaicing . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Colour correction . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Encoding techniques . . . . . . . . . . . . . . . . . . . 48

Gamma correction . . . . . . . . . . . . . . . . . . . . 49

Logarithmic encoding . . . . . . . . . . . . . . . . . . 52

3.3.5 Post-processing steps . . . . . . . . . . . . . . . . . . . 52

3.3.6 Compression and image formats . . . . . . . . . . . . . 52

3.4 A general approximation for in-camera colour processing pipeline 53

4 HIGH DYNAMIC RANGE ACQUISITION AND GENERATION 55
4.1 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Multiple LDR exposures for HDR reconstruction . . . . . . . . 55

4.2.1 Camera response function . . . . . . . . . . . . . . . . 57

4.2.2 Noise models . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Exposure fusion . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Camera or scene motion . . . . . . . . . . . . . . . . . 61

LDR alignment and HDR reconstruction . . . . . . . . 61

Joint LDR alignment and HDR reconstruction . . . . . . 62

Ghost detection . . . . . . . . . . . . . . . . . . . . . . 62

xiv



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xv — #15

4.2.5 Colour matching for HDR . . . . . . . . . . . . . . . . 64

4.3 High dynamic range sensors and video . . . . . . . . . . . . . . 65

4.4 High dynamic range storage . . . . . . . . . . . . . . . . . . . 68

4.4.1 Linear encodings . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Non-linear encodings . . . . . . . . . . . . . . . . . . . 69

4.5 HDR datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 HDR colour spaces . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 HDR metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 HDR visualisation: Tone Mapping Operators . . . . . . . . . . 72

4.8.1 Global TMOs . . . . . . . . . . . . . . . . . . . . . . . 73

4.8.2 Local TMOs . . . . . . . . . . . . . . . . . . . . . . . 74

4.8.3 Joint global and local TMOs . . . . . . . . . . . . . . . 74

4.8.4 Video TMO methods . . . . . . . . . . . . . . . . . . . 74

4.8.5 TMO metrics . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 HDR reconstruction from single LDR images: inverse Tone Map-
ping Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 CONSIDERING THE DIGITAL CAMERA PIPELINE FOR HDR
CREATION 79
5.1 Multiple exposures assumptions for HDR . . . . . . . . . . . . 79

5.2 The effect of optical scattering on the dynamic range . . . . . . 81

5.3 The response function of digital cameras . . . . . . . . . . . . . 84

5.4 Proposed method to make the CRF constant . . . . . . . . . . . 90

5.4.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Results and comparisons . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.2 Ground-truth generation . . . . . . . . . . . . . . . . . 94

5.5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 95

Dynamic scenes . . . . . . . . . . . . . . . . . . . . . 97

xv



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xvi — #16

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 HDR VIDEO FROM DUAL-ISO SENSOR 101
6.1 High quality video in high dynamic range scenes from interlaced

dual-ISO footage . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Generation of single-ISO full-frame images . . . . . . . 102

6.1.2 Row interpolation by deinterlacing . . . . . . . . . . . . 103

6.1.3 Refinement step . . . . . . . . . . . . . . . . . . . . . . 104

6.1.4 HDR creation . . . . . . . . . . . . . . . . . . . . . . 105

6.1.5 Final LDR video . . . . . . . . . . . . . . . . . . . . . 106

6.2 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . 107

6.2.1 Quantitative evaluation . . . . . . . . . . . . . . . . . . 107

6.2.2 Qualitative evaluation . . . . . . . . . . . . . . . . . . 108

6.3 Analysis and optimisation of the proposed method . . . . . . . . 112

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 COLOUR MATCHING: RELEVANCE AND METHODS 117
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Current solution on cinema and TV . . . . . . . . . . . . . . . . 118

7.3 Colour matching in academia . . . . . . . . . . . . . . . . . . . 119

7.3.1 Colour transfer . . . . . . . . . . . . . . . . . . . . . . 119

7.3.2 Colour stabilisation . . . . . . . . . . . . . . . . . . . . 121

Colour consistency among multiple views . . . . . . . 122

8 COLOUR STABILISATION FOR CINEMA CONTENT 125
8.1 Motivation: encoding techniques for cinema content . . . . . . . 125

8.2 The proposed framework . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 From log-encoded to gamma-corrected images . . . . . 127

8.2.2 Colour stabilisation . . . . . . . . . . . . . . . . . . . . 129

8.2.3 Undo power 10 function . . . . . . . . . . . . . . . . . 130

8.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . 130

xvi



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xvii — #17

8.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.2 Analysis of our colour stabilisation model . . . . . . . . 132

8.3.3 Experiments versus state-of-the-art . . . . . . . . . . . 134

Gamma-corrected inputs . . . . . . . . . . . . . . . . . 136

Log-encoded inputs . . . . . . . . . . . . . . . . . . . . 136

Log-encoded reference and gamma-corrected source . . 136

Gamma-corrected reference and log-encoded source . . 138

8.3.4 Experiments with power 10 . . . . . . . . . . . . . . . 139

Log-encoded inputs . . . . . . . . . . . . . . . . . . . . 139

Log-encoded reference and gamma-corrected source . . 140

Gamma-corrected reference and log-encoded source . . 140

8.3.5 Beyond gamma and log-encoded images: HLG and PQ . 142

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9 CONCLUSIONS AND FUTURE WORK 147

xvii



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xviii — #18



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page xix — #19

Nomenclature

3D Three Dimensions

CAM Colour Appearance Model

CCD Charge Coupled Device

CCM Colour Correction Matrix

CFA Colour Filter Array

CID Colour Image Difference

CIE Commission Internationale de l’ Éclairage
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CHAPTER 1

Introduction

In this thesis we focus on three different image processing challenges arising in
cinematography. First, we present two works in the topic of high dynamic range
(HDR) imaging. In particular, we propose efficient solutions for HDR image
generation and HDR video creation. The third problem in which we work is
colour stabilisation of image pairs. In this case, we focus on images encoded
using logarithmic curves, which are becoming the standard for professional
cinema cameras. Our solutions to these problems exploit the prior knowledge
we do have from the different processes the camera performs when capturing an
image.

Dynamic range is defined as the ratio between the brightest and the darkest
intensity levels within a scene. The human visual system (HVS) is able to adjust
to world scenes where the light intensity values cover a very wide range varying
from 10−6 cd/m2 for starlight to 108 cd/m2 for sunlight. Moreover, it can
capture details in dark and bright areas simultaneously because of its capacity of
adaptation. This is not the case of standard cameras/sensors. While in common
situations the light coming from a scene is of HDR, the vast majority of camera
sensors (and displays) are of low dynamic range (LDR).

We first focus on the HDR reconstruction for still images. In digital cameras,
the 12-bit or 14-bit values captured at sensor level which are proportional to light
intensity (this is the linear data, stored in RAW format) go through a chain of
colour-correction transformations culminating in a non-linear transform (gamma
correction) followed by quantisation in 8 bits per channel. The net result is
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that standard cameras are only able to capture well different intervals of the
luminance range at different exposure times. In particular, bright areas are better
captured at short exposure times, while longer exposure times are required for
dark areas. In Figure 1.1 is presented a set of images taken varying exposure time
(top row), and the HDR image obtained from the linear RAW data (bottom). On
the reconstructed HDR, there are shown the luminance values in cd/m2 of some
regions in the scene, which has a dynamic range of almost 5 orders of magnitude.

22.23

46.22
21.73

38.59

63.89

39.33

121465

3832

7205

850.8

688.7

309.1

407.2

1.890 2.264

Figure 1.1: On top row, images acquired with different exposure times using a Nikon D3100, from
[1/160, 1/10, 1.6]. The image on the bottom row corresponds to the reconstructed HDR image
from the set above. For display purposes, the image has been tone-mapped.

There is a vast literature on methods for creating HDR images using regular,
LDR sensors, that started with the seminal approaches of [Mitsunaga and Nayar,
1999], and [Debevec and Malik, 1997]. In those works, several LDR pictures
of the same HDR scene are taken only varying exposure time, so that the short
exposures capture details in the bright regions, and long exposures capture details
in the dark regions. These two approaches, and the vast majority of multiple
exposure approaches, estimate the so called camera response function (CRF),
which is the function that maps the non-linear values of the final camera output,
to the linear RAW values at camera sensor. Once the set of images is ‘linearised’
using the CRF, they are all combined into a single HDR image with overall detail
visibility. In order to build the CRF, some assumptions are taken into account:
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1. Different colour channels are independent.

2. The CRF remains constant while changing the exposure.

3. The full dynamic range of the scene can be recovered.

The first condition indicates that given an RGB colour image, a curve will be
computed for each colour channel. The second condition shows that the CRF is
constant and unique. The last condition refers to the final computed ‘radiance
map’, which is proportional to the luminance in the scene. These three assump-
tions apply for film photography, but they are not an accurate model of how digital
cameras work. In this context, our main contributions are: i) to highlight the
reasons why these three assumptions do not apply for digital cameras based on
experiments and analysis, and ii) to propose a new method to improve multiple
exposure techniques.

The second problem we address is the creation of HDR video. In this case, it
is not possible to use the previous approaches due to artefacts that might appear
when there are moving objects in the scene, and/or camera motion. These artefacts
are called ghosting artefacts. Currently in the movie industry, the interest in HDR
imaging is becoming more widespread, although the challenge of shooting HDR
scenes using LDR equipment exists since the beginning of cinema. The way to
address this limitation is adding artificial lights, in order to raise the intensity
levels of the darkest areas of the image therefore reducing the dynamic range
of the scene, fitting it into the reduced range of the capture medium (film or
digital). This procedure is complicated and expensive, and it requires a large
number of human and material resources that might affect significantly the cost
of the production. In this framework, there exist some alternatives but they are
not completely practical. For example, some digital cinema camera models are
able to alternate exposure times on consecutive frames, creating pairs of different-
exposure images that are then fused following the approach of [Debevec and
Malik, 1997], but camera and/or object motion produces ghosting artefacts on the
fusion results. A recent alternative is to use a dual-camera set-up [Froehlich et al.,
2014], with two synchronised, perfectly registered cameras on an orthogonal rig
so that a semi-transparent mirror sends most of the light intensity to one of the
cameras, and the rest to the other camera. These images can be fused without
any problem because they are fully aligned and synchronised, so there is no risk
of ghosting artefacts. Nevertheless, the dual-camera set-up has some limitations:
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cost and practicality considerations arising from the use of two cameras, image
problems caused by the mirror imperfections, and the need to perform tone
mapping to the output. For more details we refer the reader to [Bertalmı́o, 2014b].

Figure 1.2: Interlaced image with rows alternating ISO values of 100 and 1600. Image from
[Lantern, 2013].

More recently, we find works that perform HDR reconstruction from a single
interlaced image. Gu et al. [Gu et al., 2010] combine rows taken with different
exposures times, and since the rows are not captured simultaneously this method
produces ghosting artefacts as well, which need to be reduced by estimating and
compensating for the motion-blur. The camera software Magic Lantern (ML)
[Lantern, 2013] allows some camera models to capture image/video with dual-
ISO values that alternate between consecutive image line pairs, see Figure 1.2. It
provides an implementation to interpolate a full-frame low-ISO image, containing
less noise on shadow areas. The method follows a chain of steps: separate
the two ISO frames, interpolate the missing lines to get the full images, and
combine information from both interpolated frames to highly reduce the noise
in dark regions. Hajisharif et al. [Hajisharif et al., 2014] perform at the same
time demosaicing, denoising, re-sampling and HDR reconstruction, starting from
the interlaced input provided by the ML software [Lantern, 2013]. This method
requires a previous radiometric calibration process, therefore it cannot be used
when the camera is not available. A similar idea was developed by Heide et
al. [Heide et al., 2014], who propose a single optimisation step using image
priors and regularisers of the different stages going on in the camera colour
pipeline (denoising, demosaicing, etc). The selection of image priors is crucial
for the optimisation process, and the values are highly dependent on the set of
images selected for learning the best weights. These latter two methods have the
advantage of working directly with the RAW data without following a staged
pipeline, therefore no cumulative errors are carried out from one process to the
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next; nevertheless, this integration makes it difficult to further extend the processes
involved, since they are not independent, plus it is also challenging to locate and
rectify errors in the pipeline.

In order to avoid ghosting artefacts and flickering, we decide to work with
the software [Lantern, 2013] that allows us for capturing interlaced frames with
different ISO values using common digital cameras. On this account, we follow a
strategy that involves the same idea used in video deinterlacing but without taking
into account temporal information.

Our last application focus on colour matching pair of logarithmic-encoded
images acquired from the same scene. Colour matching techniques aim to map
the colours of one image, defined as source, to those of a second image, defined
as reference. A particular case is colour stabilisation, where the two pictures are
taken from the same scene and differ in terms of colour. These colour differences
are due to the use of different camera models, or even when the same camera
model is used under different settings (white balance, exposure time, aperture,
etc.). We can see an example in Figure 1.3, in where two images from the same
scene are presented. We set the same exposure time, aperture and ISO value for
both images, and only vary the white balance.

Figure 1.3: Images acquired with a Nikon D3100 changing the white balance of the camera.

As mentioned above, digital cameras perform typically the following in-
camera steps: demosaicing, white balance, colour correction (from RGB camera
sensor to device independent colour space), encoding standard (usually a gamma
correction), and compression. Bianco et al. [Bianco et al., 2012] summarised a
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generic colour processing pipeline for digital cameras as

Iout = (A · Ilin)1/γ , (1.1)

where Iout is the output image,A is a 3×3 matrix which carries colour information
and white balance, γ value defines a power law function, and Ilin is the linear
image read by the camera sensor after demosaicing. This model is a simplification
of the pipeline, since other post-processing techniques, like denoising or contrast
enhancement might be applied.

Gamma correction has been the most used encoding technique in digital
cameras, but it encounters issues when dealing with high dynamic range imaging,
since in low luminance areas it might introduce quantisation artefacts. Current
professional cinema cameras are able to capture a wide range of light intensities,
and therefore, a compression of this range is needed for storage, while preserving
all the details and appearance. Cinema cameras substitute gamma correction
(1/γ) with a logarithmic function, with general form as,

Iout = c log10 (a ·A · Ilin + b) + d, (1.2)

where Iout and Ilin are defined as above, and the parameters a, b, c, and d are
constant real values. These parameters might differ from camera manufacturers
and camera settings.

The vast majority of methods in the literature consider gamma corrected
inputs for colour matching. HaCohen et al. [HaCohen et al., 2011] presented a
method to compute dense correspondences between the images, combined with a
global colour mapping model. Vazquez-Corral and Bertalmı́o [Vazquez-Corral
and Bertalmı́o, 2014a] proposed a colour stabilisation algorithm that consists of
estimating a power law (γ value) for each of the images, and a single 3×3 matrix,
to colour match the source image to the reference. It is built on the assumption that
in digital cameras the colour encoding can be expressed as a matrix multiplication
followed by a power law (gamma correction), see Equation (1.1). In Frigo et
al. [Frigo et al., 2016], the authors presented a method to colour stabilise video
sequences, based on the estimation of a non-linearity and channel-based scaling.

In the industry, there exist several solutions for bringing consistency across
shots. They normally involve very skilled manual work, done by colourists
during colour grading in movie post-production and by technicians using camera
control units (CCU) [MediaCollege, 2012] in live TV broadcasts; require a
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proper characterisation of the cameras used and their settings like with the ACES
framework [Postma and Chorley, 2015], or the presence of colour-charts in the
shots.

To the best of our knowledge, the method of Vazquez-Corral and Bertalmı́o
[Vazquez-Corral and Bertalmı́o, 2016] is the only work in the literature dealing
with colour stabilisation for logarithmic-encoded images. Their algorithm relies
on finding a sufficiently large number of achromatic matches among source
and reference, in order to estimate the logarithmic curves and colour-stabilise
the images. This detection of achromatic matches in some situations may be a
challenging limitation.

In this framework, we propose to transform logarithmic-encoded images, in
order to make them behave as gamma corrected ones. Next, we extend the previ-
ous work of [Vazquez-Corral and Bertalmı́o, 2014a], on colour matching pairs of
gamma corrected images, to improve the results. Moreover, the transformation of
logarithmic-encoded images can also be applied before utilising current gamma
corrected methods. This step boosts the performance of the methods when dealing
with these new inputs.

Contributions

Our first contribution in this thesis is the disproval of the assumptions used when
creating an HDR image from a stack of different exposed images. These as-
sumptions are: i) camera response function (CRF) does not change when varying
exposure time, ii) colour channels are independent and iii) the full dynamic range
of the scene (radiance map) can be recovered. Majority of the methods we find in
the literature propose to compute a single and unique CRF from the non-linear
multiple exposure images. We show that only varying the exposure time of the
camera might cause changes in some other internal parameters of the camera,
thus breaking the assumption of a unique CRF. The second assumption is related
to the dependency of the colour channels. It is well known the correlation of
the R, G, and B channels, thus when colour correction matrices are applied as
an inner camera stage, those are not just diagonal matrices (which would mean
that the channels are independent), rather those matrices are diagonal dominant
with values different of zero outside it. Finally, we show that cameras cannot
recover the full dynamic range of the scene due to the veiling glare of the camera
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optics. In addition, we propose a method that aims to improve quantitatively and
qualitatively, multiple exposure techniques. At this point, given a stack of exposed
non-linear images as inputs, our method considers the camera colour processing
pipeline presented in [Bianco et al., 2012]. First, we set one the images in the
stack as the reference, and then transform the rest of the images in the stack into
the ‘space’ (in terms of colour and time) where the reference image is defined.
The transformed images are combined linearly to obtain the final HDR image.
We also proposed the option of selecting several images as reference, in order to
better preserve details, and make the algorithm more robust and independent from
only selecting one reference image. The results are compared against classical
and state-of-the-art approaches using several metrics. Our analysis shows that our
algorithm outperforms the rest of the methods.

The second contribution in this thesis is the creation of high quality HDR
video. The approach we propose for HDR video reconstruction uses the output of
a software designed to capture RAW frames in current DSLR cameras. Each frame
is captured alternating two pairs of rows with two different ISO values. In this
way, the camera output is an image with half of the rows acquired with an ISO low,
and other half with ISO high. Then, we adapt a deinterlacing algorithm [Ballester
et al., 2007] in the spatial domain to reconstruct the missing rows of each ISO half
rows images. The reconstructed full size ISO images are then combined linearly,
and finally a TMO is applied taking into account temporal domain. The result is
an HDR video with no flickering neither or visible artefacts. We also compare
our results with state-of-the-art algorithms that use dual-ISO.

Our last contribution is related to colour stabilisation on image pairs that are
encoded either with gamma correction, or as many professional cameras now, with
logarithmic functions. The vast majority of the literature assumes that the images
are given in gamma corrected sRGB colour space. Due to the fact that logarithmic
functions are becoming popular for HDR encoding in professional cameras, we
introduce a modification that transforms log-encoded images, in order to be
treated as gamma corrected ones. Then, we present an extension of a previous
colour stabilisation work [Vazquez-Corral and Bertalmı́o, 2014a]. We consider
a projective transformation instead of a linear mapping in the relation between
the two images. Thus, we improve previous results, and moreover we outperform
state-of-the-art methods. In addition, we show that the transformation of log-
encoded images can be applied as well to other colour transfer algorithms, and
the results show great improvement in most of the algorithms we considered for
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comparison, both qualitative and quantitatively. Finally, we show that our method
can be applied to images captured with professional cinema video cameras, whose
use current encoding techniques, like PQ and HLG.

9
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Thesis Outline

The rest of the thesis is structured as follows. In Chapter 2, we present briefly
basic concepts of our human visual system and colour science: from the light
reaching our eyes to our colour perception. Then in Chapter 3, we introduce how
images are created in current digital cameras: from light reaching the sensor to the
final colour image ready to be displayed. We emphasise the connections between
these two chapters, since cameras try to emulate how scenes are perceived by
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humans. Chapter 4 presents the concept of high dynamic range, and methods and
techniques for acquisition and creation of HDR imaging. We also introduce HDR
visualisation techniques, and HDR reconstruction methods from a single image.
In Chapter 5, we explain our proposed HDR method and discuss about the issues
of most common building assumptions in HDR reconstruction from a stack of
multiple exposure images. Next, Chapter 6 presents a method for HDR video
creation from common DSLR cameras. It explains how to combine information
from an original image that conveys information from two different ISO values.
In Chapter 7, we review colour matching techniques used in image processing
and computer vision, and we show its relevance to cinema industry. In Chapter 8,
we explain our proposed method for colour matching a pair of images encoded
using different techniques for cinema content. Finally, Chapter 9 gathers the
conclusions of this thesis and suggests some further work regarding HDR and
colour matching.
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CHAPTER 2

Human Visual System: From light to colour vision

In our physical world, we can measure the light emitted from a source and reflected
by an object using different sensors and tools. Our Human Visual System (HVS)
works with its own sensors in order to perceive the light that reaches our eyes in a
particular way. In this section, we will introduce some very basic knowledge on
HVS, and how do we perceive colours.

Light

Electromagnetic radiations are present in our world. They are electromagnetic
waves emitted by natural or human sources. These waves can be determined by
their wavelength (λ) and they are represented in a range (spectrum) measured
in meters (m). We encounter waves from short wavelengths, such as γ-rays and
X-rays, to very long wavelengths such as microwaves and radio signals. The
light that we can see corresponds to a very narrow range of the electromagnetic
spectrum. The wavelengths of visible light vary only from 380 nanometres (nm)
to 740 nm, see Figure 2.1.

It is important to introduce some definitions before going any further. On the
one hand, radiometry measures physically wavelengths along the visible light
and the whole electromagnetic spectrum. In particular, the radiance E(λ) is
defined as the product of the irradiance, which is the incident light I(λ), and the
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Figure 2.1: Electromagnetic spectrum. Image from [Bertalmı́o, 2014b].

reflectance of the object’s surface R(λ), as functions of wavelength, as:

E(λ) = I(λ)×R(λ). (2.1)

On the other hand, photometry measures the light based on the response of the
human eye. In particular, the luminance Y is the effect of radiance in our eyes,
and it is the integral of a weighted radiance over the visible spectrum,

Y =

∫ 740

380
V (λ)E(λ)dλ. (2.2)

The curve V (λ) is a luminosity function, and it represents the efficiency of
activating the cells in our retina during daylight at different wavelengths. As
Figure 2.2 shows in the graph on the right, V (λ) has a higher response on
wavelengths in the middle of visible light, and the response decreases as it gets
closer to the extremes of the visible spectrum. Note that this luminosity function
converts radiometric measurements into photometric ones. In the next subsection,
we will refer again to luminosity functions. The luminance values are measured
in candelas per square meter (cd/m2). We categorise our vision given different
levels of luminance as:

• scotopic vision for low ranges of luminance,

• mesopic vision in low-medium ranges,

14



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page 15 — #43

Figure 2.2: On the left: the relation between radiance, luminance and brightness. Image adapted
from [Kindlmann, 2002]. On the right: the luminosity function V (λ). Image adapted from
[MathWorks, 2010].

Table 2.1: Photometric and radiometric measurements.

Photometric Radiometric Description

Luminous flux lm Radiant flux W power of light

Luminous intensity lm/sr Radiant intensity W/sr
amount of flux emitted through
solid angle

Illuminance lm/m2 Irradiance W/m2 power received on a known
surface area

Luminance lm/(sr ·m2) Radiance W/(sr ·m2)
intensity emitted from a
known unit area of source area

• photopic vision in high-luminance ranges, where V (λ) describes the eye
sensitivity.

It is worth mentioning the concept of brightness, which is a subjective measure
of the luminance from higher processing levels in our brain. The relation between
brightness and luminance is non-linear, and it can be approximated by a cube
root function [Stevens and Stevens, 1963]. Figure 2.2 shows the relation between
radiance, luminance and brightness. In Table 2.1, we present the most common
photometric and radiometric measurements, together with their units and a brief
explanation. The term steradian (sr) is the unit of solid angle and it is the
analogous in 3D of the radians. The term lm stands for lumens and lm = cd · sr,
and W for watts.
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Figure 2.3: Structure of the eye and its components. Image from [Hunt and Pointer, 2011].

Biology of the human eye: optics and retina

The light passes through the optics of our eyes and reaches the sensors in our
retina, where the light is converted into impulse signals that will be processed
by our brain. In this section, we will first focus on the optical components of
the eye. Then, we will move on to the sensor part of the eye, the retina, and the
photoreceptors in it. In Figure 2.3 it is shown the structure of the eye, and its main
components. The optical system of the human eye controls the amount of light
that goes through it, and its direction. We present some of the elements involved
in this process: cornea, pupil, iris, and lens.

• Cornea is the outer transparent layer through which the light passes the eye.
The cornea absorbs most of the short wavelengths in order to protect the
eye [Packer and Williams, 2003].

• Pupil can change its size (diameter), and it determines the aperture of the
eye, controlling the amount of light going through.

• Iris controls and determines the maximum aperture of the pupil size.

• Lens is layered and flexible, and it can change its shape in order to focus
on near or far objects.

In the retina, the light is projected into the fovea, the central region, since it
is the most sensitive area to colour and spatial vision. The photoreceptors in the
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Figure 2.4: Schema of the retina. On the left, the neural cells: photoreceptors, horizontal, bipolar,
amacrine and ganglion. On the right, the two types of photoreceptors: cones and rods. Images
from [Fairchild, 2013].

retina absorb the photons, then generate chemical reactions that will become elec-
trical impulses to be processed by our brain. We find two types of photoreceptors
in the retina: rods and cones. The former are not sensitive to colour, and the latter
are the ones which give us our colour vision. The sensitivity of rods and cones
depends on the luminance level of the light. In Figure 2.4 it is shown a diagram
of the retina, and the cells involved on capturing and transmitting the processed
light.

• Rods are sensitive to low and mid-low luminances values (from 10−6 to
10 cd/m2), and they give grayscale information. In scotopic and mesopic
vision, rods are activated, and they saturate in photopic vision.

