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Abstract

Gamut mapping transforms the color gamut of an image to that of a target device.

Two cases are usually considered: gamut reduction (target gamut smaller than

source gamut), and gamut extension (target gamut larger than the source gamut).

Less attention is devoted to the more general case, when neither gamut is fully

included in the other. In this work we unify and expand two recent methods

for gamut extension and reduction, so as to simultaneously perform both forms

of gamut mapping in different regions of the same image without introducing

color artifacts or halos. We demonstrate the usefulness of this approach for the

traditional gamut mapping problem, and also how the proposed method can be

used to adapt the color palette of an image so that it is closer to that of a given

reference image. Results are compared with the state-of-the-art and validated

through user tests and objective metrics.

Keywords: Gamut mapping, gamut extension, gamut reduction, color

coherence.

1. Introduction

The term color gamut refers either to the set of colors that are present in

an image or the set of colors that a device can reproduce. Gamut mapping is

the process by which an image is modified so that its colors are adapted to the

gamut of a given output device, and it can take the form of gamut reduction,5

when the target gamut is included in the source gamut, or gamut extension,

when the target gamut is larger than and includes the source gamut.

Preprint submitted to Journal of LATEX Templates May 14, 2018



Despite the fact that the literature on the subject of gamut mapping is

quite extensive (see [1]), very little attention has been paid to the more general

problem, when the intersection of source and target gamuts does not coincide10

with either of them (i.e. neither gamut is fully included in the other). This is

not an unusual problem [2, 3, 4] and a general form of gamut mapping would

therefore be useful in these situations.

In this work we introduce a method to solve this problem by performing

gamut reduction on some parts of the image and gamut extension on the rest,15

and to the best of our knowledge this is the first work to tackle simultaneously

both forms of gamut mapping. Our approach can be used not only for gamut

mapping but also in order to make an image more similar (or coherent) in terms

of color with respect to a given reference. In order to validate the proposed

method we perform a psychophysical study and we also compute quantitative20

measures for the results of the different applications.

The rest of the paper is organized as follows. In the next section we present

some related works to our approach. In section III we present our method. Later

on, in section IV we show the results of our approach on the typical gamut

mapping problem. In section V we focus on the color coherence application.25

Finally, in section VI we sum up the conclusions.

2. Related work

2.1. Gamut Mapping

Plenty of Gamut Mapping Algorithms (GMAs) exist in the literature and

the interested reader is referred to the excellent book by Morovic [1]. GMAs30

are usually divided into Gamut Reduction (GR) and Gamut Extension (GE)

algorithms. We can further divide them into global and spatial algorithms.

Global algorithms [5, 6, 7] perform point-to-point matching, and therefore a

particular color value will be reproduced with the same value regardless of its

location in the image. On the other hand, spatial algorithms [8, 9, 10] take into35

account the spatial color information of the original image.
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Let us present in more detail some of these algorithms. Regarding gamut

reduction, current methods perform either gamut clipping or gamut compression.

In gamut clipping, all the colors that are out of the target gamut are projected to

the border of the gamut following some criteria, while all the in-gamut colors are40

left untouched. For example, the HPMINDE method [5] proposes to minimize

the ∆E measure following lines of identical hue, while Zamir et al. [10] propose

to perform a perceptually-based image energy minimization to move all the out-

of-gamut pixels to the gamut boundary. On the other hand, gamut compression

algorithms [11, 12] modify all the colors of the image (both those inside and45

outside of the target gamut) in order to preserve the gradient information of the

out-of-gamut pixels. However, gamut compression methods usually show a clear

lack of saturation. Some approaches [13, 14] define a knee region on the border

of the gamut to obtain the advantages of the gamut compression procedure while

not performing an excessive desaturation. Based on the same idea, there exist50

local methods [8, 9, 15] that follow a three-stage pipeline: first, they apply a

global gamut clipping method, second, they add back the high frequency image

detail (obtained by a spatial filter), and finally, they perform a further gamut

clipping to prevent the spatial filtering operation to place a few pixels outside

the destination gamut.55

The literature regarding gamut extension is much more limited than that of

gamut reduction. In fact, the most simple solution to perform gamut extension

is to take any compression gamut reduction algorithm and use it in the reverse

direction [16]. However, this approach may output images with unatural colors

for well-known objects such as grass, sky, etcetera. To avoid this problem some60

methods [17, 18] perform user studies to learn the gamut extension trasnsforms.

Other methods label the data in different categories in order to perform gamut

extension differently in each category. For example, [19, 20] are defined to

preserve skin tones, while [21] performs a different extension depending on the

chroma of the object, and [22] categorizes different memory colors. In [6] different65

methods are proposed and evaluated. There are very few local gamut extension

algorithms. The method presented in [15] performs a two-stage process, first
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extending the source gamut using a non-linear hue-varying transform, and second,

applying an image-dependent chroma smoothing operation. Finally, the methods

of [10, 23] run a perceptually-based image energy minimization.70

The approach presented in this paper is different in nature to all the afore-

mentioned methods, since our goal is to simultaneously perform in the same

image both gamut reduction and gamut extension. To the best of our knowledge

this is the first approach of this kind.

2.2. Color coherence75

Many works have been devoted to the general problem of color transfer since

it was introduced in the literature [24]. In general, color transfer is defined

as the imposition of the color characteristics of one image on another image.

Some of the most influential works are [24, 25, 26]. Similarly, there are works

that deal with the color stabilization problem, where two images that share the80

same content are color-matched [27, 28, 29, 30]. Hacohen et al. [31] extend

the pair-wise color stabilization problem to image stacks, and they call it color

consistency. To do so, they construct a graph that relates which image parts are

matched among the images (for example, it relates the grass appearing in one

image to the grass appearing in all the other images). Then, they optimize a85

quadratic cost function on the entire graph.

In this paper we propose to solve a related but different problem to the

aforementioned ones: color coherence. Color coherence aims at modifying a

source image in order to make its colors consistent with the colors of an unrelated

second image but without modifying the general look of the first image. Color90

coherence is more general than color stabilization/color consistency as it does

not require shared content between the images, and, at the same time, it is

more restricted than color transfer since the look of the original image cannot

be modified.
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3. Proposed method for spatial gamut mapping among non-inclusive95

gamuts

3.1. Basis of our approach: variational method for gamut mapping

In [32] the authors introduced a method for color enhancement based on

some visual perception principles where given an initial image, an enhanced

version of it is obtained as the image that minimizes the following energy:100

E(I) =
α

2

∑
x

(
I(x)− 1

2

)2

−γ
2

∑
x

∑
y

w(x, y)|I(x)−I(y)|+β

2

∑
x

(I(x)− I0(x))
2
,

(1)

where I is a color channel (R,G or B) in the range [0, 1], I0 is the original image

channel, x and y are pixel locations, w(x, y) is a normalized Gaussian kernel of

standard deviation σ, and α, β and γ are constant weights.

The constant α is always positive, therefore minimizing E(I) favors mini-

mizing the differences with respect to a mean value of 1/2. The constant β105

is also positive, so the minimization of E(I) favors not departing too much

away from the original image. We can see the second term of the functional,∑
x

∑
y w(x, y)|I(x) − I(y)|, as a measure of local contrast. Therefore, if γ is

positive, minimizing E(I) will increase the contrast, while if γ < 0 then the

minimization of the energy functional will reduce the contrast, as pointed out in110

[33].

The top row of Figure 1 illustrates this point. The image on the left is the

original, the middle image has been obtained by minimizing Eq. (1) for some

value γ > 0 (notice the enhanced contrast), and the image on the right was

obtained with the same procedure but uisng a negative value for γ (here the115

contrast has been reduced).

The bottom row of Figure 1 depicts the chromaticity diagrams for the images

above, and corroborates that with γ > 0 the colors become more saturated while

the opposite happens for γ < 0. We can see then the potential of this method to

be used for gamut mapping, choosing γ > 0 for gamut extension and γ < 0 when120

gamut reduction is needed. That was precisely the approach followed in [10],
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Figure 1: Example images and their corresponding gamut plots. Left column: input image.