• Cones contain pigments less sensitive to light than rods (from 0.01 to 108

cd/m2). Cones are the responsible for colour vision and they are divided
in three different types, S-cones, M-cones and L-cones, that stand for short,
medium and long wavelengths, respectively [Dartnall et al., 1983]. The
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Figure 2.5: The distribution of the photoreceptors in the retina. On the left: the angles relative to
fovea in degrees. On the right: concentration of rods and cones with respect to the angle relative to
fovea. Image from [Wandell, 1995a].

cones are activated in photopic and mesopic visions.

Figure 2.5 shows the distribution of rods and cones with respect to the fovea
area. Notice that the concentration of cones in the fovea is very high, and it drops
drastically as it goes away from fovea. As opposite, rods are more concentrated
in the peripheral areas. The number of rods in our eyes is approximately 120
millions, and the number of cones, approximately 6 millions.

The absorbed light by the photoreceptors is then transmitted to the neural cells
(horizontal, bipolar, amacrine and ganglion), and finally the signal is sent to the
optic nerve. This process within the retina is extremely complex, since different
layers are involved. Notice that there are approximately 1 million optic nerves
fibres, versus the roughly 126 millions of photoreceptors. This means that the
signal need to be compressed. At each ganglion cell, there is a region, called the
receptive field, in which all the photoreceptors connected to the cell will send their
response. The structure of a receptive field is defined by its centre and surround.
There are two types, on-centre field and off-centre field, as shown in Figure 2.6.

In the previous subsection, we introduced the curve that measured the sensi-
tivity of our eyes during daylight which applies for photopic vision, V (λ). There
exists also another luminous function V ′(λ) that measures the sensitivity of our
eyes during low light conditions, in scotopic vision. On the left plot of Figure 2.7,
both curves are shown, V (λ) in black, and V ′(λ) in green. These functions were
adopted by the Commission Internationale de l’Éclairage (CIE) in 1924. Notice
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Figure 2.6: Centre-surround of receptive field. On the left: the on-centre field, and on the right:
off-centre field. Image from [Fairchild, 2013].
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Figure 2.7: On the left: the luminosity functions photopic (V (λ))curve in black, and scotopic
(V ′(λ)) curve in green. On the right: the spectral sensitivity (normalised) of S, M, and L-cones
as functions of wavelengths. Images adapted from [Wikipedia, 2018e] and [Wikipedia, 2017],
respectively.

that V (λ) represents the combined sensitivity of the three different types of cones,
and V ′(λ) represents exactly the response of the rod cells [Wyszecki and Stiles,
1982].

Let us focus on the three types of cones. Each of them has a different sensitivity
to different wavelengths along the visible spectrum. On the right plot of Figure 2.7,
we present the spectral sensitivity of S, M and L-cones. They are represented as
functions of wavelength as s(λ), m(λ) and l(λ). Notice that short cones reach
their maximum spectral sensitivity at 420 nm, medium cones at 533 nm, and
long cones at 584 nm. At the end, the response of the cones is expressed as
tristimulus values, which are defined as the integral of the product of radiance and
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Light Object

Spectral cones

sensitivity

Figure 2.8: The tristimulus that we perceive are the integral of the product of the radiance and the
spectral sensitivity at each cone type.

the sensitivity of each cone,

L =

∫ 740

380
l(λ)E(λ)dλ, (2.3)

M =

∫ 740

380
m(λ)E(λ)dλ,

S =

∫ 740

380
s(λ)E(λ)dλ.

In Figure 2.8 it is shown the tristimulus as the product of: i) a light source
(tungsten light), ii) the reflectance of a red object, and finally iii) the cones
sensitivity. In this particular case, the tristimulus with higher value will be L.

The tristimulus L,M,S values are then processed in the receptive fields of
higher neural cells, and as a result, three opposing pairs are defined [Shapley
and Hawken, 2011]: 1) intensity which is the sum of all tristimuls L+M + S,
equivalent to V (λ), 2) red-green which is represented by L −M , and 3) blue-
yellow byL+M−2S, see Figure 2.9. The response of the photoreceptorsL,M,S
is transformed into opponent signals in higher levels in the retina, and thus it
provides an efficient way of compressing the signal for its transmission, [Jameson
and Hurvich, 1955].

Dynamic Range

The dynamic range of a scene is the ratio between the highest luminance and
the lowest luminance value. Our world presents a high dynamic range, and the

20



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page 21 — #49

Figure 2.9: The tristimulus of the cones L,M,S are transformed into opponent colour signals, in
higher neural cells. The graph on the right represents the red-green, and blue-yellow response as
functions of wavelength. Image from [Wikipedia, 2018d].

luminance values can vary from 10−6 cd/m2 (starlight) to 108 cd/m2 (sunlight),
thus a contrast ratio of 1014 : 1. This large range is often presented in log10 scale,
for example, a scene during daylight, with luminance values varying from 100

to 105, will have a dynamic range of 5 orders of magnitude. In Figure 2.10, it
is shown the range of luminance values that exist in the world. Notice that for
scotopic and mesopic vision, rods can adapt to a range of 6 orders of magnitude,
and in the case of photopic and mesopic vision, where cones are activated, those
can adapt within a range of 10 orders of magnitude [Ferwerda et al., 1996].

Figure 2.10: Luminance range of the real world, our HVS, and the adaptability of the photoreceptors
to different light conditions. Image from [Kunkel et al., 2016].
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Figure 2.11: High dynamic range scene, from left to right, an approximation of the our perception
when we focus on the sky, when we focus on the rocks, and the overall perception. Image
from [Cambridge, 2005].

Visual adaptation: Photoreceptor Response

Our HVS is able to function over a large range of luminance values during
daylight. Although the contrast ratio between moonlight and sunlight is about
108 : 1, it is difficult to encounter both in the same scene. Thus, the dynamic
range of a scene is usually smaller. The HVS has the ability to adapt within
different luminance conditions. Figure 2.11 shows a high dynamic range scene
of the sea during sunset. The left image shows an approximation of what we
perceive when we focus on the sky, on the middle it is shown the perception we
get from the scene when focusing on the rocks in the front, and finally on the
right the overall perception of the sea scene during sunset. Many different and
complex factors influence our perception of luminance and colour. In this section
we focus only on light, dark and chromatic adaptation of the photoreceptor cells
in our retina.

Our HVS can operate at any given time in the range of approximately 4 orders
of magnitude (when the pupil size remains unchanged), and it is called the steady-
state dynamic range. The photoreceptors react within a small range of luminance,
and their response to luminance values is given by the following equation,

R

Rmax
=

Y n

Y n + σn
, (2.4)

where σ is the semi-saturation value, Y is the input luminance, R is the output
response of the photoreceptor, Rmax is the maximum photoreceptor response,
and n is a sensitivity-control exponent, with ranges between 0.7 and 1 [Valeton
and Norren, 1983]. Equation (2.4) is called Naka-Rushton equation, and for
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Figure 2.12: Photoreceptor response to luminance. On the left: luminance versus cone response
represented by Equation (2.4). On the right: the response of rods and cones. Image adapted
from [Reinhard et al., 2010], and [Kunkel and Reinhard, 2010].

n = 1, it is known as the Michaelis-Menten equation. In Figure 2.12, it is
shown the luminance versus the response function of rods and cones, where the
luminance axis is logarithmic. The semi-saturation value σ shifts the curve along
the luminance access, therefore the σ value for rods is smaller than for cones,
since rods are more sensitive to light.

Dark and Light Adaptation

One the one hand, dark adaptation happens when the illumination is reduced. As
an example, when we enter into a cinema the lights are already off, and only the
light from the screen can be seen. After a short time, ours eyes can adapt and we
are able to see the people and objects inside, while still seeing the image projected
on the screen. Figure 2.13 presents in the first row, the dark adaptation of rods
and cones in a graph of time versus luminance. It takes up to 30 minutes to fully
adapt to dark environment.

On the other hand, light adaptation happens when the level of luminance
increases. As an example, when we leave the cinema, our eyes need to adapt
from dark environment to sunlight. Figure 2.13 presents in the second row, the
light adaptation of rods (left) and cones (right) system in a graph of time versus
luminance. From the graphs, light adaptation takes around 5 minutes in the cones
system, and in case of rods, light adaptation is achieved in only few seconds. For
more details, we refer the reader to [Ferwerda et al., 1996]. It is interesting to
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Figure 2.13: First row: the time course of dark adaptation. Second row: the time course of light
adaptation in the rods (left), and cones (right) system. Image adapted from [Ferwerda et al., 1996].

mention that light/dark adaptation can be the equivalent of the exposure triangle
in cameras (shutter speed, aperture and ISO value) that we will introduce in the
next Chapter.

Colour matching experiments

Colorimetry is the branch of colour science that studies how to quantify the
colours that we perceive from a physical stimulus, in a way that another physical
stimulus under the same conditions should match [Wyszecki and Stiles, 1982]. In
this section, we will describe the experiments done to quantify light as a triplet
of primary values. Moreover, we will introduce the definition of different colour
spaces.

The trichromacy property tells us that any colour can be defined as the com-
bination of three primaries, by varying the amount of each of them. This is a
property of the HVS and not a property of light, [Young, 1802]. It comes from
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the fact that in the retina we do have three different types of cones. Three pri-
maries are enough and sufficient for describing a specific colour, this is known as
Grassman’s first law of additive colour mixture (1853). In 1850s Helmholtz and
Maxwell continued the study of the trichromacy theory based on experiments, but
it was not until 1890s that the first experiments were perform in order to measure
the spectral absorption of the photoreceptors by König and Dieterici [König and
Dieterici, 1892]. Experiments and studies for quantifying the spectral sensitivity
of the three types of cones have been carried out until late 20th century years.
For more detail we refer the reader to [Stockman and Sharpe, 2001]. This colour
vision theory is known as trichromatic theory.

At the time, it was not proven the existence of exactly three different cones,
nor their sensitivity responses. Experiments were performed to quantitatively
show the existence and to analyse trichromacy. W. David Wright [Wright, 1929]
and John Guild [Guild, 1931] carried a similar experiment independently, with
10 and 7 subjects, respectively. Subjects were asked to adjust the intensity of
three monochromatic lights (460, 530, and 650 nm in Wright experiment), in
order to colour-match a given target monochromatic light. The 3 monochromatic
lights and the target light were projected on a screen side-to-side, as shown in
Figure 2.14. At the end, the average among all the subjects was taken to define
the so-called colour matching functions (CMF): r̄(λ), ḡ(λ), and b̄(λ). Notice that
some negative values appeared in the graph. It means that particular wavelengths
cannot be matched, and thus for matching a fixed light (e.g. 500 nm), the red
primary will be added and adjusted with the target light. The tristimulus values
(R,G,B) for a given light of radiance E(λ) are given by the integral over the
visible light of the product of each CMF with the radiance,

R =

∫ 740

380
r̄(λ)E(λ)dλ, (2.5)

G =

∫ 740

380
ḡ(λ)E(λ)dλ,

B =

∫ 740

380
b̄(λ)E(λ)dλ.

Summarizing, given any set of primary lights R, G, and B (combination of
two of them cannot result in the other one), a perceived colour given by a power
light of radiance E(λc) can be defined as a linear combination of these primaries
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Figure 2.14: On the left, the experiment set-up. On the right, the colour matching functions. Images
adapted from [Wandell, 1995b] and [Wikipedia, 2018f], respectively.

and their corresponding CMF as weighting functions r̄(λc), ḡ(λc), and b̄(λc),

E(λc) ∼ r̄(λc)R+ ḡ(λc)G + b̄(λc)B. (2.6)

The colour matching experiments showed that only three primaries are needed to
match all colours, thus our colour vision should be trichromatic.

Chromatic Adaptation

Chromatic adaptation takes place when one object is perceived with the same
colour, under different illuminant conditions. For example, a white paper will
have a flat radiance under an illuminant with uniform power spectra, whereas the
same paper will have a radiance with more power on long wavelengths under
a tungsten illuminant. Still in both situations, we perceive this paper as white.
This is also known as colour constancy. In Figure 2.15, we show the pages of an
opened book, with an orange pen on top, and a black keyboard at the background,
under two different illuminant. Notice that, although the pages of the book appear
greenish in the right picture, we still perceive them as white.

In 1902, von Kries described his hypothesis on the independence of the ele-
ments involved in our colour vision. He stated that each component is adapted
based on its own response. Von Kries ideas were formulated later on into equa-
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Figure 2.15: Chromatic adaptation. Two pictures of an opened book with white pages, under two
different illuminant. In both cases, the book pages would be perceived as white.

tions, known as the von Kries coefficient law, as follows

L2 = kLL1, (2.7)

M2 = kMM1,

S2 = kSS1,

where kL, kM , and kS are real values, L1,M1, S1 are the initial tristimulus
under one illumination, and L2,M2, S2 are the new tristimulus under a second
illumination (usually a equi-illuminant illumination, i.e. achromatic). This means
that the cones spectral sensitivity can vary their maximum peaks independently,
as multiplying each response by a different scalar. This is shown in Figure 2.16.
Chromatic adaptation can be equivalent to automatic white balance in cameras.

Colour spaces

A colour space is a three-dimensional representation of colour. In the following
sections, we will present different colour spaces definitions.

Standard colorimetric colour space

In 1931 the CIE proposed two colour matching functions: {r̄, ḡ, b̄} and {x̄, ȳ, z̄},
from the data collected from the experiments of Wright and Guild. The first set
of colour matching functions {r̄, ḡ, b̄}, see Figure 2.14, define the colour system
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Figure 2.16: Chromatic adaptation. Each cone spectral sensitivity can vary its response indepen-
dently by scalar multiplication. Image from [Fairchild, 2013].

CIE RGB, where the (R,G,B) tristimulus are expressed as the integral over the
visible light of the product of each CMF with the radiance,

R =

∫ 740

380
r̄(λ)E(λ)dλ, (2.8)

G =

∫ 740

380
ḡ(λ)E(λ)dλ,

B =

∫ 740

380
b̄(λ)E(λ)dλ.

The second set of CMF’s {x̄, ȳ, z̄}, see Figure 2.17, are defined as linear combi-
nation of {r̄, ḡ, b̄} under some constraints:

• {x̄, ȳ, z̄} are always positive,

• ȳ is equal to luminosity function V (λ), see Figure 2.2.

• {x̄, ȳ, z̄} are normalised.
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Figure 2.17: The colour matching functions {x̄, ȳ, z̄}. Image from [Wikipedia, 2018a].

Then, the system CIE XYZ is introduced, where the tristimulus values (X,Y, Z)
are defined as,

X =

∫ 740

380
x̄(λ)E(λ)dλ, (2.9)

Y =

∫ 740

380
ȳ(λ)E(λ)dλ,

Z =

∫ 740

380
z̄(λ)E(λ)dλ.

Notice that CIE XYZ system is very common in the industry, since it is device
independent. Usually, the perceived colours are defined in terms of luminance
and chromaticity, which it is the concept of colour after discarding the intensity.
In this way, CIE XYZ colour space can be presented as CIE xyY by normalising
each component by the total intensity,

x =
X

X + Y + Z
, (2.10)

y =
Y

X + Y + Z
,

Y = Y,

where Y represents the luminance, and x and y the chromaticity. Notice that, if
we consider the normalised component for Z, by construction z = 1 − x − y,
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Figure 2.18: The chromaticity diagram. Image from [Solis et al., 2010].

which is a linear combination of the other two components. We present in
Figure 2.18 the CIE xy chromaticity diagram, which represents all the colours
perceived by humans (approximately 10 millions) in a plane. The curve on the
boundary represents monochromatic colours (pure spectrum), and it is called
spectral locus [Sharma, 2002]. The line that closes the tongue-shaped is called
the line of purples. Notice that in this line there is no wavelengths notation, since
those colours are not spectral colours. A intuitive way of describing colours based
on human perception is given by three different characteristics:

• Hue is referred to the actual colour, e.g. red, blue, yellow, etc.

• Saturation defines how ‘pure’ the colour is with respect to white.

• Brightness/Value represents the intensity, the amount of light emitted, and
it gives the information of how dark or bright is the colour.

In these terms, we can define a new colour space HSV . This colour space is
defined from CIE RGB, by a set of non-linear transformations. Let us define
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Figure 2.19: The geometric transformations from the RGB cube to HSV representation. Image
adapted from [Wikipedia, 2018c, Popov et al., 2018].

M = max(R,G,B), m = min(R,G,B), and H ′ as

H ′ =



0 if M − n = 0.

G−B
M −m

( mod 6) if M = R.

B −R
M −m

+ 2 if M = G.

R−G
M −m

+ 4 if M = B.

(2.11)

Then, the HSV coordinates are defined as

H = 360 ·H ′. (2.12)

S =
M −m
M

.

V = M.

Notice that HSV description is a chain of geometric transformations from CIE
RGB into cylindrical coordinates, as shown in Figure 2.19.
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Perceptually uniform colour spaces

The need of defining new colour spaces comes from the fact that neither CIE XYZ,
nor CIE xyY are perceptually uniform. This means that the difference between
two colours in any of these colour spaces does not correspond to our percep-
tual difference [Judd, 1979]. In 1976, CIE introduced two colour spaces, the
CIE L∗a∗b∗ (CIELAB) and CIE L∗u∗v∗ (CIELUV). These new colour spaces
are defined as follows starting out from the tristimulus values XYZ,

L∗ =



(
29

3

)3 Y

Yn
, if

Y

Y n
≤ 0.008856

116

(
Y

Yn

)1/3

− 16, otherwise.

(2.13)

a∗ = 500

(
f

(
X

Xn

)
− f

(
Y

Yn

))
, (2.14)

b∗ = 200

(
f

(
Y

Yn

)
− f

(
Z

Zn

))
,

where (Xn, Yn, Zn) is the tristimulus value of a reference white, and function f ,

f(x) =


x1/3, if x > 0.008856

1

3

(
29

6

)2

x+
4

29
, otherwise.

(2.15)

The chrominance channels in the CIELAB definition, (a∗, b∗), can be represented
in cylindrical coordinates as,

C∗ =
√
a∗2 + b∗2, h◦ = arctan

(
b∗

a∗

)
, (2.16)

where C∗ represents the chroma which is the distance from the origin, and h◦

the hue angle, which h◦ = 0 represents red, h◦ = 60◦ represents yellow, and
so on. The colour space defined with the L luminance as in CIELAB, and new
coordinates C∗ and h◦ is known as the CIELCh, see Figure 2.20.

32



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page 33 — #61

Figure 2.20: CIELAB and CIELCh colour space representations. Image from [Bertalmı́o, 2014a].

The colour space CIE L∗u∗v∗, see Figure 2.21, is defined as the L∗ channel
as before in Equation (2.13), and the chromaticities u∗ and v∗ as

u∗ = 13L∗(u′ − u′n), where u′ =
4X

X + 15Y + 3Z
(2.17)

v∗ = 13L∗(v′ − v′n), where v′ =
9Y

X + 15Y + 3Z
.

The values of u′n and v′n correspond to the chromaticity coordinates of the refer-
ence white.

Figure 2.21: The chromaticity diagram of CIELUV (u′, v′). Image from [Wikipedia, 2018b].

Although these colour spaces were introduced to overcome the non-uniformity
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of the previous ones, still they are not fully uniform. Therefore, they are not useful
when we want to compare stimuli under different adaptation conditions. For this
reason, more complex colour appearance models have been proposed [Fairchild,
2013].

Other colour spaces

The colour space Y ′CbCr is defined from a non-linear R′G′B′ colour space, for
example by applying a power law function to each RGB values. Let us introduce
the mapping from non-linear (R′, G′, B′) triplet to (Y ′, Cb, Cr) values

Y ′ = 0.2126 ·R′ + 0.7152 ·G′ + 0.0722 ·B′,
Cr = R′ − Y ′,
Cb = B′ − Y ′,

where Y ′ is defined as luma, and Cr, Cb are the red-difference and blue-difference
chroma channels. The definition of these components is more efficient in terms
of storage and data transmission. It allows for encoding video sequences, by
transferring the luma channel, and compressing only the chroma channels.

The IPT colour space was introduced by Ebner in his thesis in 1998, [Ebner,
1998], and it is defined from CIE XYZ as followsLM

S

 =

 0.4002 0.6075 −0.0807

−0.2280 1.15 0.0612

0 0 0.9184


XD65

YD65

ZD65

 ,
L′ =

{
L0.43 if L ≥ 0

−(−L)0.43 if L < 0
, idem for S′,M ′,

IP
T

 =

 0.40 0.40 0.20

4.4550 −4.8510 0.3960

0.8056 0.3572 −1.1620


L′M ′
S′

 ,
where (XD65, YD65, ZD65) triplets correspond to the normalisation of the CIE XYZ
with respect to the white reference point of the standard illuminant D65, which
refers for average midday light.
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In Figure 2.22, we present the different colour spaces introduced above and
the connections between them. For example, the mapping from CIE XYZ to
CIE xy is defined as a projection; a change of coordinates define the relation
between CIELAB and CIELCh. The linear transformations are represented with
continuous lines, and the non-linear transformations with dashed lines.

Figure 2.22: The colour spaces presented and their connections. Image adapted from [Poynton,
2003].

Colour metrics

In order to define a distance or similarity between two colours researchers have
proposed different metrics. They quantify the notion of differences between
colours, and they should account for colour perception in our HVS. Here we
present two colour metrics that will be use in the evaluation of following projects.

The CIE first introduced the colour metric ∆E∗ab [Backhaus et al., 1998], as
the euclidean distance in the CIELAB colour space. Given two colour points in
CIELAB space (L∗1, a

∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2),

∆E∗ab =

√
(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2. (2.18)

Since this colour space is not completely perceptually uniform, they introduced
modifications on the initial ∆E definition, in order to account for differences
in lightness L, chroma C and hue H components. Then, two new metrics were
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presented: ∆E∗94 [Berns, 1993] and ∆E∗00 [Luo et al., 2001]. Let us introduce the
latter colour metric ∆E∗00 given two colour points (L∗1, a

∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2),

∆E∗00 =

√(
L∗1 − L∗2
kLSL

)2

+

(
C1 − C2

kCSC

)2

+

(
H1 −H2

kHSH

)2

+ ∆RCH,

(2.19)

where ∆RCH = RT
C1 − C2

kCSC

H1 −H2

kHSH
,

where C and H stand for chroma and hue, and RT is defined in terms of hue and
chroma. For more details on the equation parameters, we refer the reader to [Luo
et al., 2001] and [Sharma et al., 2005].

A more recent metric, known as the Colour-Image-Difference (CID) was in-
troduced by [Lissner et al., 2013]. It is the colour extension of another metric that
accounts for distortions between two gray-level images, the so called structural
similarity index (SSIM) [Wang et al., 2004]. In CID definition, the colour differ-
ences are computed in a colour space introduced previously by the same authors,
named LAB2000HL [Lissner and Urban, 2012]. This colour space was defined to
be perceptually uniform. The metric accounts for five image difference features
(IDFs): i) lightness, ii) lightness-contrast, iii) lightness-structure, iv) chroma, and
v) hue. For more details on the features definition, we refer the reader to [Lissner
et al., 2013].

Figure 2.23: Two images I1 and I2 which differ in terms of colours. The corresponding colour
metric values setting I1 as reference: CID = 0.225, ∆E∗00 = 8.50.

These colour metrics tell us how different the images are in terms of colour,
thus the bigger the difference, the bigger the metric value. In case of comparing
an image with itself, both metrics would return 0 as value. In Figure 2.23 we
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show two images that are the same in terms of structure, but differ in colour. The
values of the metrics are CID = 0.225, and ∆E∗00 = 8.50. Notice that the CID
metric is bounded by 1, but that ∆E∗00 errors can be very large (more than 50).
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CHAPTER 3

Digital Image Formation

In this chapter we will describe the functioning of digital cameras, from the
light captured in the scene to the final displayed picture. We coarsely divide this
process into three main stages: 1) image acquisition, which explains how light
reaches the sensor, 2) the transformation of the photons into electrical signals at
sensor level, and 3) the in-camera colour processing pipeline, which is a set of
steps performed inside the camera in order to obtain the final image.

Figure 3.1: Digital camera processing pipeline. Image from [Ramanath et al., 2005].

Figure 3.1 shows 1) and 2) in a single rectangle (pale yellow), and stage 3) is
represented in the blue rectangle. The order and techniques used for each step
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in 3) might differ for different cameras. Notice that, we will focus on the steps
that generally cameras performed, since manufacturers do not make available the
exact processes of their pipelines.

Image acquisition: Exposure Control

Cameras emulate the process of image formation in our visual system by con-
sidering its characteristics. As mentioned in Section 2.1.2, our vision is adapted
to luminance conditions (dark and light) to be able to get all the details and
information from the scene. Similarly, digital cameras have the option (automatic
or manually) to control the amount of light reaching the sensor in order to capture
the best possible picture, which is called exposure control. Then, once the light
passes through the optics of the camera, it reaches the sensor, which it is the
equivalent of the retina in our HVS.

Exposure Control

In the case of digital cameras, there are three camera settings that could determine
which regions of the scenes will be better displayed in the final image. These
settings are the aperture, the ISO value, and the shutter speed or exposure time.
They are the so called exposure triangle. In DSLR cameras the metering (light
meter) will determine the best values for these parameters in an automatic manner,
i.e. the optimised values of these parameters in order to obtain the best well-
exposed image. Even so, in manual mode the user is able to set the values for
the preferred outcome. With the purpose of understanding their influence in the
output image let us define each parameter:

• The aperture controls the amount of light reaching the sensor. It is a part
of the lenses, and it works as the iris in the human eyes. The aperture is
defined in f-stops that can range from 2 to 22. The larger the number, the
smaller quantity of light will pass. Also, it affects the focus, so when the
value is large, we will appreciate details that are far from the camera.

• The ISO value determines the sensitivity level of the camera to the light
that reaches the sensor. Lower values mean less sensitivity, higher values
more sensitivity. The range of values depends on the camera, and it can
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vary from 100 to 3200. The larger the ISO value the more noise will appear
in the image, which will also affect the dynamic range.

• The exposure time determines how long the sensor is exposed to the light.
It is measured in seconds and it can range from 1/500s to 30s. Larger
values of exposure time may show moving objects in the scene as blurred
in the captured image.