Middle column: extended-gamut image. Right column: reduced-gamut image.

where the authors replaced with the global mean average value µ the value of

1/2 in the first term of the functional and then minimized the energy functional

by iterating

Ik+1(x) =
Ik(x) + ∆t

(
αµ+ βI0(x) + γ

2RIk(x)
)

1 + ∆t(α+ β)
, (2)

where the initial condition is Ik=0(x) = I0(x), RIk(x) indicates the contrast125

function

RIk(x) =

∑
y w(x, y)s

(
Ik(x)− Ik(y)

)∑
y w(x, y)

, (3)

and the slope function s(·) is a regularized approximation of the sign function

(in [32] this approximating function is chosen as a polynomial of degree seven).

Fig. 2b shows that for gamut reduction (γ < 0), as the absolute value of γ is

increased the resulting gamut is reduced more. An analogous behaviour can be130

shown for the gamut extension case, where γ > 0 and higher γ values result in

larger gamuts.

3.2. Proposed approach

Let us consider a source image Is and a target image It, with respective 3D

gamuts Gs and Gt that are non-inclusive, as shown in Fig. 3. We can partition135

6



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x

Visible Spectrum

sRGB Gamut

Source Gamut
Target Gamut

Reproduced Gamut

(a)
(b)

Figure 2: GR approach. (a) Gamuts on chromaticity diagram. (b) Top left: original image.

Top right: γ = −0.22. Bottom left: γ = −0.83. Bottom right: γ = −3.21.

the gamuts into regions: Ω = Gt \Gs, Φ = Gt ∩Gs, Ψ = Gs \Gt. Furthermore,

we split the gamut intersection Φ into two parts, where Φ1 covers the colors

closer to Ψ and Φ2 those closer to Ω. Formally, the two sub-regions Φ1 and Φ2

are defined as follows:

Φ1 = {z ∈ Φ|d(z,Ψ) ≤ d(z,Ω)} , (4)

Φ2 = {z ∈ Φ|d(z,Ψ) > d(z,Ω)} , (5)

where d(z,Ψ) = mint∈Ψ d(z, t), d(z,Ω) = mint∈Ω d(z, t), and d(z, t) is the Eu-140

clidean distance between z and t.

In order to solve the gamut mapping problem, the goal is to modify Is

by mapping its gamut Gs to Gt. For this we propose the following approach:

perform gamut reduction in Ψ and (to a lesser extent) in Φ1, and perform gamut

extension in Φ2, by adapting the method presented above in Section 3.1. Instead145

of having a single polarity of γ for the whole image, we will consider different

polarities for different pixels, with γ > 0 for pixels with colors in Φ2 and γ < 0

for pixels with colors in Φ1 and Ψ.

The steps of our method are:

1. Specify values for γ for all (R,G,B) points in Φ1,Φ2 and Ψ: this can be150

expressed as a function or map Γ : R3 −→ R.
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Figure 3: Source and target gamuts are partitioned into regions. In each of these regions the

values for γ are computed differently, and this determines the form of the gamut mapping

process: whether it’s going to be gamut reduction or gamut extension, and the amount of it.

2. Quantize these values into a reduced set Γq = {γi}i=1,...,N , so now the

map becomes Γ : R3 −→ Γq.

3. For each value γi in Γq run Eq. 2 on the three channels of Is until reaching

steady state, obtaining a modified image Iis.155

4. For each pixel x such that the γ value associated to color Is(x) is γi

(i.e. Γ(Is(x)) = γi) then replace Is(x) with the color in position x in the

modified image Iis(x).

A key part then is the first step, where values for γ are assigned and the

map Γ is built. There is no unique solution for this, many choices are possible160

since in principle the only requirement is that γ > 0 for pixels with colors in Φ2

and γ < 0 for pixels with colors in Φ1 and Ψ. We have chosen to build Γ in the

following manner:

• If z ∈ Ψ, then:

Γ(z) = min

(
γmin

d(z,Φ)

max(d(Ψ,Φ))
, δ

)
, (6)

where γmin and δ are negative scalars, max(d(Ψ,Φ)) = maxz∈Ψ d(z,Φ),165
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d(z,Φ) = mint∈Φ d(z, t), and d(z, t) is the Euclidean distance between z

and t.

• If z ∈ Φ2, then:

Γ(z) = γmax
dΩ,Φ2(z)

maxu∈Φ2
dΩ,Φ2

(u)
, (7)

where γmax is a positive scalar, and dΩ,Φ2
(z) = maxt∈Φ2

d(t,Ω)− d(z,Ω).

We introduce this ‘inverted’ distance in order to give the larger γ values to170

the colors in the intersection of Φ2 and Ω.

• If z ∈ Φ1, then:

Γ(z) = δ
dΨ,Φ1

(z)

maxu∈Φ1 dΨ,Φ1(u)
, (8)

where dΨ,Φ1(z) = maxt∈Φ1 d(t,Ψ)− d(z,Ψ). In this case, the inversion of

the distance is performed in order to assign the smaller γ values to the

colors in the intersection of Φ1 and Ψ.175

3.3. The case of inclusive gamuts

There are two cases not covered with the previous definitions: i) when there

is not a region Ψ (i.e. the gamut should only be expanded), and ii) when there is

not a region Ω (i.e. the gamut should only be reduced). In these situations, it is

possible to directly use any gamut reduction or extension method. However, we180

propose to slightly modify our approach. In the first case we propose to consider

the full Φ region as Φ1. In the second case, we propose to perform a milder

extension than with usual extension methods in the following manner

Γ(z) = γmax

(
τ

dΩ,Φ(z)

maxu∈Φ(dΩ,Φ(u))
+ (1− τ)

)
, (9)

where dΩ,Φ(z) = maxt∈Φ d(t,Ω)− d(z,Ω) and 0 ≤ τ ≤ 1. Please note that when

selecting τ = 0 the result of the original Zamir et al. method is obtained, and185

when selecting τ = 1 we obtain the same formulation as before.

3.4. Implementation details

For implementation purposes, we quantize each channel of the color space

into 50 bins. Therefore, the total number of possible colors is 503 = 125000. All
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the distances used in this paper are computed with relation to the centers of190

the different bins. For the quantization of the Γ map to Γq, we set the distance

between two possible values in the quantized map to be 0.025. This means that,

for an image with γmin = −1 and γmax = 1 the total number of different values

in Γq is 81.

Our approach mostly depends on 4 parameters, which are γmin, γmax, τ , and195

δ, and we perform an analysis on their behavior in the results section. However,

let us note here that in practice we mainly modify the parameters γmin and γmax.

Finally, regarding the parameters that our approach shares with the original

model of Zamir et al. (the Gaussian kernel w(x, y), α, β, ∆t) [10] we fix the

recommended values originally set by the authors.200

4. Application to gamut mapping

Let us start by showing the capabilities of our method in performing gamut

mapping from an input gamut to a destination (target) gamut. To this end, in

Figure 4 we show the effect of our method on two different images. From left

to right we display the original image, our result, the result of only performing205

gamut reduction, and a plot showing the gamut of the original image (black),

the gamut of our result (red), the input gamut (blue), and the destination gamut

(green). In the top row, we show that our method performs as expected. The

gamut in the region where the destination gamut is not present is reduced, while

at the same time the gamut in the region where the original image does not210

cover much of the destination gamut is expanded. We want to highlight here

that our method automatically learns if there is a need for gamut extension or

gamut reduction. This feature presents a further advantage: In the case where no

gamut reduction is needed, our method still performs a smooth gamut extension

to improve the image. This can be seen in the bottom part of the figure. The215

major enhancement of the picture appears on the red of the hat.