Figure 3.2 shows the influence in the captured image depending on the settings of
these three camera parameters.

Figure 3.2: Exposure triangle: aperture, ISO value and shutter speed. Image adapted from
[PhotographyLife, 2018].

Camera Sensor

The sensor of the camera is a semiconductor device that transforms light (photons)
into electrical signals (electrons). It is formed by a matrix of cells, where each cell
is known as picture element, pixel. These pixels are built using material (silicon)
that is sensitive to the visible spectrum of light (380 to 740 nm). In addition,
a filter in the optics is used to avoid wavelengths larger than 1100 nm to reach
the sensor. The relation between the photons absorbed at pixel level, and the
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Figure 3.3: Two camera sensor types: on the left a CCD, and on the right a CMOS sensor. Image
from [Nakamura, 2005].

electrons generated is linear. Nonetheless, the proportion of absorbed photons
decreases under longer wavelengths. The generated electrons in each pixel need
to be transferred through a scanning process. Depending on the way of reading
the information, we found two types of sensors: charged coupled device (CCD)
and complementary metal-oxide semiconductor (CMOS) [Nakamura, 2005].

• CCD sensors transfer the signal vertically all the way down from each
column of pixels, then those are transferred horizontally to the amplifier.
Finally, the electrical signal is converted to voltage.

• CMOS sensors have an amplifier at each cell location, and the conversion
to voltage is done at each pixel at the same time.

Finally the analog voltage is converted into digital values. The range of integer
values is defined by the bit depth number, e.g. a 12-bit image represents values
from 0 to 4095 (in total 212 different values), and a 16-bit image represents values
from 0 to 65535 (216), and so on.

At this point, pixels represent a digital value and do not give any information
about colour. In order to represent colour information there exist two main
strategies: i) a three sensor system and ii) a colour filter array (CFA) sensor.
The former is able to separate the light that reaches the sensor depending on its
wavelengths using a beam splitter. Thus, three different sensors are designated for
recording short, medium and long wavelengths, see left picture in Figure 3.4. The
latter is very popular since it needs only a single sensor. At each pixel location,
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Figure 3.4: On the left: a three-sensor system, and on the right: a colour filter array that follows a
Bayer pattern ‘RGGB’. Image from [Bertalmı́o, 2014a].
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Figure 3.5: Comparison of the spectral sensitivity of the cones, and two DSLR camera sensors. On
the left: spectral sensitivity of the cones, on the middle: the spectral sensitivity of Nikon D5000
camera sensor, and on the right: the spectral sensitivity of Canon EOS 500D camera sensor. Image
adapted from [Wikipedia, 2017] and [Photography, 2018].

a different filter is used to read short, medium and long wavelengths, see right
picture in Figure 3.4. The way of arranging the filters follows generally a Bayer
Pattern [Bayer, 1975]. It is described as a 2× 2 mosaic of colour filters, and this
mosaic is repeated all over the sensor, e.g. ‘RGGB’ would be the Bayer pattern
in Figure 3.4. Notice that the green filter is repeated in half of total number of
pixels, since HVS is more sensitive to green details, and then red and blue filters
are arranged evenly on the rest of pixels. From now on, we focus on CFA sensors.

Each filter in a CFA distribution has its own spectral sensitivity depending on
the wavelength, and are usually denoted by r(λ), g(λ), and b(λ). In Figure 3.5
we can compare the cones spectral sensitivity with the spectral sensitivity of two
commercial cameras.
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Light Object

Sensor

sensitivity

Figure 3.6: The tristimulus that we perceive are the integral of the product of the radiance and the
spectral sensitivity of each filter sensor.

The response of the camera sensor can be expressed as a triplet of values
(R,G,B), which are defined as the integral of the product of radiance and the
filters sensitivity,

R =

∫ 740

380
r(λ)E(λ)dλ, (3.1)

G =

∫ 740

380
g(λ)E(λ)dλ,

B =

∫ 740

380
b(λ)E(λ)dλ.

where r(λ), g(λ), and b(λ) are the spectral sensitivity of the filters, and E(λ) as
mentioned in Chapter 2 is the radiance, the product of the incident light I(λ), and
the reflectance of the object’s surface R(λ), see Figure 3.6.

Dynamic Range

The camera sensor dynamic range is defined as the ratio of the maximum number
of electrons that can be accumulated in one pixel (full-well capacity Nsat), and
the read-out noise (nread), which is the noise introduced by the electronics of
the sensor (amplifier and analogue-to-digital converter). The DR of the camera
sensor is expressed in decibels (dB), and it is defined as follows

DR = 20 log10

(
Nsat

nread

)
dB. (3.2)

In Figure 3.7, we present a plot of the relation between the input photons versus
the number of electrons produced. In this particular example, Equation (3.2)
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Figure 3.7: The dynamic range of a camera pixel. Image from [Nakamura, 2005].

would be

DR = 20 log10

(
20000

12

)
= 64.4 dB. (3.3)

In order to increase the DR of a camera, we should decrease the read-out noise
and/or increase the full-well capacity of the pixel. A high dynamic range scene
would need above 100 dB to be able to present in a single picture details in the
bright and the dark areas, and this becomes a challenge for most of conventional
cameras in which DR is around 70 dB. We will discuss in detail about DR in next
Chapter, and the techniques used to increase the DR captured by the camera (both
in terms of hardware and software).

In-Camera Colour Processing Pipeline

At this point, the digital values of the sensor can be stored before applying any
processing to them. This image can be stored in RAW format, specific for each
camera manufacturer, containing the ‘linear’ values read by the sensor. In this
way, the RAW image can be processed offline, and it gives more freedom to
photographers in order to provide their artistic intent. Nonetheless, not all the
cameras have the option of storing RAW information. Hereafter, the image goes
through a chain of steps in order to get the final picture to be displayed. These
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steps might differ from different manufacturers, as well as the order in which
they are applied in the pipeline, but we will introduce them as they are shown
in Figure 3.1: preprocessing, white balance, demosaicing, colour transform,
post-processing, gamma correction and compression.

The preprocessing step refers to linearise the data by taking into account the
black, as well as the saturation level. For example, a 12-bit RAW image will
contain values from 0 to 4095. In reality, those are theoretical borders. We can
account for the real black level threshold by taking a picture with the cover of the
lens. Ideally, no light is reaching the sensor, thus the image should be completely
black (all values 0), although in reality, the image will contain some higher values
that will define the black level threshold (we can use a statistical analysis to set
the value). In order to obtain the saturation level, we can take several images
and determine the maximum value that the images can get. In general this value
is below the theoretical value, for example for a 14-bit image (16384 different
values), the saturation level might be close to 13800.

White balance

As mentioned already in Section 2.1.2, our HVS does chromatic adaptation
in order to perceive the colours of an object the same, even under different
illumination conditions. As an example, a white paper under different illumination
conditions will still be perceived as white colour. For this reason, cameras need to
account and correct the illuminant in order to reproduce white colour objects as
white. This process performed inside the camera is called white balance, and in
computational photography it is called colour constancy. Theoretically, it is a 9
parameter modification (3× 3 matrix for a 3 colour filter sensor), but in practice,
the estimation of the illuminant is an array of three elements (for each red, green,
and blue filters), in order to scale each colour channel in the CFA [Finlayson et al.,
1994] and [Vazquez-Corral and Bertalmı́o, 2014b]. In automatic mode the cameras
can estimate the illuminant using different techniques, e.g. colour by correlation
from [Finlayson et al., 2001]. In the literature, we find classical approaches such
as grey world [Buchsbaum, 1980] or white patch [Judd, 1979], and more complex
colour constancy algorithms like [Lam and Fung, 2008], [Vazquez-Corral et al.,
2012], and [Akbarinia and Párraga, 2018].
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Demosaicing

In the CFA image each pixel gives information of red, green or blue, and in order
to obtain a colour image we need to get, for every pixel, the colour information
of the red, green, and blue values. Demosaicing techniques produce a 3-channel
image from the original 1-channel CFA, as shown in Figure 3.8. The first step is
to split the information based on each colour channel, and then apply different
techniques to fill the missing colour information. There exist a vast literature
on demosaicing algorithms. For a survey of demosaicing methods, we refer the
reader to [Li et al., 2008], and [Menon and Calvagno, 2011].

Let us introduce some spatial domain approaches for demosaicing. The
authors in [Chang et al., 1999] presented an algorithm based on variable number
of gradients (VNG). For each pixel, the gradients for 8 different directions are
computed, and a threshold determines which directions to keep for reconstructing
the missing colour information. The method of [Malvar et al., 2004] proposed
different linear filters depending on the colour to be filled, and its location with
respect to the rest of CFA distribution. The filters are defined in a centred 5× 5
pixel neighbourhood. In [Zhang and Wu, 2005], the authors used linear minimum
mean-square error (LMMSE) estimation in vertical and horizontal directions.
Then, both directions are combined to reduce noise, and finally the missing colour
information is filled. Due to the fact that demosaicing techniques that take into
account directions for interpolation might introduced artefacts, [Hirakawa et al.,
2005] presented a method that is able to account for these artefacts and remove
them. It is based on homogeneity maps, and those are adaptive and dependent on
the image. It is known as the adaptive homogeneity-directed (AHD) demosaicing.

Colour correction

From the previous step, we get a colour image defined in the RGB colour space
of the camera sensor. The goal is to obtain an image defined in a standard RGB
colour space. As shown in Figure 3.5, the spectral sensitivity response of the
colour filters do not match the cones sensitivity. Thus, the (R,G,B) triplet do not
match the tristimulus that our HVS would have perceived. This happens because
in practice, it is not feasible for the sensors to obtain the responses with the
overlap that exists in medium and large cones [Hubel et al., 1997]. For that reason,
we need to transform the colours captured by the camera to the perceptual-based

47



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page 48 — #76

Figure 3.8: Demosaicing framework: split the three channels information, and estimate the missing
values for each of the channels. The result is a colour image represented by three arrays of the same
resolution as the initial CFA.

colour space CIE XYZ. This colour transformation defines the triplet (R,G,B)
as the tristimulus values (X,Y, Z) in CIE XYZ colour space. In Figure 3.9 it is
shown, on the left, the image in its RGB camera sensor colour space, and in the
middle, the image in CIE XYZ colour space after the transformation. Finally, the
tristimuls (X,Y, Z) are transformed to a standard RGB colour space for display
purposes. In Figure 3.9, on the right, it is presented the final colour space that
will be used for TV displays, monitors, etc.

Summarising, colour correction is defined as a two steps colour transforma-
tions: 1) the first one transforms the (R,G,B) values from the camera sensor
to the perceptual (X,Y, Z) tristimulus. There exist several approaches to com-
pute this transformation, for example the methods from [Bianco et al., 2007]
and [Vazquez-Corral et al., 2014] estimate a 3× 3 matrix, and [Finlayson et al.,
2015] computes a polynomial to define the mapping. Then, 2) the colour transfor-
mation from the CIE XYZ colour space to a standard RGB.

Encoding techniques

The camera encodes the ‘linear’ data by applying different standard transfer
functions. In this way, dark areas of the images are expanded, while bright
regions are compressed, since HVS is more sensitive to changes in dark areas
than in bright ones. These functions, that are applied at camera level and which
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Figure 3.9: Colour transformation from RGB colour space of camera sensor to standard RGB
colour space. On the left: the image right after demosaicing, in the middle: the colour image in CIE
XYZ colour space, and on the right: the image in sRGB colour space (without gamma correction).

Figure 3.10: Opto-electro transfer function. Image adapted from [Borer and Cotton, 2017].

are scene-referred, are known as opto-electro transfer function (OETF), see
Figure 3.10. In this subsection we present the gamma correction transfer function,
and logarithmic encodings used in current professional video cameras.

Gamma correction

The original reason for using gamma correction was due to the cathode ray tube
(CRT) displays. The relation between the device input voltage and the luminance
of the screen for these displays was defined as

L = αV γ , (3.4)

whereL is the luminance, α is the proportionality coefficient, V is the voltage, and
γ is a power function of a value approximately of 2.4, which is called decoding
gamma. For that reason, the output from the camera (Lc) was corrected before
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Figure 3.11: The CRT transfer function and the gamma correction curve graphs as functions of the
input voltage versus luminance. Image from [Bertalmı́o, 2014a].

being displayed on the CRT monitor, by applying the inverse of the γ value
V = βL

1/γ
c , which it is known as encoding gamma [Poynton, 2003]. The graph

in Figure 3.11 shows in red the response function of a CRT display, and in blue
the gamma correction curve.

Although gamma correction is attributed to the CRT non-linearity, it was
also well known that our perception of lightness follows a non-linearity with
respect to the luminance in the scene. This non-linear relation is a power law
function of value approximately 0.42. This means that our HVS is more sensitive
to differences in luminance in dark areas, than in bright ones. While CRT displays
are obsolete, gamma correction is still used in the camera output to emulate the
perception of luminance in HVS. Figure 3.12 presents the linear output of an
RGB image (middle), together with the results of applying a gamma correction
of 1/2.2 (left), and a gamma value of 2.2 (right).

There exist different transfer functions to implement gamma correction. For
example, the BT.709 is used for high definition television (HDTV),

V ′ =

{
4.5T, 0 ≤ T ≤ 0.018

1.099T 0.45 − 0.099, 0.018 ≤ T ≤ 1,
(3.5)

where V ′ is defined as the non-linear gamma corrected values R′, G′ and B′, and
T represents the linear R, G and B values. The standard used for screen monitors
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Figure 3.12: In the middle the linear RGB image of Lena. On the left, the result after applying a
gamma correction of 1/2.2. On the right, the output of using a gamma value of 2.2.

Figure 3.13: On the left the graph of transfer functions BT.709 and sRGB, and lightness from
CIE L∗. On the right, the comparison of linear (red) and gamma correction (blue) in their response
of quantisation versus perceived brightness. Image from [Poynton, 2003] and image adapted
from [Ward, ].

and internet is called sRGB,

V ′ =

{
12.92T, 0 ≤ T ≤ 0.0031308

1.055T 1/2.4 − 0.055, 0.0031308 ≤ T ≤ 1,
(3.6)

where V ′ and T are defined as in the above equation. The left graph in Figure 3.13,
we show the transfer functions defined by BT.709 and sRGB, as well as the
lightness in CIE L∗.

We should also consider that the output image is encoded using a limited
number of bits, for that reason, it would be more convenient to allocate more bits
for the dark values, as our HVS is more sensitive to changes in those values, rather
than in bright ones. In this way, quantisation errors and noise are minimised. On
the right side of Figure 3.13, we show the plots of considering linear encoding
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(red) and gamma encoding (blue) when the quantisation step is done, versus the
perceived brightness. On the intensity bars on the right side of the graph, we
can notice jumps on the intensity values in the linear case, rather than on the bar
corresponding to gamma, the intensities from black to white follow a smoother
transition.

Logarithmic encoding

Log-encoded techniques are commonly used for high dynamic range content.
They are defined as logarithmic curves, and each camera manufacturer may have
its own definition. In a general form,

Iout = c · log10 (aIin + b) + d, (3.7)

where Iout is the output image, Iin is the colour processed image, and the parame-
ters {a, b, c, d} are real values. In the next Chapter, we will present in more detail
different logarithmic encoding techniques.

Post-processing steps

Each camera manufacturer performs some post-processing operations like: denois-
ing, contrast enhancement, colour artefact removal, etc. In principle, denoising
techniques are applied in early stages of the pipeline, since the chain of steps
might increase and alter the nature of the noise. All these operations are usually
not linear.

Compression and image formats

In order to optimise memory space, the images are compressed in order to reduce
their size. There are two types of compression: lossless and lossy. In case of
storing the RAW data, lossless compression is used, and the images are presented
in TIFF format, or the specific format for each camera, e.g. ‘.NEF’ or ‘.CR2’ for
Nikon and Canon cameras, respectively. As a final output, most of digital cameras
present a JPEG image, which it is a lossy compression in the frequency domain.

Summarising, the steps in the in-camera colour processing pipeline can be
represented by: linearisation, white balance, demosaicing, colour correction and
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finally, gamma correction. The output of each of these processes are shown in
Figure 3.14.

Figure 3.14: In-camera colour processing pipeline. The chain of processes from linear RAW image
to the final gamma corrected image.

A general approximation for in-camera colour processing
pipeline

Let us consider the generic colour processing pipeline in regular digital cameras
as proposed in [Bianco et al., 2012],RG

B


out

= OETF

A ·
RG
B


in

 , (3.8)

where [R,G,B]tin corresponds to a raw triplet read by the camera sensor, A is a
3× 3 matrix containing information about white balance and colour information,
the OETF (·) is applied to the linear coloured image, and [R,G,B]tout is the
output pixel value. We are omitting some steps (like quantisation, contrast
enhancement or compression), but it is a good enough approximation: for details
see [Vazquez-Corral and Bertalmı́o, 2014a]. Notice the general definition for
OETF (·), which can refer to the non-linearity power exponent 1/γ, or to a
logarithmic encoding curve.
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CHAPTER 4

High dynamic range acquisition and generation

Dynamic Range

In a real world scene the dynamic range is defined as the ratio between its highest
and its lowest luminance values, and may easily span five orders of magnitude or
more. This is way above what digital cameras are able to represent. In cameras,
the size of the photosite and the way of measuring its content will determine the
actual dynamic range of the sensor.

The dynamic range is defined as a ratio, and it can be expressed in f-stops,
orders of magnitude, contrast ratio, and decibels (dB). The relation between stops
and contrast ratio is a power 2 function (e.g. DR of 10-stops is equivalent to
210 = 1024 : 1). Orders of magnitude, as mentioned in Chapter 2, are obtained
applying a log10 function to the luminance values. Also the common used measure
dB is related with the peak signal-to-noise-ratio (PSNR), and it was introduced in
Chapter 3. These definitions of the dynamic range differ just in the context they
are introduced, as Table 4.1 shows.

Multiple LDR exposures for HDR reconstruction

High dynamic range is an ongoing research, with many references for digital
still images. One of the most extended solutions is the combination of a set of
LDR images. This idea is based on the fact that varying the exposure time and
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Table 4.1: Different dynamic range definitions depending on the application or context were they
are introduced. Lmax and Lmin refer to maximum and minimum luminance values, Nsat stands
for the full-well capacity of the sensor, and nnoise for the amount of read-out noise.

Formula Application

f-stops log2 (Lmax/Lmin) Photography

Orders of magnitude log10 (Lmax/Lmin) HDR imaging

Contrast ratio Lmax/Lmin : 1 Displays

Decibels 20 log10 (Nsat/nnoise) Digital cameras

fixing ISO and shutter speed, we can capture a stack of images containing details
present in bright areas (short exposures), and those present in dim areas (long
exposures), as shown in Figure 4.1. However, the idea of combining different
‘exposed images’ was already introduced by the french photographer Gustave
Le Gray in the 19th century utilising two negative films. At the time, it was not
possible to capture the details of the clouds and the waves of the sea, all in a single
image. In many of his photographs, he took two different negatives. For example,

Figure 4.1: Pictures taken with a DSLR (PentaxK50), by fixing aperture and ISO value, and only
varying the exposure time. From left to right, exposure time goes from the lowest value, to the
largest one [1/250, 1/60, 1/15, 1/4].

in a scene on the beach during the sunset, he would take one negative of the sky,
and another of the sea. Then, he would combine both negatives in a single picture
by adjusting the exposure to light during development. In Figure 4.2, we can see
the final picture of combining two negatives, one for the sky and one for the sea.
In a single picture of a high dynamic range scene, both the clouds and the waves
appeared in detail.

In the case of digital cameras, all the methods presented in this section consider
the multiple exposure approach to compute an HDR image. The main goal is to
estimate the irradiance (the values read by the sensor) for each photograph, since
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Figure 4.2: ‘The Brig’, Photograph by Gustave Le Gray, 1856. Image from [Le Gray, 1856].

those values are proportional to the radiance in the scene. Finally, irradiances are
combined, e.g. using a weighting function, to build the final HDR image.

Camera response function

The camera response function (CRF), usually referred to as f(·), is defined as the
inner camera process that starts from the sensor values (linear) to the 8-bit final
image (non-linear), see Figure 4.3 and Equation (4.1).

Z = f(X), where X is the sensor exposure, (4.1)

and Z are the digital values.

The sensor exposure X is the product of the irradiance and the exposure time
X = E ·∆t. Once the CRF is computed, the X values (linear) can be recovered

Figure 4.3: The camera response function. The chain of steps from light scene to camera output.
Picture from [Debevec and Malik, 1997].

by linearising Z values (non-linear): X = f−1(Z). Usually, we denote g = f−1.
Then, the irradiance values of each picture Ei can be recovered, this process is

57



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page 58 — #86

Figure 4.4: The characteristic curve of film: relative exposure versus optical density. Image adapted
from [Kodak, 2018].

also known as radiometric calibration. Finally combined in a single HDR image
by considering a weighted sum of them.

In HDR reconstruction by CRF estimation, the main assumption is that the
CRF is unique, thus it does not change when the exposure time varies. The
uniqueness assumption applies for film cameras. In this case, the CRF is known as
characteristic curve of the film (exposure vs. film density) and it remains constant
when the film is developed under the same set of conditions. In Figure 4.4, we
present a characteristic curve of a specific film. In case of digital cameras, the
assumption does not apply. One of the main contributions of this thesis is a
method that is able to overcome this limitation (see Chapter 5).

The following methods estimate the camera response function for HDR cre-
ation. The algorithms can be categorised depending on its CRF estimation. Mann
and Picard, in their seminal work [Mann and Picard, 1995], introduced the idea
of creating a high dynamic range (HDR) picture of a static scene by combining
a set of low dynamic range (LDR) images taken with different exposure times,
proposing a parametric method to estimate the CRF. Once the set of images are
linearised, the images are combined in a weighted sum, in which the weighting
functions are defined from the derivative of the CRF.

The work of Debevec and Malik [Debevec and Malik, 1997] built an HDR
radiance map from a sequence of multi-exposed images, by estimating the CRF as
a non parametric curve. From the definition X = E ·∆t, the goal is to recover the
exposure values X , i.e. the camera sensor values, in order to obtain the irradiance
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values E which are proportional to the radiance of the scene. The CRF is different
for each colour channel, and it remains constant over the whole stack. Once each
image is linearised, they are merged using a weighting hat function for reducing
noise on the irradiance estimation.

[Mitsunaga and Nayar, 1999] proposed to compute the CRF as a polynomial
of a maximum order of 10. Once the CRF is computed, the new linearised images
are then fused using a weighting function based on signal-to-noise-ratio to obtain
the final HDR (they assume the noise is independent of the measured intensity
values). For colour images, one response function is computed per channel, and
then colours are corrected by using a chromaticity constraint.

In [Robertson et al., 2003], the authors estimated the CRF based on a proba-
bilistic approach. They introduced a noise term in the measured exposure values.
This noise term follows a 0-mean Gaussian. The inverse of the noise variance is
defined as the weighting function, meaning the highest the confidence, the highest
the accuracy in the data.

The work of [Lee et al., 2013] computed radiometric calibration. It assumes
the linearity of sensor irradiances to describe the problem as a rank minimisation.
They represented the images in a matrix D. They formulate,

g ◦D = A, (4.2)

where g is the inverse of the CRF and A the matrix containing the irradiances,
which should have rank 1. For minimising, they used nuclear norm on matrix A,
but only focusing on the second singular value, since this should be 0. Also in the
computation, they take care of outliers, as well as exponential ambiguity.

Noise models

The methods in this subsection do not perform an estimation of the CRF, since
they work with directly with linear data. They focus on the definition of the
weighting functions used for the combination of the multi-exposed images. These
weightings are based on noise models in order to discard or not some pixels in the
weighting formula. Notice that in these cases, a calibration beforehand is needed
to determine the parameters of the noise model.

The paper of [Kirk and Andersen, 2006] introduced a new weighting approach
defined by the sensor gain, and the variance of read-out and quantisation noise.
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The model works for linear sensors, i.e the recorded values are linearly propor-
tional to the light in the scene. The parameters defined in their formulation need
to be estimated in advance by taking several pictures. The main idea is to give
more weight to pixel values with lower variances based on the noise model. It
compares the performance of different weightings with respect to noise.

Granados et al. [Granados et al., 2010] extended the work of [Kirk and
Andersen, 2006] by taking into account the spatial noise as well as the temporal
noise. The weighting function, defined as the inverse of the exposure values
variance, depends on the following parameters: gain factor, gain factor per pixel,
mean of dark current noise and variance of read-out noise. If the parameters
are not given by the camera manufacturer, it estimates them based on [Janesick,
2001]. It also evaluates the quality of different weighting functions for the HDR
reconstruction.

In [Aguerrebere et al., 2014], the authors analysed the performance of different
HDR radiance maps generators based on the limits of irradiance estimation.
They noticed that almost all methods discard saturated pixels in their HDR
reconstruction. For this reason, they studied the utility of considering those pixels,
and how they should be considered. Finally, they pointed out the importance of
introducing uncertainty for the estimation of the parameters in the noise model,
and the authors proposed a new approach.

Exposure fusion

The work of [Mertens et al., 2007] built an LDR image from a set of multi-
exposed images. This process is called exposure fusion. For each pixel, in every
image sequence, three quality measures are computed: contrast, saturation and
well-exposed pixels. These measures are used to define a weighting map. The
resulting LDR image is a linear combination of these weighted maps together with
the respective images using a coarse-to-fine approach. Notice that this method
does not compute an HDR image.

In Table 4.2 we present an overview of the above techniques, by terms of colour
(C) dependency (independent(I)/dependent(D)), the input linearity (linear/non-
linear), exposure time requirement (ti), the need of a reference image (Ref), and
the estimation of the camera response function (CRF). Notice that all the methods
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Table 4.2: Characteristics of multiple exposure methods of static scenes for HDR reconstruction.

C Input ti Ref CRF

[Debevec and Malik, 1997] I non-linear 4 7 4

[Robertson et al., 2003] I non-linear 4 7 4

[Mitsunaga and Nayar, 1999] I non-linear 4 7 4

[Lee et al., 2013] I non-linear 4 7 4

[Kirk and Andersen, 2006] I linear 4 7 7

[Granados et al., 2010] I linear 4 7 7

[Aguerrebere et al., 2014] I linear 4 7 7

[Mertens et al., 2007] I non-linear 7 7 7

working with colour images consider the colour channels independently, in both
CRF estimation and for the final HDR reconstruction.

Camera or scene motion

All the above methods considered static scenes and camera motionless. More
difficulties arise when there is movement during the acquisition of the multiple
exposure scheme. One of the main problems is the appearance of ghosting arte-
facts in the final HDR fused image, for those objects that present movement, see
Figure 4.5. In the first row, we can see a person cycling, and in different positions
at each exposed image. The last row presents the final HDR (tone-mapped), in
which we can appreciate the different positions of the person during the acquisi-
tion times. Here we present algorithms that take into account the misalignments
between the different exposed images, and reconstruct the final HDR avoiding
ghosting artefacts. These approaches can be categorised in: methods that detect
explicitly the moving objects/areas, and methods that require only to register the
images in the stack.

LDR alignment and HDR reconstruction

Granados et al. [Granados et al., 2013] extended their previous work in [Granados
et al., 2010] considering moving objects in the scene. It also assumed linear
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Figure 4.5: Ghosting artefacts in HDR imaging. A set of multiple exposures in a scene with moving
objects (top row) and the resulting HDR image (bottom). Image from [Srikantha and Sidibé, 2012].

sensors and constant illumination. The first step is to globally align the images
using SURF [Bay et al., 2008] and RANSAC [Fischler and Bolles, 1981], and to
estimate the noise parameters: read-out noise variance, saturation and gain. It com-
puted irradiances values within consistent pixels. The definition of consistency is
based on the distribution of the differences between pixel irradiances.

Joint LDR alignment and HDR reconstruction

In the paper [Sen et al., 2012], the authors performed in one step a patch-based
energy minimisation to align the LDR images (one image is taken as reference)
and reconstruct a final HDR image across multiple scales. It used information
from the well-exposed pixels from the reference, and in under/over-exposed areas
it considers the information from the other images. They made use of a hat
weighting function for the HDR merging in the energy equation. Although the
algorithm requires linear data, they apply gamma correction as a preprocessing
step.

Ghost detection

In the work of [Gallo et al., 2009], the authors selected a reference image and
quoting from the paper ‘the final HDR is the HDR version of the reference’. To
do so, they extended the dynamic range of the reference in consistent parts from
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the information present in the rest of the images in the sequence. Consistency
between patches is based on a linear relation between exposure values. When the
linear relation is broken it might indicate ghosting values. Then, the information
from consistent patches is used to compute the irradiance using a hat weighting
function. At the end, they used Poisson blending for each channel independently
to obtain the final image.

The authors of [Heo et al., 2011] selected a reference image and globally
aligned the rest to it using SIFT [Lowe, 1999] and RANSAC [Fischler and Bolles,
1981]. Ghost detection is done by estimating a global intensity transfer function
using probability density functions and energy minimisation (one per colour
channel). Then, CRF is computed using [Debevec and Malik, 1997] and refined
over the non-ghosting pixels. The final HDR is constructed by combination of
three weighting functions: the hat function, one based on colour differences and
one based on pixel locations.

The work of [Lee et al., 2014] detected ghosting regions as a rank minimisation
problem. It computed the CRF from the method of [Debevec and Malik, 1997]
to get the irradiances. The irradiances of each image are represented in a matrix
D. They estimated a matrix A which describes the background (static), as well a
binary matrix B for describing ghosting artefacts. The final HDR is computed
combining the hat weighting function and another weighting function based
on matrix B. In case of static scenes, matrix B would be 0, and the method
becomes [Debevec and Malik, 1997] approach. Nonetheless, they computed the
algorithm for their best performance.

In the paper [Oh et al., 2015], the authors reconstructed an HDR image taking
into account camera motion, moving objects and saturated regions. It assumes
linear camera sensor response. The following intensity observation model is
optimised using rank minimisation,

O · h = A+ E, (4.3)

where O are the observations, h is the homography transformation which corre-
sponds to camera motion, A are the irradiances, and E the moving objects. Then,
matrix completion is used to repair missing values from saturated areas in the
computed irradiances. Notice that if input images are non-linear, it follows the
approach from [Lee et al., 2013].
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Table 4.3: Characteristics of multiple exposure methods for camera motion and/or dynamic scenes.
τ refers to colour transfer function, (*1) [Debevec and Malik, 1997] method, and (*2) [Lee et al.,
2013] method.

C Input ti Ref Motion CRF

[Granados et al., 2013] I linear 4 7 7 7

[Sen et al., 2012] I linear 4 4 7 7

[Hu et al., 2012] I non-linear 4 4 7 7 (τ )

[Hu et al., 2013] I non-linear 4 4 7 7 (τ )

[Oh et al., 2015] I linear 4 4 4 7(*2)

[Gallo et al., 2009] I linear 4 4 4 7(*1)

[Heo et al., 2011] I non-linear 4 4 4 DM

[Lee et al., 2014] I linear 4 7 4 7(*1)

Colour matching for HDR

The next two references present HDR reconstruction techniques based on colour
matching pairs of images as in [HaCohen et al., 2011], followed by exposure
fusion of the new computed stack of images.

The authors of [Hu et al., 2012] selected one image as the reference and
aligned the rest to it using dense correspondences [HaCohen et al., 2011]. Then,
a colour transfer function τc is estimated for each pair reference and source,
that minimises differences in colour within the calculated correspondences. For
missing correspondences they computed a homography from a bounding box
discarding the ‘unknown area’. Finally, they use Poisson blending to fit all the
information without artefacts.

The work of [Hu et al., 2013] selected one image as the reference (R). Then,
they computed a new stack of registered images (Li) that look like R, but as taken
under different exposure times. They computed each new image by taken the
reference and a source image and estimated a τc (intensity mapping function as
in [HaCohen et al., 2011] and [Hu et al., 2012]), and a mapping function u (pixel
locations) based on Generalised PatchMatch [Barnes et al., 2010]. Notice that τ is
different for each channel. This approach does not generate the final HDR image,
instead the authors used exposure fusion [Mertens et al., 2007] for presenting the
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final LDR image.

In Table 4.3 we show the main characteristics of the above algorithms. The
notation is the same as in Table 4.2, and in addition, we account for motion
detection (Motion). A similar situation is to be found with regards to the previous
table: in colour images the channels are computed independently. Majority of
the methods for dynamic scenes set up a reference image. Notice that methods
which detect motion in the scene, also estimate a CRF. The methods from [Lee
et al., 2014], [Gallo et al., 2009], and [Oh et al., 2015] expect linearised inputs,
nonetheless they proposed to use [Debevec and Malik, 1997] (the first two),
and [Lee et al., 2013] the latter one in case the inputs are non-linear.

High dynamic range sensors and video

In the movie industry there is a growing interest in HDR imaging, but the challenge
of shooting HDR scenes using LDR equipment exists since the inception of
cinema. The current way to address it relies on adding artificial lights, in order to
raise the intensity levels of the darkest parts of the image. In this way the dynamic
range of the scene is reduced, fitting it into the range of the capture medium (film
or digital). This is a cumbersome, expensive procedure requiring very significant
human and material resources that greatly affect the cost of the production. Some
alternatives exist but they are not fully practical: some digital cinema camera
models are able to alternate exposure times on consecutive frames. As an example,
HDRx for RED EPIC and SCARLET video cameras [RED, 2018]. HDRx enables
for the acquisition of two frames of different exposure times, one for under and
well exposed regions, and another using longer exposure time for highlights. The
main drawback of this technique is the appearance of ghosting artefacts when
objects move within the scene. Although, they propose the use of optical flow
to compensate for motion blur, results might not be as good as expected. A
recent possibility is to use a dual-camera set-up [Froehlich et al., 2014], with two
synchronised, perfectly registered cameras on an orthogonal rig so that a semi-
transparent mirror sends most of the light intensity to one of the cameras, and
the rest to the other camera, see Figure 4.6. These images can be fused without
problem because they are fully aligned, so there is no risk of ghosting artefacts,
but the dual-camera process has limitations: cost and practicality considerations
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Figure 4.6: Dual-camera set-up in stereo rig composition. Image from [Froehlich et al., 2014].

Figure 4.7: Camera prototype from [Tocci et al., 2011]. On the left the optical set-up, and on the
right the camera final prototype. Image from [Tocci et al., 2011].

stemming from the use of two cameras, image problems caused by imperfections
in the mirror, and the need to perform tone-mapping to the output. For more
details we refer the reader to [Bertalmı́o, 2014b].

A prototype of an HDR capture system was proposed by [Tocci et al., 2011],
see Figure 4.7. The authors presented a three-sensor architecture, each of the
sensors recording high, medium, and low exposure images. In the same line,
[Kronander et al., 2012] worked with multi-sensors for HDR acquisition, and in
one step it performed alignment between sensors, demosaicing and denoising.

In the paper [Zhao et al., 2015], it is presented a camera hardware called un-
bounded high dynamic range (UHDR). The authors proposed the use of a modulo
sensor in order to be able to store high radiance levels, and then recover those
values in a post-processing step. They studied two cases: 1) HDR reconstruction
from a single image by using graph-cuts-based unwrapping, and 2) HDR from a
set of multiple exposures.

[Kang et al., 2003] presented an HDR video generation as a three step
problem. The method automatically selected two exposure times to recover
the whole scene radiance. The images are registered and the radiance map is
computed by estimating CRF using [Mitsunaga and Nayar, 1999]. In [Guthier
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et al., 2013], the authors presented an HDR video pipeline: acquisition of multiple
exposure frames, registration of the multi-exposed images, reconstruction of the
HDR frame, and finally the use of a tone mapping operator for video. Based on
this HDR video system presentation [Guthier et al., 2013], the authors proposed
in [Guthier et al., 2014] a parallelisation of the steps involved in HDR video
reconstruction after the multi-exposed images are captured.

More recently, we find a very small number of works that perform HDR
reconstruction from a single interlaced image. Gu et al. [Gu et al., 2010] combined
rows taken with different exposures times, and since the rows are not captured
simultaneously, this method produces ghosting artefacts, which need to be reduced
by estimating and compensating for the motion-blur.

The camera software Magic Lantern (ML) [Lantern, 2013] allows some cam-
era models to capture image/video with dual-ISO values that alternate between
consecutive image line pairs. It provides an implementation to interpolate a full-
frame low-ISO image, containing less noise on shadow areas. It does not claim
to compute an HDR image, though the final picture is the result of combining
the information from both the low-ISO and the high-ISO full-frame images. The
method follows a chain of steps: separate the two ISO frames, interpolate the miss-
ing lines to get the full images, and combine information from both interpolated
frames to highly reduce the noise in dark regions.

Hajisharif et al. [Hajisharif et al., 2014] performed at the same time demosaic-
ing, denoising, re-sampling and HDR-reconstruction, starting from the interlaced
input provided by the ML software [Lantern, 2013]. This method required a
previous radiometric calibration process, therefore it cannot be used when the
camera is not available.

A similar idea was developed by Heide et al. [Heide et al., 2014], who
proposed a single optimisation step using image prior and regularisers of the
different inner stages of the camera pipeline (e.g. denoising, demosaicing, etc).
The selection of the image prior is crucial for the optimisation process, and the
values are highly dependent on the set of images.

These latter two methods have the advantage of working directly with the
RAW data without following a staged pipeline, therefore no cumulative errors are
carried out from one process to the next; nevertheless, this integration makes it
difficult to further extend and add more processes in a single optimisation.

There exist HDR video cameras, like HDRC VGAx from IMS-CHIPS [Hoef-
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Table 4.4: Image and video encodings presented in this section.

Images
OpenEXR linear

Radiance RGBE linear
LogLuv non-linear

Video
PQ non-linear

HLG non-linear

flinger, 2007], which has a logarithmic response, and Silicon Vision Lars III [Lulé
et al., 1999] which exposure time varies for each pixel. Although these cameras
can capture a wider dynamic range of the scene, they lack in resolution in com-
parison with the rest of the techniques to achieve HDR images, for more details
see [Myszkowski et al., 2008].

For a deeper analysis, we refer the reader to the book of [Dufaux et al., 2016].

High dynamic range storage

There exist different encoding techniques to store HDR images and video informa-
tion. In this section we present briefly linear and non-linear encoding techniques
for HDR imaging. Table 4.4 details the encodings we present in next subsections.

Linear encodings

The next two linear encodings are used for HDR still images. In 1998, Ward
proposed the format Radiance RGBE, with extension ‘.hdr’. The encoding is done
in 32-bit per pixel. This encoding has also another variant, in which it uses CIE
XYZ colour model.

The OpenEXR format was introduced by Industrial Light and Magic (ILM) in
2003. The extension of the files is ‘.exr’ and it encodes the channels using 64-,
32- and 16-bit floating point values.

In both formats, floating points are defined using mantissa and exponent, each
of them assigned with different number of bits. For this reason, these encodings
are not useful for compression.
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Non-linear encodings

The relation between our perception of brightness and the light within a scene
is non-linear, due to the fact that our HVS is more sensitive to changes in
low luminance levels, rather than in high luminance levels. This is the reason
for introducing non-linear encodings, since they will consider the non-linear
behaviour of the HVS and will help to minimise the quantisation errors that might
appear in low luminance levels.

Ward introduced the LogLuv format for still images. This method separates
the luminance and chrominance channels using CIELUV (u′, v′), and then a
logarithmic function is applied to the luminance channel only. The extension of the
files is ‘.TIFF’. It allocates 16-bit for luminance, and 8-bit for each chrominance
channel.

The rest of the encodings presented below are used for encoding HDR video
sequences. The Perceptual Quantizer (PQ) curve was introduced by [Miller
et al., 2012]. It is a display-referred decoding curve, this means that the absolute
luminance of the display should be known. It is represented by a modification of
the Naka-Rushton Equation (2.4) that was already introduced in Chapter 2,

Y = L

(
V 1/m − C1

C2 − C3V 1/m

)1/n

, (4.4)

where Y is the luminance of the display, V is the input signal with values between
0 and 1, and L = 10000,m = 78.8438, n = 0.1593, C1 = 0.8359, C2 =
18.8516, C3 = 18.6875. It was then standardised by the Society of Motion
Picture Engineers (SMPTE) [SMPTE, 2014]. The PQ system was defined for
cinema, and although it works good for this environment, it does not perform
the same in different situations like in TV. One of the main objective of PQ is to
minimise the visible artefacts in the quantisation step.

The Hybrid Log-Gamma (HLG) was proposed by BBC together with NHK [Borer
and Cotton, 2016]. It combines a gamma encoding for small luminance values,
and then a logarithmic function for larger values as follows,

E′ =

{
rE0.5 if 0 ≤ E ≤ 1,

a · log(E − b) + c if E > 1,
(4.5)

where E′ is the signal output, E is the input signal, and r = 0.5, a = 0.17883277,
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Table 4.5: High dynamic range datasets.

# of scenes Format RAW Abs. lum.
SYNS Database
[Adams et al., 2016]

92 hdr 7 7

Empa HDR
[Nemoto et al., 2015]

33 exr & hdr 4 7

Fairchild database
[Fairchild, 2007]

106 exr 4 4 (43)

b = 0.28466892, c = 0.55991073. The use of a gamma function for low
luminance values makes this encoding suitable for standard LDR displays. In
addition, HLG is scene-referred and does not contain metadata.

There exist as well different encodings based on logarithmic functions, that
are camera manufacturer-based, for example Log C from ARRI, Canon Log from
Canon, S-Log from Sony and Panalog from Panasonic.

HDR datasets

In Table 4.5 we present some of the most recent HDR datasets. Although there
exist many different databases, in most cases it is difficult to get all the information
from the scene and acquisition details.

There exists as well an HDR video dataset. In [Froehlich et al., 2014] the
authors proposed a dataset acquired with an ARRI Alexa following the dual-
camera set-up proposed in [Froehlich et al., 2014]. The content is graded for
4000 cd/m2 displays. They also provided the code needed to transform the linear
RAW data to the final logarithmic-encoded data.

HDR colour spaces

The hdr-CIELAB and the hdr-IPT [Fairchild and Wyble, 2010] colour spaces were
defined to overcome the problems that the original versions encountered with
HDR images. This is due to the fact that the original spaces require the value of a
reference white, see Sections 2.3.2 and 2.3.3. In an HDR image, which can have
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Figure 4.8: Colour representation of colour space ICTCP . Image from [Dolby, 2016].

light sources or highlights, this value is difficult to set. These two colour spaces
differ from the previous CIELAB and IPT in the definition of the non-linearity
applied to them. In the original spaces they were power function laws (L∗ in
CIELAB, and the cones response tristimulus in IPT). In this case, the authors
replaced these power functions by the Michaelis-Menten equation, with optimised
parameters for each colour space.

The ICTCP colour space was introduced by Dolby in 2016. It follows three
steps: 1) compute colour transform from Rec. 2020 to L,M,S values, 2) apply
non-linearity PQ or HLG to L,M,S, and 3) apply the colour transformation from
the non-linear L′,M ′, S′ to ICTCP colour space, which is inspired by IPT, see
Figure 4.8. Notice that, these steps try to emulate the way our HVS processes
colours, as explained in Chapter 2.

HDR metrics

In general, the metrics defined to quantify differences between an image pair
expect non-linear 8-bit RGB images (LDR) inputs. In the case of HDR evaluation,
this assumption is not fulfil, since the images might be encoded using a different
non-linearity, or the images might contain linear values in a larger range of
luminance values. For these reasons, some HDR quality metrics have appeared
for still images and video.

The authors in [Aydin et al., 2008a] proposed to extend the LDR measures
PNSR and SSIM [Wang et al., 2004] to HDR images. This is performed by
a perceptually uniform (PU) encoding definition. Let us also notice that, non-
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linear encodings like PQ can also be used to map HDR images to a perceptual
uniform space. In 2011, Mantiuk et al. [Mantiuk et al., 2011] proposed a new
metric for HDR imaging known as HDR-VDP-2. This objective metric accounts
for visibility and quality of the images based on a visual model. HDR-VDP-
2.2 [Narwaria et al., 2015a] is a newer version of their previous work. Also,
HDR-VQM [Narwaria et al., 2015b] metric was introduced for HDR video.

Furthermore, there are in the literature some studies about the performance
of different HDR metrics for images and video regarding compression. Hanhart
et al. [Hanhart et al., 2015a] presented a benchmark of 35 quality metrics, in
order to evaluate HDR images compression. The authors performed their study
by using 4 different rates of compression in 20 HDR images, and using as ground
truth subjective scores. They concluded that the best metrics were HDR-VQM,
HDR-VDP-2 and MS-SSIM [Wang et al., 2003].

There exist studies on HDR video compression, as [Hanhart et al., 2015b],
[Narwaria et al., 2015c] and [Vigier et al., 2016] to name a few. It is interesting
to note that in [Hanhart et al., 2015b], their results on the objective evaluation
showed that HDR-VQM has a low performance, whereas PSNR and HDR-VDP-2
are more reliable metrics. In a recent study, [Sugito et al., 2017] analysed the
performance of HDR-VQM and BD-rate in HDR video compression. The authors
concluded that the ranking of the metrics depends greatly in the non-linearity
used for encoding. In addition, they proposed a new encoding definition which
performs better than PQ and HLG. This new encoding is based on a tone-mapping
curve and it is called natural image statistics transfer function (NISTF).

HDR visualisation: Tone Mapping Operators

HDR images are generally shown in displays with much lower dynamic range, of
around 2-3 orders of magnitude. Therefore, it exists the need for compressing the
dynamic range of those HDR images to match the dynamic range of the display,
and at the same time preserve the details in bright and dark areas, as well as its
appearance. Tone mapping operators (TMO) perform this task, see Figure 4.9.
There exist vast number of TMOs in the literature, in [Reinhard et al., 2010] we
find a study of the algorithms proposed by that time. We can categorise them in
global, local, and joint global and local operators.
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Figure 4.9: Display of an HDR image: linear rescaling, and tone-mapped [Mantiuk et al., 2008].

Global TMOs

Global TMOs are applied to the whole image, and give different values depending
on the intensity of each pixel value. The one proposed by Drago et al. [Drago
et al., 2003] applies different logarithmic curves (varying the base), depending
on the luminance values, in order to compress the range of values. For darkest
regions, a logarithm of base 2 is considered, and for brightest areas, they consider
a base 10 logarithm. The values in between dark and bright values are tone
mapped by adjusting the logarithmic curves based on a bias function (power law
function).

The method of Mantiuk et al. [Mantiuk et al., 2008] defined a piece-wise
linear tone mapping curve, and it is based on a HVS model that accounts for
visible compression distortions. It can be adapted to different displays and
environment conditions. Following the same idea, and considering a more simple
HVS model, Mai et al. [Mai et al., 2011] proposed to estimate the best tone curve
that minimises the difference between the original HDR, and the reconstructed
HDR image from the computed tone-mapped image.

The author in [Oskarsson, 2017] redefined the problem of tone-mapping as
a clustering problem in the luminance channel. An HDR image contain a large
range of luminance values, and thus they estimate the optimal number of clusters
(new luminance levels) minimising the differences between histogram bins of
the estimated LDR and the given HDR image. The method is extended to colour
images and HDR video.
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Local TMOs

Local TMOs process each pixel taking into account the pixel’s neighbourhood.
Although these TMOs are computationally more expensive than global ones, and
results might show finer appearance, some artefacts and halos can appear around
the edges of the objects.

In Reinhard et al. [Reinhard et al., 2002] the scene luminances are mapped to
a specific intensity range, following the idea of the ‘Zone System’ introduced by
Adams and Archer in 1939, a system that uses information from the real scene in
order to get the final printed version.

In [Ma et al., 2014], the authors estimated an LDR image that best optimises
the metric tone mapping index quality index (TMQI) [Yeganeh and Wang, 2013].
This means that no explicit TMO is estimated. In addition, they performed their
optimisation getting as an input an already tone-mapped image, and they showed
an improvement in terms of TMQI metric.

Joint global and local TMOs

Ferradans et al. [Ferradans et al., 2011] presented a two stages operator. The first
stage is global and it is based on visual adaptation (human perception); and the
second stage is a local approach which performs contrast enhancement. Following
the same idea, the work of Cyriac et al. [Cyriac et al., 2015a] presented a TMO
performing first a global approach and then a local contrast enhancement step.

The authors in [Ahn et al., 2013] proposed a TMO based on the retinex theory.
They also performed a two stages method: i) global adaptation for compression,
and ii) local adaptation based on edge-preserving filters that reduce the artefacts
that might appear from the global adaptation.

Video TMO methods

The algorithms presented above are used in still images, and they cannot be
used directly for HDR videos. This is because the algorithms estimate a set of
parameters depending on the image, which might be different from one frame
to another causing some artefacts like flickering. For this reason, algorithms for
video will take into account the temporal dimension. For more details on video
TMO taxonomy, we refer the reader to [Eilertsen et al., 2017].
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In [Aydin et al., 2014], the authors presented a local TMO for video that uses
a spatio-temporal filter. They decomposed each frame in two layers: base and
detail. The former layer is estimated using a spatio-temporal filter, and the latter
by using a temporal filtering.

Eilertsen et al. [Eilertsen et al., 2015] proposed a real-time TMO for video,
which controls the noise and minimises the distortions. It can be adapted to
different displays and environment conditions.

The authors in [Li et al., 2016] presented a global TMO for processing HDR
images and video from logarithmic CMOS sensors. It is based on histogram
equalisation and a noise camera model. In case of video, they proposed a temporal
adaptation in the histogram definitions.

TMO metrics

The quantitative evaluation of tone mapped images is still a challenging problem,
since there is not a reference image to compare with. Nonetheless, there exist
TMO metrics that account for an objective evaluation.

The tone mapping quality index (TMQI) was introduced by [Yeganeh and
Wang, 2013], and it is based on the SSIM [Wang et al., 2004] LDR metric.
In [Aydin et al., 2008b], the authors defined the dynamic range independent metric
(DRIM) of a pair of images called reference (HDR) and test (LDR). The metric
computes three different distortion maps: loss of visible contrast, amplification
of invisible contrast, and contrast reversal. The latter refers to contours that have
opposite gradient directions in both images.

A recent metric was introduced by [Kundu et al., 2017b]. It is a no-reference
image quality metric and it is built on natural scene statistics. The validation of
the metric is done using the ESPL-LIVE HDR database for image quality [Kundu
et al., 2017a]. In addition, the authors showed the utility of the metric not only
for TMO, but also for exposure fusion methods, and post-processing techniques.
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HDR reconstruction from single LDR images: inverse Tone
Mapping Operators

Displays are increasing their dynamic range capabilities, and the problem of
extending LDR content to HDR monitors is becoming popular. Inverse tone
mapping operators (iTMO) tackle the problem by increasing the dynamic range
of image/video, in order to show it in HDR displays, while preserving the same
look and appearance of the image in an LDR display.

In Banterle et al. [Banterle et al., 2006], the authors pointed out limitations of
iTMO at the time, the artefacts that methods might introduce, like colour changes,
noise enhancement, etc., since no spatial information is taken into account and
it is difficult then to identify the light sources. To address these issues, they
proposed a method consisting on four steps: 1) to define an initial extended HDR
image from the original LDR, 2) to find the highlights and the most illuminated
areas from the LDR, 3) to create an expand map from the areas estimated in the
previous step, and finally 4) to combine the original LDR and the extended HDR
linearly using the expand map.

Meylan et al. [Meylan et al., 2007] presented a method that takes into con-
sideration the light sources and specularities of the image. They first detect the
specular highlights in order to compute a mask. Then, a tone scale function is
applied in two different ways: 1) globally, using the same curve for all pixels in
the image, or 2) taking into account the computed mask and applying the tone
curve locally.