We study the potential of our method for gamut mapping through the

following experiment. We have considered 22 images from the Kodak database
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Table 1: Primaries used in the gamut mapping experiment.

Gamut R G B

x y x y x y

sRGB 0.64 0.33 0.30 0.60 0.15 0.06

Input gamut 0.51 0.32 0.31 0.48 0.15 0.06

Destination gamut 0.64 0.33 0.30 0.60 0.23 0.19

[34] (they are shown in Figure 5). We have reduced them to a smaller gamut,

that we call the input gamut, via [10]. These reduced images are the input220

images for the experiment. Then, we have defined a second gamut, that we call

the destination gamut, not fully encompassed in the input gamut. The goal

of the experiment is to perform gamut mapping from the input images to the

destination gamut. The primaries of the gamuts are shown in Table 1, and a

plot showing the gamuts is presented in Figure 6.225

Hereinafter, all the results we will present in this section have been obtained

with a fixed set of parameters, in particular γmax = 0.4, γmin = −1, δ = γmin

4 ,

and τ = 0.5. The map Γ has been obtained in the x and y components of the

xyY color space. Eq. 2 is applied to the a and b channels of the Lab color space

for extension, to RGB for reduction and using the parameters mentioned in230

[35] and [10] respectively. The Y component of the xyY color space of the final

image has been replaced by the Y component of the original image (this change

does not affect the xy chromaticity diagram).

We compare our method to two different approaches: First, we just apply

the gamut reduction method of Zamir et al. [10] between the input gamut235

and the destination gamut and second, we concatenate a well-known gamut

extension method (SDS [6]) to go back to the full sRGB gamut followed by a

well-known gamut reduction method (Alsam and Farup [36]) to go from sRGB

to the destination gamut. In Figure 7 we show the result of concatenating SDS

and Alsam and Farup methods on the left, the result of Zamir et al. reduction in240
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Figure 4: An example of our method for gamut mapping. From left ro right: Original image,

our result, result of only performing gamut reduction. Plots in the right column show the

gamut of the original image (black), the gamut of our result (red), the input gamut (blue), and

the destination gamut (green). In this figure we have used the following parameters. Top row:

γmax = 0.45, γmin = −0.4, δ = γmin
4

, and τ = 0.5. Bottom row: γmax = 0.45, γmin = −1,

δ = γmin
4

, and τ = 0.5.

the center, and our result on the right. Our result looks more natural, especially

when focusing the attention on the blue of the sky, the green of the grass, or

the red of the house. In these cases the reduction approach provides results that

lack saturation, while the concatenation method produces over-saturated colors

that are not realistic.245

We have run a psychophysical evaluation to compare the three aforementioned

methods for the 22 images of Figure 5. The experiment was performed as a pair

comparison test where 7 observers (all the observers were color image processing

experts, but none of them are the authors of this paper) were asked for their

preferred image. Users were presented the results of two different methods side250

by side and they were forced to select one of the results (i.e. it was a forced-choice

experiment, ties between the methods were not allowed). The experiment was

performed in a dark room and the background of the screen was set to a mid-gray.

We have extracted the results of the experiment using Case 5 of the Thurstone

Law of Comparative Judgement [37].255

Results are presented in Table 2 and show that our method outperforms the
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Figure 5: Images used in the gamut mapping experiment.

other two, where the reduction method of Zamir et al. outperforms the hybrid

approach. Note that the Zamir et al. method adapts to the image content, while

we are fixing the values of γmax , γmin, τ , and δ for all the images. Hence, even

better results for our method could be obtained by tuning these parameters in260

an image-based manner.

We have also computed a blind image quality metric based on naturalness

constraints, the “Naturalness image quality evaluation” (NIQE) [38] on the same

set of images. Results in terms of the average NIQE value for the 22 images of

Figure 5 are presented in Table 3, where lower values represent higher accuracy.265

Our method outperforms the other two contending approaches. Furthermore,

the ranking of the algorithms is the same as in the psychophysical experiment.