In 2009, Masia et al. [Masia et al., 2009] performed two psychophysical
experiments. From the first perceptual experiment, they showed that current
iTMOs were performing correctly in under-exposed regions, in contrast with
over-exposed areas. Thus, they proposed to apply a global gamma value before
increasing the DR of the image. The γ-curve plays the role of undoing gamma
correction, in order to darken the image and enhance contrast. The γ value
can be set automatically. In the second study, they focused on which errors
introduced by the iTMOs are perceptually more unpleasant. From [Masia et al.,
2009] conclusions, Masia et al. [Masia et al., 2017] presented a global method
to compute the gamma value according to image statistics. This new method for
computing gamma automatically gets similar results in over-exposed regions to
previous work [Masia et al., 2009], while boosting the results in under-exposed
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regions.

Bist et al. [Bist et al., 2016] presented a model also based on applying a
gamma correction. The use of a gamma function model is based on a set of
subjective studies they performed. One of their main objectives and contributions
is to maintain the aesthetic style of the given content.
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CHAPTER 5

Considering the digital camera pipeline for HDR
creation

Two main contributions are presented in this section: i) the analysis of the building
assumptions on HDR image techniques that consider multiple exposed images,
and ii) the proposal of a new method for HDR image creation. As mentioned
in the previous chapter, majority of the techniques, that tackle the problem on
HDR imaging given a set of multiple exposure images, aim to estimate the camera
response function (CRF) that maps the linear values of the camera sensor (RAW)
to the final non-linear values of the output image (e.g. JPEG). We will show that
the suppositions for its estimation might not apply in case of digital images. For
this reason, we propose an HDR method from the definition of the camera colour
processing pipeline.

This chapter is based on our work ‘The Intrinsic Error of Exposure Fusion
for HDR Imaging, and a Way to Reduce it’, published in British Machine Vision
Conference (BMVC) [Gil Rodrı́guez et al., 2015] and its journal extension entitled
‘Issues with common assumptions in HDR imaging from multiple exposures’,
which is currently in preparation.

Multiple exposures assumptions for HDR

The dynamic range of light intensities in a natural scene is defined as the ratio
between the highest and the lowest luminance values, and it may easily span
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five orders of magnitude or more. This is way above what digital cameras are
able to represent. As mentioned in previous chapters, the camera sensors store
values whose are proportional to the light in the scene. Then, these ‘linear’ values
go through a chain of processes to get the final non-linear image. As a result,
standard cameras are only able to capture distinct luminance ranges by using
different exposure times. Thus, short exposure times are used to capture bright
areas, while long exposure times are better for capturing dim areas.

Multiple exposure approaches that use non-linear input pictures assume the
following image formation model:

J(p) = f (E(p)∆t) , (5.1)

where ∆t is the exposure time, p is a pixel location, E(p) is the scene radiance
value at p, f is a non-linear transform usually denoted as the camera response
function (CRF), and finally J(p) is the stored 8-bit image value, corresponding
to one colour channel. Analogous expressions hold for each of the three colour
channels, for which the function f might be different. In a static scene the values
E(p) remain constant, so taking a stack of N pictures by varying the exposure
times gives us for each image

Ji(p) = f (E(p)∆ti) , i = 1, . . . , N, (5.2)

where the subindex i denotes the different exposures and it is also assumed that
the function f remains constant as ∆ti changes. Multiple exposure methods
estimate the inverse g of the CRF f , g ≡ f−1, apply it to the image values Ji(p)
and then divide by the exposure time ∆ti so as to obtain one estimate of E(p) for
each image i in the stack:

g(Ji(p))

∆ti
= E(p), g ≡ f−1. (5.3)

These N estimates of E(p) are then averaged in order to provide the final output,
the HDR value for pixel p.

We can see then how all multiple exposure approaches share a set of building
assumptions for the camera capture:

1. Different colour channels are independent.

2. The camera response remains constant while changing the exposure.
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3. If the exposure times vary sufficiently, we can recover the full dynamic
range of the scene and the resulting HDR image will be a “radiance map”,
as Debevec and Malik put it [Debevec and Malik, 1997], i.e. the HDR
image values will be proportional to the scene radiance values.

The contributions of this chapter are, on one hand, to highlight how these
assumptions do not hold in general, and then to propose a method to improve
multiple exposure combination, compensating for the violations of assumptions
(1) and (2) above and allowing us to obtain more precise HDR images from
non-linear LDR inputs. Our proposed method matches the colour and gamma
correction transforms of all pictures to those of a reference picture in the stack,
adapting the techniques introduced in [Vazquez-Corral and Bertalmı́o, 2014a] for
colour matching and [Vazquez-Corral and Bertalmı́o, 2015] for gamma estimation,
and merges all the linearised colour-corrected images with the linearised reference
image obtaining an intermediate HDR result. This is done for several reference
pictures and the resulting HDR images are averaged to produce the final output,
which is shown to be more accurate to the ground truth HDR image (derived
directly from RAW pictures) than those obtained with state-of-the-art multiple
exposure combination methods, according to several image metrics. Also, the
tone-mapped versions of the HDR pictures obtained with our method show no
hue shifts, colour artefacts or contrast problems, which are issues that commonly
crop up with other multiple exposure approaches.

Finally, let us also note that although the experiments on this chapter deal with
static scenes, our method can potentially be extended to more generic situations
like non-static scenes with moving cameras, as the framework used for colour
and gamma stabilisation does not require image registration.

The effect of optical scattering on the dynamic range

The effect of scatter or glare in the context of HDR imaging was pointed out and
extensively studied by McCann and Rizzi, see [McCann and Rizzi, 2011] and
references therein, where they show through practical examples how it is not fully
appropiate to refer to the outputs of multi-exposure HDR imaging techniques
as radiance maps, since they are not proportional to the radiance values of the
scene, and also it is wrong to assume that we can simply, without any further
considerations, use multi-exposure HDR methods to recover the full dynamic
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Figure 5.1: Left: example PSF of the optics of a CCD camera, from [Pilz et al., 2008]. Right: linear
fit of normalised median vs. DR in the HDR Survey data [Fairchild, 2007], in log-log coordinates;
this fit is consistent with Equation (5.8) and implies a value of c = 0.48% for the veiling glare
coefficient.

range of any given scene, because veiling-glare limitations cannot be overcome
by taking any number of different exposures.

Here our contribution is to propose a simple yet effective mathematical model,
presented later in Equation (5.8), that given an HDR scene and a basic property
of the camera lens estimates what is the effective dynamic range that can be
recovered.

Consider an image I representing actual luminance values in a scene, as
measured with a glare-free photometer. We define the dynamic range DR of the
scene as the ratio

DR(I) =
IM
Im

, (5.4)

where IM , Im are the maximum and minimum luminance values respectively.
Now if we take a picture of the scene using a photo camera, the effects of
reflections and scattering in the optic system can be approximately modelled by
a convolution with a point spread function (PSF) S having a shape as shown in
Figure 5.1 (left), so that the light Î that actually reaches the sensor has the form

Î = I ∗ S. (5.5)

The slow decay of S implies that the light reaching each image point is effectively
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contributing a small fraction of its intensity to every other point in the image,
regardless of how far apart they are: this is the veiling glare. Clearly, the brighter
an image is, the higher the glare it will have. Given the linearity of the convolution
operation and assuming a very long tail for S, Î can be roughly approximated as
the original irradiance I plus a homogeneous veiling glare component vg that can
be estimated as a percentage c of the mean value µ of the image:

Î ' I + vg = I + cµ, (5.6)

and therefore the dynamic range for Î is:

DR(Î) =
max(Î)

min(Î)
=
IM + cµ

Im + cµ
. (5.7)

We see that glare is increasing the minimum level of the original scene to a value
above cµ that in practice can be quite large1: it increases with the mean luminance
µ, and c is no smaller than 0.25% [Tomić et al., 2014]. The net result is that the
DR of Î is usually much lower than that of the original scene data I , and the
darkest areas in Î will have values that will usually be way off from the actual
values as measured on the original scene. This is due to the optics, it has nothing
to do with the dynamic range capabilities of the camera sensor, and it does not
depend either on the exposure time that is actually used to capture the picture,
so these problems cannot be solved by taking different exposures, regardless of
the number of them. We remark these implications because we feel that this very
important information is usually missing from works on HDR imaging, and in
particular from the multi-exposure literature.

From Equation (5.7), we propose the following practical model to estimate
(and bound) the dynamic range for Î , i.e. the effective dynamic range that can be
captured:

DR(Î) ' IM + cµ

cµ
' IM
cµ
. (5.8)

To validate this model we have tested it on the HDR Survey dataset by Mark
Fairchild [Fairchild, 2007], containing 105 different scenes acquired with the
same camera. Equation (5.8) implies that a plot of normalised mean vs. DR,
in log-log coordinates, could be fit by a line of slope −1, and this is indeed the

1Furthermore, this is a conservative estimate because the model in Equation (5.5) is the glare
contribution from light sources outside the field of view.
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case as Figure 5.1 (right) shows2. Furthermore, the linear fit provides us with an
estimate for the veiling glare coefficient: c = 0.48%. This value is very close
to the one that can be estimated directly on the LuxoDoubleChecker image (for
which M. Fairchild provides photometer readings for all regions in the picture),
that yields c = 0.44%.

With this very simple model, knowing the veiling glare coefficient c of a
lens [Wüller, 2016] and having estimates for the maximum and mean luminance
values of the scene, we can roughly estimate the effective DR than can be captured.
For instance, for the LuxoDoubleChecker image, while the actual DR of the scene
as measured with a photometer is 4× 106, the effective DR as measured in the
captured RAW data is of 3.3× 105, and the estimate given by Equation (5.8) is
very close, of 3.05×105. It may come as a surprise that, in many situations where
we want to photograph an HDR scene (e.g. backlit images, scenes with high
global contrast, etc.) and where it is assumed that a multi-exposure HDR method
is required, the effective DR as estimated with Equation (5.8) quite often turns
out to be enough for single-exposure photography. For instance, consider this
numerical example: an indoors scene with some shadows where the minimum
luminance is 1 cd/m2, a window that covers 10% of the image area and through
which outdoor light comes in with a maximum luminance of 105 cd/m2, while
in the remaining 90% of the image the average luminance is 100 cd/m2. The
camera lens has a veiling glare coefficient of c = 0.25%. The dynamic range of
the scene is therefore 105, but the dynamic range of the image produced by the
optics is only:

DR(Î) ' 105

0.0025× (0.9× 100 + 0.1× 105)
= 4× 103, (5.9)

so the scene is apt to be captured with a single exposure using a regular camera
sensor, having at least 12-stops of latitude, as is the case with most current
cameras.

The response function of digital cameras

The first and second assumptions enumerated above, namely, that (1) different
colour channels are independent, and (2) the camera response remains constant

2For this plot we have used the median instead of the mean so as to avoid outliers and obtain a
less biased fit.
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while changing the exposure, made sense for film photography, but are not an
accurate model of how digital cameras work. Digital cameras follow a typical
camera colour processing pipeline [Bianco et al., 2012] that can be expressed asRG

B


out

=

A ·
RG
B


in

γ

, (5.10)

where [R,G,B]tin is the sensor triplet (usually in 12 or 14 bits), [R,G,B]tout is
the pixel value at the end of the pipeline (in 8 bits per channel), A is a 3 × 3
matrix that combines the different colour channels taking into account white-
balance, colour encoding, colour characterisation and a gain value, and γ is a
value, typically between 1/1.8 and 1/3, performing gamma correction (notice that
we omit demosaicing, denoising, compression, etc: for a complete explanation of
these pipeline processes see [Bertalmı́o, 2014b]).

The implications, for the above assumptions, of using this more realistic model
are the following:

1. The three channels R, G, B are not independent, because the matrix
A is not diagonal as it incorporates colour processing steps like colour
characterisation that involve all channels.

2. If, while taking the N differently exposed pictures, there are changes in the
A matrix (e.g. because of changes in gain or white balance) or changes in
the γ value, the pictures will be affected as if the non-linear transform f in
Equation (5.2) changed from image to image in the stack, i.e. changes in A
or γ imply that f is not constant.

Let us elaborate a little on this latter point.

Figure 5.2: Sixteen individual exposures used by M. Fairchild in [Fairchild, 2007] to create
the LuxoDoubleChecker HDR image. Figure adapted from [Fairchild, 2007].
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(a) (b)

Figure 5.3: Plots computed for points in the coloured squares in the dark colour checker in
Figure 5.2, using (a) the RAW values, and (b) the JPEG values. While in both cases the
plots should theoretically be a single line of slope one, it can be seen that in the JPEG
case the points are more dispersed than in the RAW case.

Figure 5.2 reproduces the 16 individual exposures used by M. Fairchild in
[Fairchild, 2007] to create the LuxoDoubleChecker HDR image. The images were
captured in RAW format, alongside the non-linearly corrected counterparts. For a
stack of N RAW pictures Ri the image formation model is:

Ri(p) = E(p)∆ti, i = 1, . . . , N, (5.11)

and this equation is valid for the range of luminances for which the sensor
operates in the linear range, above the black pedestal and below saturation. This
is why, when creating an HDR image through multiple exposure combination,
professional users prefer to take RAW pictures; in this way, there is no need to
estimate and invert the CRF that is applied to the non-linearly modified pictures
stored in 8 bits per channel form. Applying the logarithm to both sides of
Equation (5.11) and leaving only the exposure term on the right we get

log

(
Ri(p)

∆ti

)
= log(E(p)), i = 1, . . . , N, (5.12)

therefore if we plot log
(
Ri
∆ti

)
versus log(E) we should get a single line of slope

one. This is indeed approximately the case, as we can see in Figure 5.3(a).
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In principle the same could be said in the non-linear case when applying the
logarithm to Equation (5.3):

log

(
g(Ji(p))

∆ti

)
= log(E(p)), i = 1, . . . , N, (5.13)

because if we plot log
(
g(Ji)
∆ti

)
versus log(E) we should also get a single line

of slope one. In practice, though, this does not always happen, as Figure 5.3(b)
shows. The fact that the values for log

(
g(Ji)
∆ti

)
are rather spread implies that it

was wrong to assume that f (as well as its inverse g) was constant, and therefore
the conclusion is that the camera must have modified the values for some of its
parameters, A, γ, when the exposure time ∆ti is changed.

To support this claim and highlight how generalised this camera behaviour
is, we have performed tests on multiple exposure sequences coming from four
different camera models, where during capture only the exposure time changed,
and with results recorded both in linear (RAW) and non-linear (JPEG) form.
Having the same picture in these two versions allows us to estimate the values for
γ and the matrix A with Equation (5.10), using the RAW data for the [R,G,B]tin
values and the JPEG data for the [R,G,B]tout values.

The first column of Figure 5.4 plots, for different sequences taken with four
different camera models, a value that measures how far the matrixA of each image
in the sequence departs from being diagonal: we have chosen for this to compute
the average of the absolute value of the non-diagonal elements ofA normalised by
its maximum value. The fact that these values are consistently above 0.1 shows
that the three channels R, G, B are not independent. The second column of
Figure 5.4 plots the value of 1/γ for each image in the sequence, which is ordered
from shortest to longest exposure time. We can see that, for all sequences, as
the exposure time increases the value of 1/γ also increases, and the change is
quite substantial. The third column of Figure 5.4 plots the difference between
the matrix A of each image in the sequence with respect to the matrix A of the
middle-image in the stack3. Again we see that the cameras are changing A from
one exposure to the next.

In Figure 5.5, each column corresponds to a camera model from a different
camera maker. The rows show tone-mapped results of the HDR pictures obtained

3We compute this difference as the Frobenius norm ‖·‖F of the difference between the matrices.
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Figure 5.4: Rows 1 to 4 correspond to different sequences taken with different cameras, shown
in columns 1 to 4 of Figure 5.5. The last row corresponds to the average over the HDR Survey
database [Fairchild, 2007]. First column: average value of non-diagonal elements of A for each
image in the sequence. Middle column: gamma-correction value for each image in the sequence.
Last column: difference between colour correction matrix of each image in the sequence with
respect to colour correction matrix of reference image (middle-exposure).
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Figure 5.5: From top to bottom: tone-mapped HDR result obtained from RAW pictures (i.e. ground
truth) (first row), tone-mapped HDR result obtained with the multiple exposure combination meth-
ods of Debevec and Malik [Debevec and Malik, 1997] (row 2), Mitsunaga and Nayar [Mitsunaga
and Nayar, 1999] (row 3), Lee et al. [Lee et al., 2013] (row 4), and with our proposed approach
(last row). Cameras used: Nikon (first column, from the HDR Survey [Fairchild, 2007]), Pentax
(second row), Panasonic (third column), Canon (fourth column). Tone mapping methods used:
Drago et al. [Drago et al., 2003] (column 1), Mai et al. [Mai et al., 2011] (column 2), Mantiuk et
al. [Mantiuk et al., 2008] (column 3), Ferradans et al. [Ferradans et al., 2011] (column 4).

with different multi-exposure combination methods: from the RAW pictures,
which would be the ’ground truth’ or the best result we can aim for (first row), from
the JPEG pictures using the multiple exposure combination methods of Debevec
and Malik [Debevec and Malik, 1997] (row 2), Mitsunaga and Nayar [Mitsunaga
and Nayar, 1999] (row 3), Lee et al. [Lee et al., 2013] (row 4), and the method
proposed in this chapter (last row). We can see that the previous multiple exposure
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Figure 5.6: Diagram of our method. The input is a set of N non-linear images acquired
under different exposure times. We select P reference images; for each reference image
Irefk , all images in the stack are colour-matched and linearised with respect to Irefk
(colour stabilisation [Vazquez-Corral and Bertalmı́o, 2014a]) and then averaged to pro-
duce an intermediate HDR picture HDRrefk . Then, these P intermediate HDR pictures
are averaged to produce the final output.

methods that take the non-linear JPEG inputs produce results which have visible
problems, like hue shifts and colour artefacts; to underline that these artefacts
are not due to the particular tone-mapping method used, each column employs a
different, state-of-the-art tone-mapping algorithm.

In the next section we will introduce a method that, considering all three
channels simultaneously, removes the fluctuations in γ and A, effectively making
the CRF constant for the whole sequence. Its results for the above sequences are
shown in the last column of Figure 5.5.

Proposed method to make the CRF constant

A schematic of our method is presented in Figure 5.6. The input is a set of N
non-linear LDR images, static or dynamic, acquired under different exposure
times, and we select P of them (normally centred around the middle exposure) as
reference images. Our algorithm consists of two steps:

• Step 1. For each reference image Irefk , all images in the stack are colour-
matched and linearised with respect to it.

• Step 2. The linearised images are averaged to produce an intermediate
HDR picture HDRrefk . The P intermediate HDR images HDRrefk for
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k = 1, ..., P are combined to produce the final HDR output.

We have made the code for our implementation available at http://ip4ec.
upf.edu/HDR_code. Let us now see in detail the steps of the proposed
method.

Step 1

The colour-matching process is key to our method, because it is the one that
removes fluctuations in γ and A, and in practice turns the CRF constant for
all images in the multi-exposure sequence. The basic idea was introduced in
[Vazquez-Corral and Bertalmı́o, 2014a] for the particular problem of colour
stabilisation among different shots of the same scene taken with different cameras:
using the model of the camera colour processing pipeline of Equation (5.10), find
the parameter values so as to obtain an optimal match to a reference image. While
there are works on multi-exposure HDR creation that match geometry and/or
colour to a reference image in the stack (e.g. see [Hu et al., 2013] and references
therein), the novelty of our approach lies in the use of a camera processing model,
which allows our results to be more accurate, as we will see in Section 5.5.3.

Given the reference image Iref , for each other image Ii in the sequence we
do the following. Let p be a scene point appearing both in Iref and Ii, which
therefore produces in the sensor the same irradiance triplet [R,G,B]tp in both
pictures. Allowing for camera and/or object motion, point p may appear at
different locations pref and pi in both pictures, and the pixel values [R,G,B]tpref
and [R,G,B]tpi are also different:

RG
B


pref

=

Aref
RG
B


p


γref

;

RG
B


pi

=

Ai
RG
B


p


γi

These equalities can be combined into a single equation:
RG
B


pref


1/γref

−Hi


RG
B


pi


1/γi

=

0
0
0

 , (5.14)
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where Hi is the unknown 3 × 3 matrix Hi = ArefAi
−1. Thus, each pair pref ,

pi of pixel correspondences gives us an equation of the form of Equation (5.14),
and we can find Hi, γi, γref by solving a system of equations. We only have 9
unknowns for Hi and two for γi, γref , but we have many pixel correspondences:
most of the image if there is motion, or the whole image if the scene is static.
Accordingly the system is overdetermined, and the solution can be found by
an optimisation procedure. This is in contrast with the approach taken both
in [Vazquez-Corral and Bertalmı́o, 2014a] and in the preliminary version of
our method [Gil Rodrı́guez et al., 2015], where the optimisation is done in two
stages, first finding estimates for γi, γref , and then for Hi. Our new single shot
optimisation allows for a significant improvement in accuracy, as will be shown
in Section 5.5.3.

Once Hi, γi have been found we can produce I ′i, the linearised and colour-
corrected (w.r.t. the reference image) version of Ii:

I ′i = HiI
1/γi
i . (5.15)

In Figure 5.7 we show an example of this procedure.

Step 2

After we have linearised and colour-corrected all images in the sequence, ob-
taining I ′i, i = 1, ..., N , we produce an intermediate HDR result HDRref by
performing a weighted average with a trapezoidal weighting function ωT , in the
range [0, 1], that discards extreme pixel values:

HDRref =

∑N
i=1 ω

i
T I
′
i∑N

i=1w
i
T

. (5.16)

The intermediate HDR results present differences, as Figure 5.8 shows. In the
top row, the leftmost image correctly captures the bright colour checker while
missing out details on the dark colourchecker, and the reverse situation occurs
with the middle and rightmost intermediate HDR results. Thus, we propose
to combine the different {HDRrefi}i=1,...,P images to produce the final HDR
output. We scale each of them so that they are all in the same range, since
they have been computed from different reference images captured with different
exposures. In order to do this, for eachHDRrefi we compute the trimean, defined
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I6 I
1/γ6
6

(a) I3 (b) I1/γ3
3 (c) H3I

1/γ3
3

Figure 5.7: Top row: the reference image I6 on the left, and its linearised version I1/γ66 on the
right. Middle row: 3D point clouds representing the (R,G,B) values for I6 in green and for I3 in
magenta. Bottom row: the corresponding images of I3 for each plot in the middle row.

as 1
4(Q1 +2Q2 +Q3) whereQ1, Q2, Q3 are the quartiles; we choose the trimean

in order to avoid outliers and take into account the distribution of the image data.
Once all trimeans are obtained, we scale the values of each HDRrefi so that
the resulting image has the same trimean as the one of a selected HDRrefsel ,
which in our case has been the middle-exposure reference (image 5 in a 9-image
sequence). Finally, we average the scaled set {HDRrefi}i=1,...,P to obtain the
final HDR image, as shown in Figure 5.6. By fusing them, we achieve a final
HDR image with more details in both bright and dark areas. This second step is
not present in the preliminary version of our method [Gil Rodrı́guez et al., 2015].
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Figure 5.8: Top row: intermediate HDR images HRDref6 , HRDref9 , and HDRref12 computed
taking as reference exposures 6, 9 and 12, respectively. Bottom row: final HDR output of proposed
method, after linear combination of intermediate results. All images have been tone-mapped
using [Mantiuk et al., 2008].

Results and comparisons

Database

We performed our experiments using the HDR Survey dataset by Mark Fairchild
[Fairchild, 2007]. The online public-domain database contains 105 different
scenes acquired using a Nikon D2x DSLR camera. The data consists of corre-
sponding JPEG and RAW images for different exposures. In each scene, images
in the sequence are numbered going from shortest to longest exposure time. All
the scenes except two are composed of 9 images; the other two have respectively
8 and 18 images. For the experiments and evaluation we reduce all images by a
factor of 1/4, so the image size equals 1072× 712.

Ground-truth generation

Let us consider N RAW images acquired with different exposure times ∆ti.
From the header of the RAW file we read the following parameters: 1) dark and
saturation values, which are the minimum and maximum values that the camera

94



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page 95 — #123

produces, 2) a 3× 1 array containing the white balance values for each channel
and 3) the CFA Bayer pattern, e.g. ‘rggb’. The ground-truth (GT) construction
is defined in two stages. The first one is the merging step, where the N RAW
images are combined to obtain a RAW HDR image HDRL,

HDRL =

∑P
i=1 ωi(RAWi/∆ti)∑P

i=1 ωi
, (5.17)

where ωi is a weighting function. We have chosen to use as weighting function
t2 , where t is the exposure time, for its simplicity and good performance, as
shown in [Robertson et al., 2003].

The second stage of GT creation converts the obtained HDRL into a colour
image by applying a number of steps: firstHDRL is linearly scaled to range [0, 1],
next white balance is applied, then demosaicing using the method proposed by
Zhang and Xiaolin [Zhang and Wu, 2005], and finally the colour transformation
in which each pixel triplet [R,G,B]t is multiplied by the 3× 3 matrix Mcolour =
E · C, where E is the matrix converting XYZ values into sRGB values, and
C is the sensor characterisation matrix that transforms RGB sensor values into
standard XYZ values and is the one described in [Fairchild, 2007] for the camera
used to acquire the data.

Evaluation

We compare our approach against seven multiple exposure HDR methods. Four
of them operate only on static scenes: the classical methods of Debevec and Malik
(DM) [Debevec and Malik, 1997] and Mitsunaga and Nayar (MN) [Mitsunaga and
Nayar, 1999], and the recent methods by Lee et al. (Lee13) [Lee et al., 2013] and
by Gil et al. [Gil Rodrı́guez et al., 2015]. The other three work also on dynamic
scenes: Lee et al.(Lee14) [Lee et al., 2014], Sen et al.(Sen) [Sen et al., 2012],
and Hu et al.(Hu) [Hu et al., 2013] (linearisation performed with Debevec and
Malik [Debevec and Malik, 1997]). We use public available codes either from the
authors (Sen et al. [Sen et al., 2012], Lee et al. [Lee et al., 2014], Lee et al. [Lee
et al., 2013], Hu et al. [Hu et al., 2013]), or by the HDR Toolbox from Banterle et
al. [Banterle et al., 2011] for Debevec and Malik [Debevec and Malik, 1997], and
Mitsunaga and Nayar [Mitsunaga and Nayar, 1999]. For our approach, we select
for each sequence the central three exposures as references: images 4, 5 and 6.
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Starting with quantitative, objective evaluation we compare the HDR outputs
of each algorithm (with JPEG sequences as input) versus the computed GT using
six standard metrics suggested in Hanhart et al. [Hanhart et al., 2015a] for this
purpose: for luminance, peak signal-to-noise ratio (PSNR), structural similarity
metric (SSIM) [Wang et al., 2004], and HDR quality assessment HDR-VDP-
2 [Mantiuk et al., 2011]; for colour, the colour version of PSNR (CPSNR), the
colour extension of SSIM, called CID [Lissner et al., 2013], and the colour
difference measure CIEDE2000 (∆E∗00) [Sharma et al., 2005]. Finally, we also
compute the l2-norm on RGB space of the difference between a given method
and the GT. The results, averaged over the dataset4 are presented in Table 5.1. We
can see that our method outperforms the others according to all metrics, except
for HDR-VDP-2, where DM [Debevec and Malik, 1997] performs better and our
algorithm comes second. Let us note that for HDR-VDP-2 the average is done
over the 42 images for which photometer readings exist for the minimum and
maximum absolute luminances of the scene, as these values are required by the
metric; nonetheless, as we pointed out in Section 5.2, in general the minimum
luminance value of the scene does not accurately correspond to the minimum
luminance value of the HDR picture due to light scatter in the optics.

To show that the errors due to fluctuations in camera parameters can result
in very visible artefacts, in Figure 5.9, top to bottom, we compare the outputs of
DM [Debevec and Malik, 1997], Lee13 [Lee et al., 2013], Sen [Sen et al., 2012],
and our approach, for the scenes RITTiger, HancockKitchenInside, TheNarrows2
and MasonLake1, from left to right. All results have been tone-mapped with
the method in [Mantiuk et al., 2008]. For the scene RITTiger we can see that
DM [Debevec and Malik, 1997] (first row) presents a red cast in the image,
therefore Sen [Sen et al., 2012] (third row) has the same colour cast since it uses
DM as input. In TheNarrows2, Lee13 [Lee et al., 2013] (second row) shows very
noticeable colour issues. Finally, for the MasonLake1 scene, the method of Lee13
et al. presents a blue cast, while DM presents a reddish cast, and the method of
Sen shows a banding artefact effect on the sky region.

To highlight that the visual problems described before are not due to a par-
ticular choice of tone-mapping algorithm, Figure 5.10 shows the same HDR

4For all metrics apart from HDR-VDP-2 we use all the images except Zentrum, since MN
[Mitsunaga and Nayar, 1999] is not able to produce a reliable result for this image. Also, the
algorithm of Hu et al. [Hu et al., 2013] only produces an output for 64 out of the total 105 scenes,
so we have chosen to present just a qualitative comparison, in Figure 5.10.
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Table 5.1: Mean (x̄), and median (x̌) results from all the presented methods versus GT among the
104 scenes. The last metric HDR-VDP-2 is computed only among the 42 images containing the
values for the minimum and maximum absolute luminances.

PSNR L CPSNR SSIM L CID L2 ∆E∗00 HDR-VDP-2

DM x̄ 29.48 28.77 0.890 0.179 0.052 4.41 60.37
x̌ 27.44 27.29 0.912 0.150 0.032 3.87 61.32

MN x̄ 26.50 25.91 0.863 0.194 0.071 5.32 57.75
x̌ 25.01 24.79 0.872 0.175 0.071 5.02 57.79

Lee13 x̄ 30.91 30.24 0.905 0.179 0.043 4.56 59.48
x̌ 29.29 28.94 0.929 0.125 0.030 3.37 59.88

Sen x̄ 28.59 27.90 0.860 0.208 0.058 4.89 56.96
x̌ 27.11 26.79 0.899 0.189 0.034 4.25 57.17

Lee14 x̄ 28.66 28.01 0.868 0.169 0.048 4.45 59.00
x̌ 27.89 27.22 0.927 0.123 0.037 3.72 58.23

Gil x̄ 30.37 29.43 0.899 0.164 0.044 4.74 58.44
x̌ 29.97 29.21 0.924 0.141 0.032 4.19 60.16

Proposed x̄ 33.45 32.68 0.930 0.110 0.033 3.39 60.00
x̌ 34.02 32.28 0.942 0.098 0.025 3.36 60.98

results but tone-mapped with two different methods, [Mantiuk et al., 2008] for
the first two columns and [Drago et al., 2003] for the last ones. The scenes are
AirBellowsGap (columns 1 and 3) and LabWindow (columns 2 and 4), while the
multiple exposure HDR methods to compare are, from top to bottom: MN [Mit-
sunaga and Nayar, 1999], Lee14 [Lee et al., 2014], Hu [Hu et al., 2013], and
our approach. We can see how the previously existing methods produce colour
artefacts in the sky and sun of the AirBellowsGap scene, and in the curtains, sky
and background of the LabWindow scene, which are apparent for both of the
tone-mapping methods used.

Dynamic scenes

It is worth emphasising that the proposed algorithm does not require image
registration, only a set of pixel correspondences. Therefore, it can be used on
dynamic scenes as well: in particular, Step 1 of our method can be employed as
a pre-processing step to colour-stabilise the inputs of HDR methods operating
on dynamic scenes, enhancing their performance. To illustrate this, we consider
the algorithm of Sen et al. [Sen et al., 2012], which receives linearised images
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Figure 5.9: From left to right: scenes RITTiger, HancockKitchenInside, TheNarrows2 and Mason-
Lake1 from the HDR Survey. From top to bottom: results from DM [Debevec and Malik, 1997],
Lee13 [Lee et al., 2013], Sen [Sen et al., 2012] and finally our approach. All images tone-mapped
with [Mantiuk et al., 2008].

as input. Consequently, given a stack of non-linear images, we compare three
linearising approaches: 1) CRF computed by Debevec and Malik [Debevec
and Malik, 1997], 2) radiometric calibration by Lee et al. [Lee et al., 2013],
and 3) applying Step 1 of our method, using as a reference the image in the
mid-point of the sequence and finding pixel correspondences with SIFT [Lowe,
1999]. We conducted this experiment on a stack of five images from the dataset
presented in [Sen et al., 2012], the Skater sequence (that comes in JPEG format).
In Figure 5.11 we present the HDR outputs obtained using the three different
linearisation approaches. The zoomed-in details allow us to see how linearisation
by [Debevec and Malik, 1997] (left) produces artefacts in overexposed areas,
whereas linearisation with [Lee et al., 2013] produces results that, although free
from artefacts, have lower contrast and less saturated colours than what can be
obtained with our method.
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Figure 5.10: First and third column: AirBellowsGap scene. Second and fourth column: LabWindow
scene. Columns 1 and 2: results tone-mapped with [Mantiuk et al., 2008]. Columns 3 and 4: results
tone-mapped with [Drago et al., 2003]. From top to bottom: results from MN [Mitsunaga and
Nayar, 1999], Lee14 [Lee et al., 2014], Hu [Hu et al., 2013] and finally our approach.

Conclusion

Our experiments show that the camera response function changes with the expo-
sure and depends on the three colour channels simultaneously. For this reason,
multi-exposure HDR approaches based on estimating and inverting a CRF that
is supposed to be constant may have substantially more error than if computed
directly from the linear data, and when tone-mapped they commonly show hue
shifts, colour artefacts or contrast problems. In this chapter we have introduced a
very simple model to estimate the effective dynamic range than can be captured
with multi-exposure techniques, and proposed a method for removing the fluctua-
tions in the internal settings that the camera has automatically modified, so that
our approach effectively makes the CRF constant for the whole sequence. It can
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Figure 5.11: HDR results on a dynamic scene applying the HDR creation method of Sen et al. [Sen
et al., 2012] with three different linearisation techniques: Debevec and Malik [Debevec and Malik,
1997] (left), Lee et al. [Lee et al., 2013] (middle), and Step 1 of our proposed method (right), taking
as reference the image in the mid-point of the sequence. HDR results tone-mapped with Mantiuk et
al. [Mantiuk et al., 2008].

be applied both to static and dynamic scenes. Our results are more accurate than
those obtained with state-of-the-art methods and show no visual problems.
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CHAPTER 6

HDR video from dual-ISO sensor

Our main contribution in this section is to propose a simple and effective method
to shoot high quality video in HDR scenarios using a single camera capable of
recording interlaced dual-ISO footage. The interlaced input guarantees that the
result will be free of ghosting artefacts, because the low and the high ISO lines
are recorded simultaneously. Our implementation pipeline incorporates a set of
stages: calculating the full-frame single-ISO images applying a deinterlacing
algorithm, combining these full-frame images into a single HDR picture, and
finally applying a tone-mapping operator to produce a LDR output. For these
stages we adapt to our setting state-of-the-art algorithms which produce high-
quality results. Tests and comparisons show that our method outperforms other
approaches both quantitatively (in terms of PSNR) and qualitatively (no spurious
colours, better edge preservation, less noise).

This chapter is based on our work ‘High quality video in high dynamic
range scenes from interlaced dual-ISO footage’ published in IS&T International
Symposium on Electronic Imaging [Gil Rodrı́guez and Bertalmı́o, 2016].

High quality video in high dynamic range scenes from in-
terlaced dual-ISO footage

The input to our algorithm will be a video sequence in RAW format, where each
frame alternates row pairs with different ISO values, and the output will be a
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LDR video sequence with simultaneous detail visibility in the dark and bright
zones of the picture, see scheme in Figure 6.1. All the stages of our method
are applied on a frame-by-frame basis except for the final tone-mapping, which
imposes temporal consistency on the output by considering several input frames
at the same time. Let us describe our proposed method in detail.

Generation of single-ISO full-frame images

The first stage consists in the computation of two single-ISO full-frame images
from an input dual-ISO frame, using an inpainting-based deinterlacing method.
In order to obtain both these full-frame pictures Il (for the low ISO value) and Ih
(for the high ISO value) we proceed as follows:

• Split the dual-ISO input into two half-size images Il/2 and Ih/2, each one
with the rows corresponding to a single ISO value, see Figure 6.2.

• Using an adapted version of the inpainting-based deinterlacing method
[Ballester et al., 2007], generate full-frame images Il and Ih from Il/2 and
Ih/2 respectively.

• Perform demosaicing using [Zhang and Wu, 2005], and apply a refinement
step to improve the interpolated results, see Figure 6.3.

Figure 6.1: Schematic of the proposed method. First the dual-ISO input is split into two half-
size images Il/2 and Ih/2, each one with the rows corresponding to a single ISO value. Next a
deinterlacing method is used to generate full-frame images Il and Ih from Il/2 and Ih/2 respectively.
These full-frame images are linearly combined and tone-mapped to produce the final output.
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Figure 6.2: The dual-ISO input frame (left), which is split into two half-size images Il/2 and Ih/2
(right), each one with the rows corresponding to a single ISO value.

Figure 6.3: Generated full-frame images Il (left) and Ih (right).

Row interpolation by deinterlacing

In order to interpolate the missing rows and generate Il from Il/2 and Ih from Ih/2,
we adapt the deinterlacing method of Ballester et al. [Ballester et al., 2007]. This
is a state-of-the-art technique that follows the dense stereo matching approach
of Cox et al. [Cox et al., 1996] and fills-in a missing line L0 between two given
lines L− and L+ by (see Fig. 6.4):

• First, performing a global matching between linesL− andL+ by computing
the correlation matrix between their image values and finding the matches
(optimal path) through dynamic programming. In practice only a band
around the diagonal is considered for the search for the optimal path, and
the matches are estimated assuming a certain noise variance for the image
values.
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• Second, each matching pair of pixels determines a segment that crosses
the missing line L0 at a pixel location that is filled-in with the average of
the matching pair. For those points that were not matched, their values are
computed by bilinear interpolation from the neighbouring correspondences.

Figure 6.4: Inpainting-based deinterlacing algorithm. Left: global matching between two given
lines L− and L+. Right: each matching pair of pixels determines a segment that crosses the
missing line L0 at a pixel location that is filled-in with the average of the matching pair. Figure
adapted from [Ballester et al., 2007].

The images Il/2 and Ih are colour filter array (CFA) RAW pictures with
the 2 × 2 Bayer pattern ‘RGGB’; with the R and B values we create half-size
channels that can be deinterlaced directly with [Ballester et al., 2007], while for
the G channel we first demosaic the values using [Zhang and Wu, 2005] and then
apply the deinterlacing method [Ballester et al., 2007] but with the modification
of filling-in two consecutive lines simultaneously given the upper and lower
neighbouring lines of the pair; see Figure 6.5.

Refinement step

In addition, a refinement step is required to improve the interpolated values in
both the Il and Ih full-frame images, see Figure 6.6. We describe the process for
Il, since it will be analogous for Ih. First, we demosaic the frame applying [Zhang
and Wu, 2005]. Second, we perform deinterlacing once again using the same
method [Ballester et al., 2007] as before. For simplification we focus on a small
row neighbourhood defined by four rows rs1 , rd1 , rd2 and rs2 . The subscript s
denotes a row with values given by the sensor, and d denotes a row calculated
from deinterlacing in the previous step:

1. Consider rs1 , rd1 , rd2 and apply deinterlacing assuming that rd1 is unknown.
Store the new computed row in rd1 .
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Figure 6.5: Extended deinterlacing algorithm. It is shown how RGB values are read from the CFA
image before applying deinterlacing, and the final interpolated RGB planes.

2. Consider rd1 , rd2 , rs2 and apply deinterlacing assuming that rd2 is unknown.
Store the new computed row in rd2 .

As a result, we obtain the final full-frame images Il and Ih. This refinement
step produces more accurate and smoother edges, as Figure 6.6 shows.

HDR creation

In order for the final result to have simultaneous detail visibility in the dark and
bright zones of the picture, we need to combine the information from Il and Ih.
We do this by first bringing the high-ISO image Ih to the range of Il (simply
dividing the values of Ih by the ratio between ISO values), obtaining an image we
call Ihl, and then generating an HDR low-ISO image Il′ by a linear combination
of Il and Ihl:

Il′(p) = (1− α)Ihl(p) + αIl(p), (6.1)

where p denotes pixel location and the weighting parameter α depends on the
value of Ihl(p). Let us note that, since the reconstructed HDR I ′l is a CFA
RAW image, we convert it into an RGB image following the main stages in
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Figure 6.6: The diagram shows the rows considered for the refinement step: rs1 and rs2 from
sensor readout, rd1 and rd2 from the previous deinterlacing step. The images show a crop of an
Il frame, before and after applying the refinement step (in each channel separately). Notice the
smoothness of the resulting contours.

the colour processing pipeline described in [Bianco et al., 2012], without ap-
plying any gamma correction nor non-linearity: we perform denoising on CFA
images [Akiyama et al., 2015], then apply demosaicing [Zhang and Wu, 2005],
then multiply by the corresponding colour encoding and colour characterisation
matrices.

Final LDR video

The final LDR image LDR′l is obtained using the state-of-the-art tone mapping
operator (TMO) [Cyriac et al., 2015b], which can be applied to single pictures, as
well as video, see Figure 6.7.

Figure 6.7: Left: dual-ISO input. Right: tone-mapped output from our method.
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Experiments and Evaluation

The only parameters of our method are the noise standard deviation σ and the
band size B (both parameters required by the deinterlacing step), plus the shape
of the weighting function α. For all our tests, carried out on 12-bit input images,
we use as default parameter values σ = 100, B = 50, and for the function α:


α(x) = 0 x < lb

α(x) = x−lb
ub−lb lb ≤ x ≤ ub

α(x) = 1 x > ub

where lb = 2048 and ub = 0.8 ∗max(Ihl) (see plot of α in Figure 6.1).

We start by showing the effectiveness of our proposed approach. We take
image data from the HDR survey of M. Fairchild [Fairchild, 2007] and generate
our dual-ISO input pictures by interlacing pairs of lines coming from images
with a 4-stop difference in exposure (the scenes are static, therefore different
exposure times are equivalent to different ISO values). Applying our method to
these pictures produces the results that appear in Figure 6.8, with simultaneous
visibility of details in both dark and bright zones, and absence of noise or visual
artifacts like spurious colours or halos.

Quantitative evaluation

For a quantitative evaluation we take our results and those obtained with the
camera software Magic Lantern (ML) [Lantern, 2013] and compare against the
ground truth which can be obtained from the Fairchild database. We choose ML
because its code is openly available, it seems to be the most widely used method
for this application, and it provides intermediate outputs equivalent to our images
Il and I ′l .

For the ground truth we select a sample of 20 scenes from Fairchild’s HDR sur-
vey so that it includes night and daytime images, outdoor and indoor environments,
varying from very high to low dynamic ranges: 507, AmikeusBeaverDamPM1,
BenAndJerrys, CanadianFalls, DevilsBathtub, Flamingo, GoldenGate1, Hancock-
KitchenOutside, JesseBrownsCabin, LabBooth, LetchworthTeaTable1, Mammoth-
HotSprings, MirrorLake, OtterPoint, SmokyTunnel, SunsetPoint1, TheNarrows2,
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Figure 6.8: Three scenes from Fairchild dataset are shown: SmokyTunnel, and WillyDesk. The
first row represents the simulated dual-ISO input, and the second row shows the final tone-mapped
output of our method.

WaffleHouse, WillyDesk, and Zentrum. All scenes consist of 9 RAW pictures
taken with different exposure times. For each scene we generate our dual-ISO
input by interlacing pairs of lines coming from pictures RAW1 and RAW2 that
have a 4-stop difference in exposure. We apply ML and our method to these
interlaced inputs, each algorithm providing intermediate outputs Il (interpolated
full-frame low-ISO image) and I ′l (that combines Il and Ih). We have three
ground truth images: the low-ISO (actually short-exposure) LDR image RAW1,
the HDR image GTHDR (obtained combining the 9 differently-exposed pictures
with the method [Gil Rodrı́guez et al., 2015]), and the HDR image Lum which
is the luminance of GTHDR. The quantitative comparisons are the following:
PSNR between Il and RAW1, PSNR between I ′l and GTHDR, and the HDR
visibility difference metric HDR-VDP-2 [Mantiuk et al., 2011] between I ′l and
Lum. See Figure 6.9. Table 6.1 shows the results, averaged over the 20 images
of our sample of Fairchild’s database; we can see that our approach outperforms
ML for all three measures considered.

Qualitative evaluation

Figure 6.10 compares our (tone-mapped) result to those of Hajisharif et al. [Ha-
jisharif et al., 2014] and ML [Lantern, 2013] on an actual dual-ISO picture (ISO
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Figure 6.9: Evaluation diagram. For each scene we select two images RAW1 and RAW2 of
4-stops difference in exposure time, and interlace them to create the dual-ISO input. We compute
as well the ground truth HDR image GTHDR from the set of all the differently-exposed pictures
that comprise the scene; Lum is the luminance of GTHDR. We compute: PSNR between Il and
RAW1, PSNR between I ′l and GTHDR, HDR-VDP-2 between I ′l and Lum.

Table 6.1: The averaged results for the proposed method and for ML [Lantern, 2013].

PSNR HDR-VDP-2
Il vs RAW1 I′l vs GTHDR I′l vs Lum

ML 47.71 29.89 54.17

Ours 48.79 30.58 57.43

values 100 and 1600) taken with a Canon EOS 7D Mark III camera (access
to the camera was required for the application of the method of Hajisharif et
al. [Hajisharif et al., 2014], so those authors kindly provided the original image
and their result for comparison). The first row uses as a tone-mapping operator
our default method [Cyriac et al., 2015b], while for the second row we have used
another state-of-the-art TMO, that of Mantiuk et al. [Mantiuk et al., 2008]. We
can see that ML produces a result with severe colour problems, due to the fact
that the output of ML is not really an HDR image so the application of a TMO
increases the overall brightness at the prize of creating unrealistic colours. On the
other hand, the result of Hajisharif et al. [Hajisharif et al., 2014] is of very good
quality, but zooming-in on a textured area we can notice some colour artifacts.

Figure 6.11 compares ML and our method for the Fairchild database scenes
HancockKitchenOutside and JesseBrownsCabin. In this case the tone-mapping is
not problematic for ML, but we can appreciate in the zoomed-in details (bottom
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Figure 6.10: From left to right: the tone-mapped results of ML [Lantern, 2013], Hajisharif et
al. [Hajisharif et al., 2014] and ours. Top row: results tone-mapped with [Cyriac et al., 2015b] (the
default in our method). Bottom row: results tone-mapped with [Mantiuk et al., 2008].

Figure 6.11: Final tone-mapped images of HancockKitchenOutside and JesseBrownsCabin scenes
from Fairchild data. For each pair of images we show the output of ML (left), and of our approach
(right). Notice how the results of ML are quite noisy.

row) how the results of ML are quite noisy.

Figure 6.12 presents the result of applying our method to a dual-ISO video
sequence taken with a Canon EOS 5D Mark II camera using ISO values 100
and 1600. The top row shows some frames from the interlaced dual-ISO input
and the bottom row the corresponding LDR images obtained with our approach.
This video has several moving objects, but none of the resulting frames shows
noticeable visual artifacts of any kind, and the output LDR video doesn’t suffer
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Figure 6.12: Top row: frames from a dual-ISO video. Bottom row: results obtained with proposed
method. The video does not show temporal artifacts.

Figure 6.13: Tone-mapped results from two video sequences. First column: results of ML. Second
column: results of our approach.

from temporal artifacts either.

Figure 6.13 compares ML and our method for two video sequences captured
with a Canon EOS 5D Mark II camera using dual-ISO values 100 and 1600.
Again, as it was the case in the static scenes of Figure 6.11, we can see that ML
produces results that are rather noisy, as it can be appreciated on the shadowed
parts of the images.
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Finally, the top row of Figure 6.14 shows that while the default choice of
parameter values produces good overall results, in some cases there can be some
mismatches on the interpolated missing lines. The bottom row shows that these
problems can be significantly reduced with a better, image-dependent choice of
parameters (in this case: σ = 20, B = 100).

Analysis and optimisation of the proposed method

The Bachelor’s Degree Final Project presented by [Sintes, 2017] extended the
proposed method for HDR video reconstruction. The main contributions of the
project are i) to analyse the influence of the parameters involved in the method,
regarding execution time and image quality, and ii) to improve the execution time
by optimising the code and implementing parallel programming when possible.

In the analysis of the method, three parameters are considered. These param-
eters have an impact in the final HDR reconstruction. Let us detail the selected
parameters and their influence.

• Band size (B) determines the size of the neighbour pixels considered when
computing the correlation matrix. Usually the value of this parameter
will not be too large, since we assume that corresponding pixels in two
consecutive rows are not far from each other. This parameter has a deep
impact on the execution time. It also influences image quality at the edges
of the objects. Notice that for horizontal edges, we need to set B with
a large value, whereas for vertical and obliques edges the value can be
reduced.

• Patch size (ϕ) defines the neighbourhood considered for each pixel to
compute the correlation coefficient between the possible matchings in the
next row. This parameter also influences the execution time. It is important
to note that images with a lot of texture would require small values of ϕ, in
contrast with homogeneous regions, where we may need to select larger
values.

• Noise standard deviation (σ) is defined in order to consider noise at sensor
level, and account for it. As mentioned in previous chapters, high ISO
values increase the noise in the acquired image. This parameter works as
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Figure 6.14: Top row: results of our method using default choice of parameter values, notice some
artifacts. Bottom row: results with better, image-dependent parameter values.
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Table 6.2: Comparison of the total execution time of the original version, and the two versions
proposed in [Sintes, 2017].

Original version Dual-ISO RGB v.1 Dual-ISO RGB v.2
Execution time 1979 s 53 s 62 s

a threshold, and small values mean a restriction to the presence of noise.
This parameter does not influence the execution time.

The code was initially developed in C/C++ using ImageMagick [Cristy and
ImageMagick Studio LLC, 1990] and OpenCV [Bradski, 2000] libraries. There-
fore, the first decision was to select only one library, in this case OpenCV, for
the whole code. Different optimisation techniques were used in order to avoid
memory leakage. Finally, the OpenMP [Dagum and Menon, 1998] library was
used for parallel programming. In Table 6.2, the execution times of the original
method, and the two proposed new implementations Dual-ISO RGB v.1 and v.2
are shown. On both implementations, the refinement step is removed, which
results in a compromise between image quality and execution time. For more
details on those implementations, see [Sintes, 2017].

Conclusion

We have presented a practical approach for creating LDR video of HDR scenes
from single-camera interlaced dual-ISO footage. Our method is affordable, since
the input is obtained from a DSLR camera; it does not suffer from ghosting
artefacts due to the dual-ISO information in each frame, instead of alternating
exposures in consecutive frames; it minimises spatial artefacts, thanks to the
application of a high quality deinterlacing method; and it provides results with
visible details in dark and bright areas, consistent with human perception, thanks
to the tone mapping method used.

It would be interesting to adapt the parameters of the algorithm depending
on the input image. For example, in high ISO values we might be more flexible
in terms of noise. As mentioned in earlier chapters, we know that large values
of ISO increase the noise in the image. Although small values of band size (e.g.
10) might be enough, we could adapt the parameter based on the direction of
the edges in the image. This means that for horizontal edges we would choose a
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bigger value, rather than for vertical and oblique edges small values would work
as good. The pixel neighbourhood for patches comparison can vary depending on
the contrast measured in each pixel. Thus, for high contrast we would consider a
small neighbourhood, and for homogeneous regions with low contrast values, we
would rather consider larger neighbourhoods.
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CHAPTER 7

Colour matching: relevance and methods

Motivation

Colour matching techniques aim to map the colours of one image, defined as
source, to those of a second image, defined as reference. These colour differences
are due to the use of different camera models, or even when shooting with the
same camera model under different camera settings: white balance, exposure
time, aperture, etc. For example, Figure 7.1 shows two pictures, the reference
and the source, taken from the same scene and acquired using the same camera.
In this case, we only varied the white balance from the camera in manual mode.
These two images show large colour differences. The image on the right side
corresponds to the colour matched source, which shares the same colour palette
as the reference one.