5. Application to image processing: Color coherence

In this section we apply our method to the problem of color coherence. Color

coherence aims at modifying a source image in order to make its colors consistent270

with the colors of an unrelated second image but without modifying the general
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Figure 6: Gamuts used for the gamut mapping experiment.

Table 2: Thurstone Law Case 5 results for the gamut mapping experiment. Average for the 22

images of Figure 5.

Zamir et al. Std. GE + Std. GR Ours

0.1024 −0.5003 0.3980

look of the first image. This is different to general color transfer where the goal

is to have the same color statistics in the source and the target images. In this

section we have used image-based parameters for γmin and γmax (see Appendix),

and we have set δ =
γ2
min

2 and τ = 0.35 for all the images. The map Γ has been275

obtained in RGB color space and Eq. 2 is applied to the a and b channels of the

Lab color space for extension, to RGB for reduction and using the parameters

mentioned in [10, 35].

In Figure 8 we present a detailed result for our approach. The first column

shows the source (top) and the reference (bottom) images, and the second column280

presents our result with the map of the gamma values used for the image.

Four different examples of our results can be seen in Figure 9. In this figure,

the first column shows the source image, the second column shows the target

image, and the third column shows our results. We want the reader to focus on

14



Figure 7: Comparison between: Left, a concatenation of a standard gamut extension method

(SDS [6]) and a standard gamut reduction method (Alsam and Farup [8]). Center, the reduction

of Zamir et al. [10]. Right, our result.

the green of the leaves, the orange of the trees and the blue of the sky in the first285

row, the blue of the sky and the red of the flowers in the second row, the green

of the map in the third row, and finally, the fogging effect in the fourth row.

In Figure 10 we see how our method compares to four of the most well-known

color transfer methods. From left to right we show: source image, target image,

Kotera [26], Pitié et al. [25], Reinhard et al. [24], Xiao et al. [39], and our290

results. We can see that our method is able to move towards the color gamut of

the target image whilst retaining the feel of the original image. On the contrary,

pure color transfer methods generate images that are in general not pleasant

in appearance. To quantitatively examine these results we have computed the

NIQE quality metric [38] for the images in this Figure. The results of this metric295

are presented in Table 4, where smaller values represent higher accuracy. Our

method outperforms the other approaches.
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Table 3: Quantitative results for the images used in the psychophysical experiment. Average

for the 22 images of Figure 5

Metric Zamir et al. Std. GE + Std. GR Ours

NIQE [38] 2.97 3.11 2.72

Figure 8: An example of our color coherence approach. Two left images: Source (top) and

target (bottom) images. Two right images: Our result (top) and the corresponding gamma

values (bottom).

Finally, let us note that our color coherence approach may also be applied for

other problems, such as semantic transfer [40] or any other one-to-many color

transfer. In this case, the idea is to construct the Γ map based on either the300

color histogram or the color gamut of the images we want our image to look

like. A first example of this application is shown in Figure 11 where we can see

the original image (left) and the result of our method when considering a target

gamut composed by the first 50 images that appear in a search engine for the

concept ‘strawberry’ in the top image, the concept ‘banana’ in the center image,305

and the concept ‘warm’ in the bottom image (right).
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Figure 9: An example of our color coherence approach. From left to right: Source image,

target image, our results.

Table 4: Quantitative results computed as the average for all the images of Figure 8.

Metric [25] [26] [24] [39] Ours

NIQE [38] 3.34 3.53 3.91 3.56 3.05

5.1. On the analysis of the parameters

Let us now analyze the importance of the different parameters. It is not

straightforward to automatically select these parameters, since they strongly

depend not only on the source and target images, but also on the aesthetic310

preference of the user. Let us start by analyzing the importance of γmax and

γmin. In Figure 12 we show in the first row a source and a target image. Then,

in the other four rows, we show different results of the method by modifying both

γmax and γmin. In particular, the value of γmin changes over the different rows

in a decreasing manner (from -0.25 in the upper row to -0.50, -0.75 and -1 in the315
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other rows respectively). Conversely, the value of γmax is increased column-wise,

(from 0.25 for the first column, to 0.5, 0.75 and 1 for the others). The rest of

parameters are equal to those described for Figure 10. We can observe that as

the parameter γmin gets reduced, the blue color of the sky loses its prominence,

as it is a color not appearing in the target image. Conversely, as the value of320

γmax increases, the yellow color gets extended towards the yellow of the bananas.