Reference Source Colour matched

Figure 7.1: Colour matching a pair of images taken from the same scene. Images were acquired
using the same camera model and varying the white balance setting.
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Colour matching is used in many professional situations. For example in
TV: when broadcasting from different cameras, it is necessary to guarantee that
there are no colour changes between cameras. In cinema: a stereo rig set-up
for stereoscopic 3D requires colour correction of the two cameras, since the two
images would be projected together at the same time. Amateur situations also
demand colour matching techniques: in mosaicing methods for panoramic images,
whose objective is to concatenate, in a single image, a set of pictures taken by just
rotating the camera.

Current solution on cinema and TV

In cinema and TV it is quite usual the need for working with footage coming from
several cameras, which show noticeable colour differences among them even if
they are all the same model. In TV broadcasts, technicians work in camera control
units (CCU) [MediaCollege, 2012] so as to ensure colour consistency when
cutting from one camera to another. In this case, the technicians have control of
the white balance and exposure time of the set of cameras. In cinema productions,
several cameras record the same scene from different points of view. Recording
with the same camera model and setting the same parameters (like white balance)
does not assure colour stability, since different points of view might require the
change of shooting conditions. This issue becomes more noticeable when using
different cameras, due to the fact that setting same camera parameters in all of
them is not enough for eliminating colour differences.

In cinema post-production, colourists need to manually colour-match images
coming from different sources. Aiming to help to perform this task automatically,
the Academy Color Encoding System (ACES) introduced a colour management
framework [Postma and Chorley, 2015]. The idea is to allow colourists to work
within the same colour space and be able to use different cameras and displays;
however, the ACES pipeline requires to have the cameras characterised previously,
and therefore does not allow to work ‘in the wild’, a situation which is very
common.

Colour charts can be used at the shooting time. In this way, colourists might
colour match the footage either manually or using automatic softwares like
DaVinci Resolve [Design, 2018], or Imatest Multicharts [Imatest, 2018]. These
softwares estimate look up tables (LUT) in order to find the colour correction
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matrix. The matrix is computed from the corresponding squares of the colour
charts that appear in the source and reference image.

Figure 7.2: On the left, a camera control unit; on the middle, the DaVinci Resolve tool; and on
the right, the Imatest software for colour correction based on colour charts. Images from [Design,
2018] and [Imatest, 2018].

Figure 7.2 presents from left to right: a camera control unit used in TV
broadcast, the DaVinci Resolve tool for colourists, and the Imatest software used
for colour correction by utilising colour charts.

Colour matching in academia

In image processing and computer vision research, it is a challenge to colour
match a pair of pictures (reference and source). We differentiate between the
case where image pairs do not necessarily share any content (colour transfer),
and those taken from the same scene (colour stabilisation). The latter can be
understood as a constrained colour transfer problem. Some applications, as image
stitching, require colour uniformity across a set of images (more than two images)
from the same scene.

Colour transfer

The aim of colour transfer methods is to obtain an image that has the structure of
the source image and the colours of the reference image. In this case, images might
belong to completely different scenarios, and thus no content is shared between
images. In Figure 7.3 we present a colour transfer situation. The reference image
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has vivid orange and blue colours, and the source shows pale colours. The image
on the right corresponds to the result of colour transferring the reference palette
into the source image.

Figure 7.3: Colour transfer example: on the left the reference image, on the middle the source
image, and on the right the source image with the same look/appearance as the reference. Image
from [Reinhard et al., 2001].

A seminal work in colour transfer was proposed by Reinhard et al. [Reinhard
et al., 2001], where the pair of RGB images are first converted to a decorrelated
colour space, and then the mean and variance from the reference are transferred to
the source. Xiao and Ma [Xiao and Ma, 2006] also worked with colour statistics,
but unlike Reinhard method, the colour space treated is not relevant. Same authors
extended their work in [Xiao and Ma, 2010], where they proposed a preserving-
gradient colour transfer technique, and an evaluation metric for colour transfer
methods. The method presented by Kotera [Kotera, 2005] proposed to compute
the principal components of the colour clusters, in order to match the principal
axes of the source to the reference image by a matrix multiplication (rotation and
scaling). Pouli and Reinhard [Pouli and Reinhard, 2011] performed histogram
matching along different scales given images of different dynamic ranges. The
authors worked in CIELAB colour space.

The method of Pitié et al. [Pitié et al., 2005] defines the images as probability
density functions, and then matches them through an iterative non linear process,
involving only one dimensional marginals. In [Pitié et al., 2007], they extended
their work by considering the gradient, in order to remove the artefacts that might
appear in the colour matched image. Some methods use optimal transport, in
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order to minimise the cost of transferring probability density distributions of the
source image, into the reference one, [Rabin et al., 2014] and [Ferradans et al.,
2014]. On the latter, the authors proposed a new formulation for discrete optimal
transport, and then they applied it to colour transfer problem.

Nguyen et al. [Nguyen et al., 2014a] presented a colour transfer method that
first applies colour constancy to the input images, then it performs luminance
matching, and finally the colour gamuts are aligned by a linear transformation.
The algorithm of [Nguyen et al., 2014b] works for RAW input images in order
to colour match the linear RGB colour spaces of different cameras (source and
reference). In addition, it needs several images taken under different illuminant
from both source and reference cameras. Gong et al. [Gong et al., 2016,Gong et al.,
2017] proposed a colour transfer method based on a homography transformation
and a mean intensity mapping.

All the above algorithms are global methods, although we find local ap-
proaches like [Tai et al., 2005, Xiang et al., 2009, Fecker et al., 2008] to name a
few.

Related applications to colour transfer have appeared recently. The method of
Lindner and Süsstrunk [Lindner and Süsstrunk, 2015] uses semantics to determine
a specific colour style or look for a given image, what they called semantic colour
transfer. In this case, the semantics are equivalent to the reference image, and
the input image would be the source. The authors apply tone-mapping curves
to each colour channel depending on the semantic concept applied. Also the
method of [Vazquez-Corral and Bertalmı́o, 2018] shows how to modify a gamut
mapping method so it can be used for this problem, but also for colour coherence,
where the goal is to modify a source image to make its colours consistent with
the colours of an unrelated reference one, but without changing the look of the
source.

Colour stabilisation

Colour stabilisation tackles the situation where some regions or objects appear
in both the reference and the source images. These approaches focus on those
corresponding regions to estimate the colour matching transformation. Figure 7.4
presents an example of colour stabilisation. On the left, the reference image, and
on the middle the source image, which was taken in the same scene using zoom
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out. Finally on the right, the colour matched image where we can appreciate the
same colour appearance as shown in the frame of the reference.

Figure 7.4: The reference image on the left, the source image on the middle, and on the right the
colour stabilised image on the right. Image from [Vazquez-Corral and Bertalmı́o, 2014a].

In their seminal work HaCohen et al. [HaCohen et al., 2011] presented a
method to obtain dense correspondences between the images by computing corre-
sponding patches [Barnes et al., 2010]. The estimation of the correspondences is
combined with a global colour mapping model.

Vazquez-Corral and Bertalmı́o [Vazquez-Corral and Bertalmı́o, 2014a] pro-
posed a colour stabilisation algorithm that consists of estimating a power law
(γ value) for each of the images, and a single 3 × 3 matrix, to colour match
the source image to the reference. It is built on the assumption that in digital
cameras the colour encoding can be expressed as a matrix multiplication followed
by a power law (gamma correction). In a similar way, the method of Frigo et
al. [Frigo et al., 2016] presented colour stabilisation for video sequences. The
colour correction model used is based on channel-based non-linearity (gamma
correction) and channel-based scaling estimation ( 3× 3 diagonal matrix).

The authors of Hwang et al. [Hwang et al., 2014] proposed to use moving
least squares for colour stabilisation, by incorporating a probabilistic measure to
ensure robustness against noise and outliers. The colour transformation is defined
as affine, and they used extrapolation on those parts of the image where there are
no common regions.

Colour consistency among multiple views

Colour consitency is an extension of colour stabilisation, and it is used when a
set of images from the same scene need to be colour matched. For example for
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image mosaicing, 3D reconstruction, etc. Figure 7.5 presents a set of images
taken from the same location, and focused on different objects of the scene. Some
of the pictures share the same content, which will be used for estimating colour
consistency in the whole image sequence.

Figure 7.5: Colour consistency example: a set of images from the same scene, with shared content
among them. Image from [HaCohen et al., 2013].

HaCohen et al. [HaCohen et al., 2013] extended their previous approach in
colour stabilisation problem [HaCohen et al., 2011], to the case of more than two
images. They computed colour transformation between image pairs with shared
content, and then those mappings can be composed in order to obtain stability in
the whole image stack.

In a recent work, Park et al. [Park et al., 2016] proposed a method that uses
rank minimisation in all the set of correspondences between the image stack. They
use a model for colour correction based on a channel-based power law (gamma
correction), and a scale factor (white balance). Therefore, in the optimisation they
use the 2-rank constraint.

Xia et al. [Xia et al., 2017] presented a method to achieve colour consistency
in image stitching. On the overlapping regions among the shots, it computes
parametric curves for each channel under colour, gradient and contrast constraints.

In Tian and Cohen [Tian and Cohen, 2017] approach colour consistency is
achieved by first categorising images in low and high quality. Then, the set of
high quality images are colour matched, and used for colour transferring with the
best match among the low quality set.

A review of the performance of colour consistency methods is presented in
Xu and Milligan et al. [Xu and Mulligan, 2010] for imaging stitching.

It is important to mention that in general, the source and reference images are
assumed to be gamma corrected. Vazquez-Corral and Bertalmı́o [Vazquez-Corral
and Bertalmı́o, 2016] proposed the first work on colour stabilisation dealing
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with logarithmic encoded images. The method relies on finding a sufficiently
large number of achromatic matches among source and reference, which in some
situations may be a challenging limitation. In the next chapter, we will present our
proposed method on colour stabilisation, for image pairs encoded with unknown
non-linearities.
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CHAPTER 8

Colour stabilisation for cinema content

Colour matching techniques aim to map the colours of one image, defined as
source, to those of a second image, defined as reference. A particular case is
colour stabilisation, where the two pictures are taken from the same scene and
differ in terms of colour. These colour differences are due to the use of different
camera models, or even when the same camera model is used under different
settings (white balance, exposure time, aperture, etc.). The final output from
most digital cameras is a non-linear image that has been encoded with a power
law function, known as gamma correction. Although this encoding technique
is still used for LDR content, currently cinema cameras use other non-linear
encodings that are more suitable for HDR scenes, like logarithmic-encodings. In
this context, we present in this work a colour stabilisation technique that adapts
to any non-linear encoded input.

This chapter is based on the work presented in SMPTE 2017 ‘Color-matching
Shots from Different Cameras Having Unknown Gamma or Logarithmic Encoding
Curves’ [Gil Rodrı́guez et al., 2017], and its journal extension, in preparation,
with the title ‘Color matching images with unknown non-linear encodings’.

Motivation: encoding techniques for cinema content

Digital cameras perform, in general terms, the following in-camera steps: demo-
saicing, white balance, colour correction (from RGB camera sensor to device
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Figure 8.1: Linear response versus gamma-corrected and logarithmic response (perceptual). The
gamma correction was defined as power 1/2.2, and the logarithmic curve an ARRI Log C.

independent colour space), encoding standard (usually a gamma correction),
and compression. Bianco et al. [Bianco et al., 2012] proposed a generic colour
processing pipeline for digital cameras

Iout = (A · Ilin)1/γ , (8.1)

where Iout is the output image,A is a 3×3 matrix which carries colour information
and white balance, γ value defines a power law function, and Ilin is the linear
image read by the camera sensor after demosaicing. This is a simplified version
of the pipeline, since other preprocessing techniques, like denoising, contrast
enhancement, etc. might be applied.

Although gamma correction has been the most used encoding technique, it fails
when working with high dynamic range (HDR) imaging, since in low luminance
areas quantisation artifacts might appear. Current professional cinema cameras
are able to capture a wide range of luminance, and therefore, a compression of
the data is needed for storage, while preserving all the details and appearance. At
present, cinema cameras allow to encode the final coloured image by replacing
the gamma correction with a logarithmic function. The general form (common to
the most popular log-encoding methods [Brendel, 2011], [Corporation, 2009])
can be expressed as:

Iout = c log10 (a ·A · Ilin + b) + d, (8.2)

where Iout and Ilin are defined as above, and the parameters a, b, c, and d are
constant real values (varying for different camera manufacturers and camera
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settings). Figure 8.1 shows the plot of linear (dashed), gamma-corrected (circle)
and logarithmic (continuous) responses to linear values. Notice that gamma
correction and logarithmic curve assign respectively 50% and 80% of the output
range to the 20% of the linear intensity values, respectively.

Our main contribution in this work is a method that i) converts images encoded
following the type of Equation (8.2) to the type of Equation (8.1), and ii) that
colour stabilises pair of images which were taken with unknown camera settings
and/or unknown encoding non-linearities. The proposed method first modify the
initial image, and then estimates a gamma correction, and a matrix that transforms
the colours of a source image to a given reference. We compare our method
against state-of-the-art colour matching methods, and we show that our results
outperform the rest of the algorithms both quantitative and qualitatively.

The proposed framework

We present a colour stabilisation framework that takes as input an image pair
encoded with gamma or logarithmic curves. The main steps of our method can be
outlined as follows:

1. Given two input images, we correct the log-encoded image(s) in order to
transfer the inputs to adopt the form of a regular gamma-corrected ones.

2. We colour stabilised the images by estimating a 4 × 4 matrix, and two
power law values.

3. Finally, we undo the correction made in the first step if necessary (in case
the original reference image is log-encoded).

We refer the reader to the flowchart of the proposed model in Figure 8.2.

From log-encoded to gamma-corrected images

Let us consider a log-encoded image as in Equation (8.2),

Ilog = c log10(a ·A · Ilin + b) + d, (8.3)
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Figure 8.2: Flowchart of the proposed colour stabilisation method. For simplicity, the diagram
shows only the colour matching from source image to reference one. Given two non-linear encoded
images, reference (Iref ) and source (Isrc), we apply the transformations Tref and Tsrc to the
image pair. These transformations are defined as the power 10 function 10×, in case of a given
log-encoded image; and as the identity Id, in case of gamma corrected input. Then, we compute a
set of correspondences ptsref and ptssrc, using standard feature descriptor (e.g. in this chapter
SIFT [Lowe, 1999]). From this set of corresponding pixel locations, we estimate the parameters
{γref , γsrc, Hsrc} in the pixel values correspondences. The computed values are applied to the
Tsrc(Isrc) image. Finally, T−1

src function is applied to the colour matched image.

If we apply a power 10 function to Equation (8.3), we obtain the following
expression

10Ilog = 10log10(a·A·Ilin+b)c · 10d (8.4)

= (a ·A · Ilin + b)c · 10d.

In most of the definitions of the logarithmic curves, the value of parameter b is
usually small. As Figure 8.3 shows, setting b = 0 does not change significantly
the logarithmic curve. Notice that for the three different logarithmic curves
(continuous lines), their equivalent curves fixing b = 0 (dashed lines) lie on top.
Therefore, we can simplify Equation (8.3) by neglecting b,

10Ilog = (a ·A · Ilin)c · 10d = (K · Ilin)c, (8.5)

where K = a · A · 10d/c is a matrix with same size as A. We start from Equa-
tion (8.3), and by applying power 10 function to it, we end by getting an expression
like in Equation (8.1). Therefore, given two log-encoded images Iref and Isrc,
the first stage in our algorithm is to apply power 10 to obtain 10Iref , and 10Isrc .
These two images behave as gamma corrected images.
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Figure 8.3: Graph of 3 logarithmic encoded curves in three different colours: Log C ARRI of EI
320 (green), Log C ARRI of EI 1280 (magenta) [Brendel, 2011], and S-Log [Corporation, 2009]
(blue) plotted in continuous lines. In addition, the same logarithmic curves by setting b = 0 in their
definitions (dashed lines). Note that the distance between the dashed and continuous lines from the
same colour is small.

Colour stabilisation

We start by transforming, if needed, input images Iref and Isrc into gamma-
corrected images I ′ref and I ′src. Then we compute a set of correspondences ptsref
and ptssrc. Notice that we use SIFT [Lowe, 1999] for finding corresponding
pixels, although it can be replaced by any other method. It is important to note
that we compute the correspondences between I ′ref ↔ I ′src, and I ′src ↔ I ′ref ,
and select those that appear in both directions. This allows us to discard some
potentially incorrect correspondences. Let us now define the pixel values in the
corresponding locations of I ′ref and I ′src as

{(R′ref , G
′
ref , B

′
ref )t}i, and {(R′src, G

′
src, B

′
src)

t}i, (8.6)

where i = 1, . . . , N denotes the number of correspondences. We follow the idea
from the colour stabilisation model proposed in [Vazquez-Corral and Bertalmı́o,
2014a],

Hsrc · I ′
γsrc

src
∼ I ′

γref

ref
, (8.7)

where Hsrc was a 3× 3 matrix that transforms colours from the source to match
the ones of the reference, and γref , γsrc are the gamma correction values. We
extend H as a projective transformation with size 4× 4 (inspired by the colour
homography by [Gong et al., 2016], [Gong et al., 2017]). In this way, the model
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can deal not only with pixels in the core of the colour gamut, but also with those
values that appear on the border, which are the most affected by gamut mapping
and tone mapping. Then, from the set of correspondences, we can build a system
of equations considering matrix size 4× 4 and homogeneous coordinates,

Hsrc ·


R
′
src

G
′
src

B
′
src

1


γsrc

−


R
′
ref

G
′
ref

B
′
ref

1


γref

= 0, (8.8)

Href ·


R
′
ref

G
′
ref

B
′
ref

1


γref

−


R
′
src

G
′
src

B
′
src

1


γsrc

= 0,

where {γsrc, γref , Hsrc, Href} are the unknowns. We propose a new single
optimisation process, where the only constraint is Href ·Hsrc ∼ I . The objective
function considers the l2-norm (in 3× 1 non-homogeneous coordinates) on RGB,
as well as the same norm in Lab colour space. Finally, the matrices and non-
linearities are applied to the entire images as in Equation (8.7), and we obtain the
colour matched images:

I
′′
src =

[
Hsrc · I ′

γsrc

src

]1/γref
. (8.9)

Undo power 10 function

If Isrc was log-encoded, we apply a log10 function to the result of the previous
step so as to undo the power 10 transform we applied at the beginning.

Results and Discussions

This section is divided into 4 different parts. First, we describe how we have
created an image dataset for evaluation. Second, we compare our approach with
seven popular colour matching methods. Third, we evaluate the performance of
the rest of methods by applying the proposed preprocessing step in case of log-
encoded images. Finally, we show results considering other non-linear encoding
techniques coming from real cinema cameras.
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Figure 8.4: Evaluation framework. On the left, data acquisition is described. Pictures are taken from
the same scene, and from two different points of view Perspective1 and Perspective2. From the first
one, the reference image is taken, and from the second, the source and the ground truth. Images
are stored in RAW and JPEG format, and we chose different camera settings P1, for reference
and ground truth, and P2 parameters for the source. On the middle, data is created by linearising
the JPEG image, i.e undoing the gamma correction I . Once linearised, a random non-linearity
is applied nonlin, and the new image and the non-linearity are stored {I, nonlin}. Finally, the
reference Ref and source Src become the input images for the colour matching methods, and the
corresponding output is evaluated against the GT.

Dataset

Our data is composed of different scenes, where each of them contains a reference
image Ref, a source image Src and a ground truth image GT. In order to acquire
our data, we work in camera manual mode to have full control over exposure
time, white balance, ISO value, and aperture. We stored RAW and JPEG formats
for each image. In that way, we have the linear information read by the camera
sensor (RAW), as well as the final compressed image (JPEG). Images were taken
using two camera models, Nikon D3100 (12-bits) and Canon EOS80D (14-bits).
Let us explain the steps we follow from acquisition to the final triplet Ref, Src,
and GT images for each scene:

• Set the parameters of the camera (exposure time, white balance, ISO value,
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and aperture) P1, the camera position Perspective1, and acquire the Ref set
RAW and JPEG.

• Change the camera position Perspective2, and vary the camera settings to a
different configuration P2 to acquire the Src set.

• Use the same camera parameters as the Ref P1, and the same camera
position as the Src Perspective2, then we acquire the GT set RAW and
JPEG.

• For each pair (RAW, JPEG) define {I, nonlin}:

1. Preprocess the RAW input to obtain an RGB linear image using
DCRAW [Coffin, 2010] open source code, we refer to this image as
RAWrgb.

2. Estimate the γ correction curve, between the preprocessed RAWrgb

and the JPEG using [Vazquez-Corral and Bertalmı́o, 2014a].

3. Undo γ from the JPEG image in order to obtain a linear image called
I with the camera colour processing still in.

4. Apply a random generated non-linearity to I . In case of gamma
correction, we set the range of values to be selected [1.7, 2.7], and for
logarithmic curves, we select the definitions from Log C ARRI (a total
of 11 curves) [Brendel, 2011], and S-Log from Sony [Corporation,
2009]. We name the applied non-linearity nonlin.

5. In case of GT, the same nonlin as the one selected for the reference
is applied.

Analysis of our colour stabilisation model

In this section, we explore the performance of our colour stabilisation model
(Equation (8.9)), by modifying the size of the colour correction matrix, originally
a 3 × 3 matrix. We redefine the linear transformation as an affine 3 × 4, and
the projective 4× 4 matrix (inspired by the colour homography of [Gong et al.,
2016], [Gong et al., 2017]). We consider the affine transformation as particular
case of a projective one, by adding a last row of zeros except the last value,
which will be one. In this way, we redefine the RGB values as 4 × 1 vectors
[R,G,B, 1]t (homogeneous coordinates). Thus, after performing the respective
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transformations, we go back to 3× 1 size vectors, dividing all the elements by
the last element of the resulting 4× 1 vector, and discarding the last one.

In the quantitative evaluation we select the following colour metrics: ∆E∗00

[Sharma et al., 2005], PSNR of the luminance, colour PSNR defined as CPSNR,
CID [Lissner et al., 2013], and root mean squared error (RMSE). In Table 8.1
the results of for the three matrix sizes are shown. We can observe that the
performance of 3× 4 and 4× 4 matrices across different metrics is significantly
better than the 3× 3 transformation matrix. The most noticeable improvement
is in the PSNR of the red colour channel, boosting almost 0.9 in decibels. This
affects directly the performance of the CPSNR metric.

Table 8.1: Study of our approach considering different matrix size (3×3, 3×4, and 4×4). Results
show mean (µ) and median (µ̂) among 35 pairs, where both reference and source are γ-corrected
images.

∆E∗00 PSNR L CPSNR CID RMSE

3x3 µ 3.726 27.420 26.116 0.164 0.054
µ̂ 3.554 27.228 24.965 0.149 0.056

3x4 µ 3.312 27.578 26.745 0.153 0.050
µ̂ 3.197 27.205 26.318 0.134 0.048

4x4 µ 3.263 27.650 26.907 0.145 0.049
µ̂ 3.092 27.271 26.576 0.125 0.047

In Figure 8.5 we show the reference image (first column and first row), the
source (second column and first row). The GT is presented in first column and
second row. Then, from the second till the fourth column we show the colour
stabilised images after applying our method, by varying the matrix sizes. For each
result of the different matrix sizes 3× 3, 3× 4 and 4× 4, we show some crops
in the second row. Notice the differences in colour within the colourchecker. In
case of the 3× 3 matrix (the second column), we can appreciate that the colour of
the orange in the tree does not match the colour of the GT. It can also be noticed
some bluish colour cast in the whole image. However, the results obtained with
affine and projective transform show better matching between colourcheckers, as
well as the colour of the oranges. The difference between these two, although
very subtle, appear in the door, in which 4× 4 result recovers in more detail the
bars of the front door. From now on, we will report our results for the 4× 4 case.
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Reference Source

a) GT b) 3× 3 c) 3× 4 d) 4× 4

Figure 8.5: Results of varying matrix size in our colour stabilisation method. On the first row, the
reference and source images. On the second row, we present the GT, and the rest of the columns
the outputs of considering a 3× 3, 3× 4, and 4× 4 matrix, repectively. On the last row, we show
crops of the GT and our 3 different results.

Experiments versus state-of-the-art

We evaluate our approach against seven state-of-the-art methods: Reinhard et
al. [Reinhard et al., 2001] (Reinhard), Kotera [Kotera, 2005] (Kotera), Xiao and
Ma [Xiao and Ma, 2006] (Xiao), Pitié et al. [Pitié et al., 2007] (Pitie), Ferradans
et al. [Ferradans et al., 2014] (Ferradans), Park et al. [Park et al., 2016] (Park),
HaCohen et al. [HaCohen et al., 2011] (HaCohen), and Gil Rodrı́guez et al.
[Gil Rodrı́guez et al., 2017] (Gil). We want to emphasise that for Pitié et al. [Pitié
et al., 2007], we focus only on the global part of the method. We studied all
possible combinations of applied non-linearities to the reference and source image:
i) two gamma-corrected images, ii) two log-encoded images, iii) one gamma-
corrected as reference and one log-encoded as source, and iv) one log-encoded
as reference and one gamma-corrected as source. In the quantitative evaluation
we select the following colour metrics: ∆E∗00 [Sharma et al., 2005], PSNR of
luminance channel (PSNR L), colour PSNR defined as CPSNR, CID [Lissner
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Table 8.2: Results from the comparison among 35 image pairs for: 1) two γ-encoded images,
2) two Log-encoded images, 3) reference Log-encoded and source γ-corrected, and 4) reference
γ-corrected and source Log-encoded.

∆E∗00 PSNR L CPSNR CID RMSE
µ µ̂ µ µ̂ µ µ̂ µ µ̂ µ µ̂

R
ef
γ

-S
rc
γ

Kotera 11.111 7.686 21.122 23.877 19.786 21.040 0.458 0.394 0.145 0.089
Pitie 3.567 3.394 26.162 25.946 25.696 25.769 0.174 0.157 0.055 0.051
Reinhard 4.777 4.652 25.525 25.162 23.904 23.571 0.205 0.191 0.068 0.066
Xiao 4.377 4.232 25.940 26.077 25.183 25.270 0.196 0.160 0.059 0.055
Ferradans 5.522 5.308 23.715 23.874 23.028 22.560 0.260 0.237 0.078 0.074
Park 3.428 3.020 27.604 27.381 26.595 26.384 0.157 0.134 0.051 0.048
Gil 3.726 3.554 27.420 27.228 26.116 24.965 0.164 0.149 0.054 0.056
Ours 3.263 3.092 27.650 27.271 26.907 26.576 0.145 0.125 0.049 0.047

R
ef

lo
g

-S
rc

lo
g

Kotera 14.234 8.381 18.586 21.081 17.615 19.676 0.551 0.481 0.179 0.104
Pitie 3.978 4.044 25.797 25.369 25.119 25.099 0.207 0.201 0.059 0.056
Reinhard 7.878 7.916 22.656 22.512 19.899 19.369 0.364 0.368 0.107 0.108
Xiao 5.632 5.599 24.330 23.910 23.199 23.190 0.272 0.264 0.072 0.069
Ferradans 8.587 7.047 19.351 20.831 18.925 20.250 0.395 0.325 0.128 0.097
Park 6.768 4.548 26.217 26.162 23.961 24.196 0.296 0.210 0.083 0.062
Gil 4.057 3.644 27.027 26.689 25.665 25.379 0.193 0.155 0.057 0.054
Ours 3.400 3.022 27.446 27.158 26.587 26.479 0.161 0.135 0.050 0.047

R
ef

lo
g

-S
rc
γ

Kotera 15.704 12.405 17.017 18.864 15.970 16.625 0.631 0.586 0.199 0.148
Pitie 3.909 3.830 25.796 25.498 25.225 25.020 0.200 0.201 0.059 0.056
Reinhard 7.928 7.516 21.260 21.056 18.883 18.687 0.393 0.392 0.117 0.116
Xiao 7.926 7.554 21.446 20.539 20.438 20.059 0.403 0.416 0.100 0.099
Ferradans 8.578 7.954 19.654 19.163 19.172 18.518 0.381 0.369 0.122 0.119
Park 5.895 5.242 24.038 23.352 22.972 22.294 0.305 0.290 0.078 0.077
Gil 4.066 3.667 27.102 26.847 25.741 25.627 0.188 0.178 0.058 0.052
Ours 3.377 3.140 27.571 27.606 26.712 26.632 0.157 0.129 0.050 0.047

R
ef
γ

-S
rc

lo
g

Kotera 12.658 9.202 18.629 20.748 17.893 20.089 0.538 0.430 0.162 0.099
Pitie 3.752 3.903 25.957 25.538 25.378 25.217 0.184 0.173 0.057 0.055
Reinhard 6.438 6.246 22.861 22.642 21.776 21.666 0.291 0.291 0.084 0.083
Xiao 6.794 5.734 23.023 22.770 22.097 22.215 0.322 0.314 0.081 0.077
Ferradans 6.317 6.165 22.222 21.826 21.577 21.357 0.318 0.298 0.089 0.086
Park 12.808 9.620 20.746 22.593 18.779 19.351 0.510 0.454 0.147 0.108
Gil 3.863 3.476 27.197 26.672 25.889 25.341 0.173 0.162 0.054 0.054
Ours 3.444 3.313 27.395 26.922 26.563 25.684 0.152 0.144 0.050 0.052

et al., 2013], and root mean squared error (RMSE). For each metric we show the
mean (µ) and the median (µ̂). Notice that in order to compare the colour stabilised
and the GT in case of log-encoded images, we first undo the non-linearity (since it
is known) from the result and GT, and then we apply a gamma-correction of value
1/2.2. We use the data computed as described in Section 8.3.1, which consists of
35 image pairs for each comparison.

In the quantitative comparisons we show in green the best results, and then in
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blue and orange, the second and third rated, respectively. In Figures 8.6 and 8.7,
the log-encoded images are shown in BT.709.

Gamma-corrected inputs

The first block in Table 8.2 presents the results of pairs encoded both by gamma
correction in the first block. In most of the metrics, our method outperforms the
rest of algorithms. Except for median values of ∆E∗00 and PSNR L, in which [Park
et al., 2016] obtains better results. The method of Park is ranked second, and [Pitié
et al., 2007] and [Gil Rodrı́guez et al., 2017] dispute the third best ranked.

In the first two rows of Figure 8.6, we show the results for two different
scenes. The first column shows the reference, the second the source, and the
third the GT. In this example, we compare our algorithm (last column, first and
second row) against the method of [Ferradans et al., 2014] (fourth column, first
row), and [Gil Rodrı́guez et al., 2017] (fourth column, second row). In the first
scene, [Ferradans et al., 2014] introduces gray colours in the output of the floor.
From last scene, [Gil Rodrı́guez et al., 2017] method cannot recover the blueish
intensity of the wall.

Log-encoded inputs

We present the results of 35 image pairs, this time the inputs were encoded with
logarithmic curves. In the second block of Table 8.2, it is shown that our method
outperforms the rest of algorithms in all the metrics.

From Figure 8.6 (third and fourth rows), [HaCohen et al., 2011] washes out
the green colour. In the second scene, the output from [Pitié et al., 2007] cannot
recover the red colour of the garage in the background, and it presents a purplish
colour in one of the doors, and it makes appear some clouds on the sky.

Log-encoded reference and gamma-corrected source

In this comparison, the reference image is log-encoded, and the source is a gamma-
corrected image. In the third block in Table 8.2, our proposed method outperforms
the rest of the algorithms in all metrics. The method of [Gil Rodrı́guez et al.,
2017] and the method of [Pitié et al., 2007] ranked second and third, respectively.

136



“GilRo˙PhD˙Thesis” — 2018/10/16 — 15:17 — page 137 — #165

Reference Source GT Ferradans Our method

R
ef
γ

-S
rc
γ

Gil

HaCohen

R
ef

lo
g

-S
rc

lo
g

Pitie

Xiao

R
ef

lo
g

-S
rc
γ

Park

Reinhard

R
ef
γ

-S
rc

lo
g

Kotera

Figure 8.6: Results of all the methods for the four comparisons. Each block represents: 1) gamma-
corrected image pair, 2) log-encoded input images, 3) log-encoded reference and gamma-corrected
source and 4) gamma-corrected reference and log-encoded source. The first column presents the
reference, the second shows the source, the third the GT, the fourth the methods result, and the last
our result. We present for 1) [Ferradans et al., 2014] and [Gil Rodrı́guez et al., 2017] methods,
2) [HaCohen et al., 2011] and [Pitié et al., 2007] methods and 3) [Xiao and Ma, 2006] and [Park
et al., 2016] methods, and 4) [Reinhard et al., 2001] and [Kotera, 2005] methods.
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Figure 8.6 shows the results from [Xiao and Ma, 2006] (fifth row), and [Park
et al., 2016] (sixth row). In the first scene, notice that [Xiao and Ma, 2006]
enhanced yellow and red colours, and it saturates the upper right corner of the
wall. [Park et al., 2016] method presented colour shift in the floor, in addition it
intensifies purple colour on the right side.

Gamma-corrected reference and log-encoded source

The last block in Table 8.2 presents the results where the reference is a gamma-
corrected image, and the source is log-encoded one. For all the metrics, our
method outperforms the rest of algorithms. [Gil Rodrı́guez et al., 2017] method
ranks second, and results from ∆E∗00, CPSNR, CID and RMSE metrics are very
close to [Pitié et al., 2007].

Figure 8.6 shows the results from [Reinhard et al., 2001] and [Kotera, 2005]
(last two rows). The result from [Reinhard et al., 2001] shows a yellowish cast on
the wall. The method of [Kotera, 2005] presents washed out colours, see the chair
and the wall behind it.

Table 8.3: Results show mean (µ) and median (µ̂) among 22 pairs, where reference and source
images are encoded using logarithmic curves.

∆E∗00 PSNR L CPSNR CID RMSE

HaCohen µ 3.119 27.700 27.243 0.149 0.046
µ̂ 2.836 26.619 26.548 0.139 0.047
µ 3.089 27.695 27.093 0.145 0.047Ours
µ̂ 2.989 27.219 26.553 0.134 0.047

Let us note that the method of [HaCohen et al., 2011] is not presented in
Table 8.2, since it did not compute solutions for all the image pairs. In case 1), it
did not perform results for 10 of the images, which represents almost the 30% of
total image pairs. In case 2), 13 of the image pairs were not computed. In cases
3) and 4), [HaCohen et al., 2011] method does not provide result for 15 and 20
image pairs, respectively. In Table 8.3 we present [HaCohen et al., 2011] and our
results, only on those image pairs computed by [HaCohen et al., 2011] method
in case 2). In that reduced set of images HaCohen’s results are comparable with
ours, but its lack of results makes it unsuitable for real-like scenarios.
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Experiments with power 10

In this section we want to check what happens if we perform the proposed
preprocessing in order to adapt the log-encoded images as gamma-corrected, in
all the methods we compare with.

Table 8.4: Results from the comparison among 35 image pairs for: 1)) two Log-encoded images,
2) reference Log-encoded and source γ-corrected, and 3) reference γ-corrected and source Log-
encoded. In this case, we applied power 10 to the inputs (if necessary) for the rest of algorithms,
except Gil.

∆E∗00 PSNR L CPSNR CID RMSE
µ µ̂ µ µ̂ µ µ̂ µ µ̂ µ µ̂

R
ef

lo
g

-S
rc

lo
g

Kotera 10 11.919 8.285 20.771 22.503 19.286 20.719 0.487 0.403 0.148 0.092
Pitie 10 3.790 4.074 25.961 25.871 25.377 25.332 0.197 0.188 0.058 0.054
Reinhard 10 5.238 5.216 24.824 23.975 23.190 23.178 0.231 0.211 0.072 0.069
Xiao 10 4.758 4.507 25.623 25.002 24.646 24.542 0.219 0.216 0.063 0.059
Ferradans 10 9.885 7.208 18.695 19.915 18.318 19.464 0.419 0.316 0.145 0.106
Park 10 4.137 3.843 26.858 26.733 25.626 24.901 0.204 0.170 0.057 0.057
Gil 4.057 3.644 27.027 26.689 25.665 25.379 0.193 0.155 0.057 0.054
Ours 3.400 3.022 27.446 27.158 26.587 26.479 0.161 0.135 0.050 0.047

R
ef

lo
g

-S
rc
γ

Kotera 10 11.775 8.609 20.918 22.022 19.308 20.385 0.485 0.407 0.147 0.096
Pitie 10 3.697 3.681 25.991 25.487 25.487 25.258 0.189 0.184 0.057 0.055
Reinhard 10 5.379 5.082 25.034 25.086 23.259 23.384 0.235 0.216 0.072 0.068
Xiao 10 4.905 4.565 25.556 25.031 24.599 24.649 0.227 0.205 0.064 0.059
Ferradans 10 7.649 6.155 20.637 21.916 20.167 21.338 0.353 0.318 0.113 0.086
Park 10 3.773 3.250 27.076 27.734 26.201 26.897 0.179 0.154 0.054 0.045
Gil 4.066 3.667 27.102 26.847 25.741 25.627 0.188 0.178 0.058 0.052
Ours 3.377 3.140 27.571 27.606 26.712 26.632 0.157 0.129 0.050 0.047

R
ef
γ

-S
rc

lo
g

Kotera 10 11.564 8.588 20.466 22.328 19.164 20.831 0.480 0.379 0.148 0.091
Pitie 10 3.721 3.895 26.064 25.783 25.477 25.508 0.183 0.165 0.056 0.053
Reinhard 10 5.579 5.300 24.691 24.479 23.073 22.759 0.250 0.256 0.074 0.073
Xiao 10 4.847 4.699 25.100 25.252 24.345 24.667 0.219 0.206 0.063 0.058
Ferradans 10 6.280 6.010 22.433 22.802 21.903 22.115 0.311 0.312 0.084 0.078
Park 10 6.262 4.023 26.168 26.592 24.278 24.857 0.269 0.192 0.080 0.057
Gil 3.863 3.476 27.197 26.672 25.889 25.341 0.173 0.162 0.054 0.054
Ours 3.444 3.313 27.395 26.922 26.563 25.684 0.152 0.144 0.050 0.052

Log-encoded inputs

Results show a considerable improvement between the original methods and
after applying power 10, see first block in Table 8.4. The only exception is
the algorithms of [Pitié et al., 2007] and [Ferradans et al., 2014], which have a
performance similar with and without power 10. In this case, the method of [Park
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et al., 2016] is ranked second and/or third in all of the metrics, whereas in the
previous performance, it was ranked third by only two metrics.

Figure 8.7 presents a comparison of the results of the methods with and
without the power 10 preprocessing, in first and second rows. The first column
corresponds to the GT, the second the output of the methods, the third the output
of the methods after applying power 10, and last column shows our result. Notice
that [Pitié et al., 2007] and [HaCohen et al., 2011] perform very similar with and
without power 10. Nonetheless, [Pitié et al., 2007] after applying power 10 looks
closer to the GT on the red doors of the fire fighters garage.

Log-encoded reference and gamma-corrected source

Results show a considerable difference between the original method and after
applying the power 10 preprocessing. Notice the boosting of [Park et al., 2016] ,
which improves significantly versus its original version. It is ranked second after
our approach, and in median PSNR L and CPSNR it gets the best results, see
Table 8.7 (second block). In Figure 8.7, the result from [Xiao and Ma, 2006] after
applying power 10 shows no saturation on the upper right corner of the wall, and
in addition the red cast appearing in the previous result is removed. [Park et al.,
2016] method present no colour shift on the floor, although it cannot completely
recover the yellow colour of the truck. We emphasise that power 10 function
boosts [HaCohen et al., 2011], from computing 57% of the cases, to reaching
almost 80%. Once again, the method of [HaCohen et al., 2011] is not presented
in this Table 8.4, since it did not compute a solution for 8 of the images.

Gamma-corrected reference and log-encoded source

In this last comparison, although [Park et al., 2016] improves their previous
results, it is not as noticeable as in the previous comparison. In this case it ranks
third only in PSNR L metric, see Table 8.4 last block. The method of [Pitié et al.,
2007] outperforms [Park et al., 2016] as opposed to previous case. [Park et al.,
2016] in this context shows a more constant performance in both cases. Notice
that in Figure 8.7, [Reinhard et al., 2001] method presents noticeable difference
between their original versions, and after applying power 10 function to the inputs
(fifth row). In the fifth row and fourth column, we observe how the colour of the
wall is brighter and closer to the greyish tone of the GT. The result of [Kotera,
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Figure 8.7: Results from applying power 10 to log-encoded inputs in all the methods. Each block
represents: 1) log-encoded input images, 2) log-encoded reference and gamma-corrected source
and 3) gamma-corrected reference and log-encoded source. The first column presents the GT, the
second shows the output of the original method, the third shows the output of the method applying
power 10, and the fourth our result. We present for 1) HaCohen and Pitie’s methods, 2) Xiao and
Park’s methods and 3) Reinhard and Kotera’s methods.
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2005] when applying power 10 is similar to the result of the original method,
nonetheless we can appreciate a subtle enhanced of contrast and more intense
green colour. The method of [HaCohen et al., 2011] is not presented in this
Table 8.4, since it did not compute a solution for 12 of the images. Nonetheless,
it recovers 8 more solutions when power 10 function is applied.

The results of our experiments show that the proposed framework (applying a
power 10 function to log-encoded images) boosts the performance of majority of
the methods we compare with. This is true both in terms of quantitative metrics
and image quality. With the exception of the algorithms of Pitié et al. [Pitié
et al., 2007] and Ferradans et al. [Ferradans et al., 2014], since those are based
on the probabilities of the images, and those are transferred even when power 10
function is applied.

Beyond gamma and log-encoded images: HLG and PQ

Current digital cinema cameras can encode images by using a logarithmic func-
tion. Nonetheless, there exist other decoding/encoding curves such as Perceptual
Quantizer (PQ) [SMPTE, 2014] and Hybrid Log-Gamma (HLG) [Borer and Cot-
ton, 2016]. These two non-linear encodings are well-known and defined. HLG is
a scene-referred encoding,

E′ =

{
r
√
E if 0 ≤ E ≤ 1

a log(E − b) + c if 1 < E is odd,
(8.10)

where E is the signal, and r, a and b are real numbers. As opposite of HLG
encoding, PQ is a display-referred decoding curve, and it needs to set the absolute
luminance of the display. PQ is defined as,

Y = L

(
V

1
n − C1

C2 − C3V
1
m

) 1
n

, (8.11)

where V is the input signal, Y is the display luminance, andL, m, n, C1, C2, C3

are real values.

In this section, we colour match pair of images encoded using different transfer
functions. The dataset we use for experiments is the one provided by ARRI
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in [Andriani et al., 2013]. This data contains high dynamic range images. We
select 10 image pairs from the dataset, and apply PQ, HLG and Log C ARRI
curves to the linear RAW data. In the case of PQ curve, we set up the absolute
luminance of the display to 1000 cd/m2. We colour stabilise all the possible
combinations of these figures.

Table 8.5: Results show mean (µ) and median (µ̂) among 10 pairs, where reference and source
images are encoded using HLG, PQ and logarithmic curves.

∆E∗00 PSNR L CPSNR CID RMSE

Kotera µ 3.344 32.505 30.567 0.110 0.045
µ̂ 4.117 30.379 29.061 0.114 0.052
µ 1.022 40.047 40.134 0.035 0.021Pitie
µ̂ 0.582 43.069 42.568 0.004 0.006

Reinhard µ 1.861 35.311 35.020 0.062 0.040
µ̂ 2.058 32.023 31.408 0.042 0.037
µ 1.891 32.965 32.789 0.061 0.032Xiao
µ̂ 2.066 30.379 30.244 0.054 0.033

Ferradans µ 4.820 24.692 24.624 0.183 0.073
µ̂ 3.865 25.364 25.485 0.145 0.052
µ 1.624 38.250 36.795 0.044 0.029Park
µ̂ 1.418 37.730 37.142 0.018 0.017
µ 0.657 43.933 43.076 0.006 0.007HaCohen
µ̂ 0.494 44.474 43.809 0.002 0.004
µ 1.775 36.086 35.636 0.068 0.029Gil
µ̂ 1.659 31.674 31.295 0.046 0.022
µ 0.310 48.324 47.649 0.002 0.005Ours
µ̂ 0.239 49.435 49.131 0.001 0.004

We compare our method, described in Section 8.2, with the algorithms pre-
sented in the previous experiments: Reinhard et al. [Reinhard et al., 2001] (Rein-
hard), Kotera [Kotera, 2005] (Kotera), Xiao and Ma [Xiao and Ma, 2006] (Xiao),
Pitié et al. [Pitié et al., 2007] (Pitie), Ferradans et al. [Ferradans et al., 2014]
(Ferradans), Park et al. [Park et al., 2016] (Park), HaCohen et al. [HaCohen et al.,
2011] (HaCohen), and Gil Rodrı́guez et al. [Gil Rodrı́guez et al., 2017] (Gil).
In order to compute the quantitative results, we undo the non-linearity (since it
is known) of the resulting colour matched image and the GT, and then apply a
γ correction of 1/2.2, as performed in previous experiments. From the data in
Table 8.5, it is apparent that our method is accurate when working with real data
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Source (logC EI 800) Reference (HLG) GT Our result

Source (logC EI 800) Reference (logC EI 1600)

Source (PQ) Reference (logC EI 800)

Figure 8.8: ARRI dataset. From left to right, source, reference, GT and our result. Each row
represents a different comparison and scenario. The GTs and our results are tone mapped using
[Cyriac et al., 2016].

and common situations. We compare our results against the methods considered
above, using their original versions. These HDR images contain a high percentage
of all the pixel values within very low levels, boosting the metric results for all
the methods.

Figure 8.8 presents the image results, where we show the GTs and our results
after applying tone mapping operator (TMO) from [Cyriac et al., 2016], instead
of the gamma correction. The reference and the source are displayed directly, in
order to appreciate the differences between applying the different curves. As it
can be seen from last column in Figure 8.8, our method recovers the colours and
appearance of the reference image, in different input situations. We show for 3
different scenes (rows), and for each scene: the reference (first column), source
(second column), GT (third column) and our result (last column). Notice that
on the last row, where reference is PQ and source HLG encoded, our result (last
column) is not able to completely recover the blue on the t-shirt on the left upper
corner. In our output, the blue appears brighter than in the GT. This is due to the
fact that no correspondences are able in this particular blue, thus the recovery is
not perfect.
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Conclusion

We have presented a method for colour matching any combination of non-linear
encoded images: gamma-corrected to gamma-corrected, logarithmic-encoded to
gamma-corrected or logarithmic-encoded to logarithmic-encoded. The method
is based on the modification of logarithmic-encoded images so as they behave
as gamma-corrected ones. In this way, we can colour stabilise the images by
estimating a 4 × 4 matrix and a power law value. Our results show that our
method outperforms state-of-the-art algorithms quantitatively and qualitatively,
considering all four different cases. In addition, we showed that our algorithm
works as well for other non-linear enconding curves, such as HLG and PQ. We
believe this work would encourage to consider further non-linear encodings in
current camera colour processing models. In a future work, we would like to
explore the more general case, when no content is shared among the input images.
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CHAPTER 9

Conclusions and Future Work

The main objectives of this thesis were to propose HDR methods for still images
and video, and to present a colour stabilisation method for images encoded with
unknown non-linearities. With this purpose, we looked into the camera inner
processes to be able to understand and redefine these problems in terms of digital
camera knowledge.

We studied and analysed HDR reconstruction methods from multiple exposure
images. Most of HDR methods reconstruct the final image by first estimating
the camera response function (CRF). In Chapter 5, our implementation follows a
different path. First, we showed that the building assumptions of CRF estimation
are not correct. These assumptions are the uniqueness of the CRF, the indepen-
dence of colour channels, and the full recovery of the dynamic range of the scene.
We prove the first assumption is wrong by estimating the γ non-linearity applied
when varying the exposure time between the RAW and its corresponding JPEG
image. Our results indicates that gamma correction can be adapted to different
exposure times, and thus it breaks the uniqueness assumption of the CRF. It is
well known that colour channels in sRGB space are correlated, and consequently
not independent. We showed this fact by computing the colour transformation
between the RAW and JPEG image, and highlighting that the matrix was not
just diagonal, but diagonal dominant with non-zero values outside the diagonal.
Finally, although the multiple exposure techniques aim to recover the whole DR
of the scene, we showed that the presence of glare due to the optics of the camera
reduces the DR that the camera can recover, and this is smaller than the actual
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DR of the scene.

These observations make us to present a method to create HDR images from
a stack of non-linear images. We show that by setting one of the images as the
reference (the best exposed one) we can transform the rest of the stack by mapping
them into the ‘space’ of the reference one. It is based on the definition of the
colour processing pipeline, and in this way we can relate images from the same
scene from a theoretical point of view. This transformation step let us work with a
‘linearised’ set of images that can be combined linearly to produce the final image
containing details in dark and bright areas. We introduced also the possibility of
choosing several images as reference, since it will help to preserve details in very
dark/bright areas, and more robustly and independently than from the selection of
just a single reference.

In Chapter 6, we proposed a method for HDR video generation from common
DSLR cameras. One of the main issues of HDR video is the presence of movement
in the scene, since it might cause ghosting artefacts on the final results. For this
reason, we used a particular software available for many of the current DSLR
cameras. This software gives the option of capturing video in high definition by
alternating rows of two different ISO values. In this way, all the rows are captured
at the same time, regardless of the ISO value used, and then the appearance
of ghosting artefacts can be diminished. We first reconstruct two images of
full resolution with these two different ISO values. For that, we modified a
deinterlacing algorithm proposed for video. Then, these two images are fused
linearly to create HDR video frames, and finally a TMO used for video is applied
to obtain the final HDR video ready to be displayed.

The development of HDR technology is changing the encoding techniques
that were the standard for LDR content. Many professional cameras record
in logarithmic instead of γ power law function. In Chapter 8, we presented a
technique that modifies logarithmic encoded images in order to make them behave
as γ corrected images. In this way, we can colour match image pairs encoded with
logarithmic curves in the same way as the colour stabilisation problem given two
gamma corrected images. We showed that this modification could also improve
existing colour matching techniques to handle log-encoded inputs. Moreover, we
studied the performance of the colour processing pipeline model considering a
projective transformation. This approximation is more accurate when dealing
with pixels that are close to the border of the colour gamut.
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Future work

Our current implementation of the method in Chapter 5, an HDR reconstruction
from a set of multiple exposed images, sets one image as the reference, and the
rest of images within the stack are transformed to the space of the ‘reference one’.
In order to transform them, we set as inputs the reference image, and the image in
the stack that we want to map. In this context, a different implementation was
also done, in which the images of the stack are transformed to the space of the
‘reference one’, by composing all the intermediate mappings till reaching the
reference image. For example, in a stack of 5 images, if we select image 3 as the
reference, in order to transform the first image into the reference, we will compute
the mapping from image 1 to image 2, and then compose it with the mapping from
image 2 to 3. It will be interesting, within this new implementation, to perform
an exhaustive analysis of the improvements, and/or advantages, and limitations
of it. On the one hand, we believe this new implementation will estimate better
correspondences in case there exist large differences between images exposure
times; and on the other hand, we should take into account that errors in the
parameters estimation would be propagated. It will also be relevant to investigate
weighting functions that can be used in order to combine the ‘linearised’ images
in a more efficient manner.

Our implementation of HDR video and [Sintes, 2017] are not yet real-time.
It will be interesting to code those parts that have been already parallelised in
the GPU using CUDA programming. We would like to automatically obtain the
values of the algorithm parameters depending on the image content, since these
are image dependent.

Regarding colour stabilisation approaches, we would like to extend our work
to tackle the more general case in which no content is shared between images.
This will change completely the current definition we made of the problem,
but nonetheless we could still use the fact that colour transformations can be
expressed as matrix multiplications. It will also be interesting the study of
different possibilities that will better approximate colours at the boundary of the
gamut. For example, by considering a different γ function for each channel.
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