The role of the parameter τ is studied in the top row of Figure 13. In this

row, we can see from left to right, the source image, the target image, and four

different results for our method. The value of τ moves between 0.75 (in the

leftmost result) and 0.15 (in the rightmost result). The rest of parameters are325

equal to those described for Figure 10. We can clearly observe that, as the value

of τ increases the image is less extended,-as expected (see the explanation of

Equation 9).

Finally, the role of the parameter δ is analyzed in the bottom row of Figure

13. In this row, from left to right, we have the source image, the target image,330

and four results of our method generated by varying δ between 0 and -1 in equal

decrements. The rest of parameters are equal to those used in Figure 10. As

expected, when we decrease the value of δ most of the colors become closer to

the achromatic axis. The reason for this behavior is that δ is the parameter

that controls the amount of reduction given to those colors of the source image335

that are already in the target gamut but, at the same time, are the closest

to the source colors that lie outside the target gamut (i.e. those colors at the

intersection of Ψ and Φ). Therefore, δ can be used to modulate the amount of

gamut reduction once γmin has already been fixed.

6. Conclusions340

In this work we introduced a method to simultaneously perform gamut

reduction and extension. To the best of our knowledge, this is the first time

that a method of this kind has been proposed. We showed that our approach is

useful for the problems of gamut mapping and color coherence. Further work

18



will deal with the automatic selection of our parameters based on user studies345

and with the semantic transfer problem [40] (outlined in Figure 11).
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The parameters γmin and γmax used in the different examples of section V

are shown in Table 5.
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Table 5: Parameters γmin and γmax used in our experiments for color coherence.

Image γmax γmin

Figure 8 1.2 -0.6

Figure 9, row 1 0.8 -0.8

Figure 9, row 2 1 -0.5

Figure 9, row 3 0.75 -0.75

Figure 9, row 4 1 -1

Figure 10, row 1 1.25 -1

Figure 10, row 2 1 -1

Figure 10, row 3 1 -0.5

Figure 10, row 4 1 -1

Figure 10, row 5 1.75 -1.75

Figure 10, row 6 0.5 -0.5

Figure 10, row 7 1.3 -0.5

Figure 10, row 8 1 -0.75

Figure 10, row 9 0.9 -0.75

Figure 10, row 10 0.9 -0.9
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Figure 10: A comparison of our method versus color transfer methods. From left to right

column: Source image, target image, Kotera [26], Pitie et al. [25], Reinhard et al. [24], Xiao

et al. [39], our method.
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Figure 11: Example of our method when applied to semantic transfer. Left: original image,

right: our result for the terms ‘strawberry’ (top), ‘banana’ (middle), and ‘warm’ (bottom).
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Figure 12: A visual example of the behaviour of the parameters γmax and γmin. Top row: left

is the source image and right is the target image. Second to fifth rows represent a modification

in the γmin parameter, being the values -0.25, -0.5, -0.75, -1 from top to bottom. For these

four rows, each column represents a modification in the γmax parameter, being the values 0.25,

0.5,0.75,1 from left to right. The other parameters are the same as in Figure 10.
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Figure 13: Top row: A visual example of the behaviour of the parameter τ . From left to right:

source image, target image, τ = 0.15, τ = 0.35, τ = 0.55, and τ = 0.75. In this example, the

other parameters are the same as in Figure 10.

Bottom row: A visual example of the behaviour of the parameter δ. From left to right: source

image, target images, δ = 0, δ = γmin
3

, δ = 2γmin
3

, and δ = γmin. In this example, γmin and

the rest of parameters are the same as in Figure 10.
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