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Abstract. While wide color gamut (WCG) capabilities are a key element of emerging display and 
projection technologies, at present most image content is recorded using standards such as DCI-P3 
for cinema or BT.709 for TV that have a reduced color gamut. Therefore, there is a need for gamut 
extension methods that process regular content and allow to appreciate the full color potential of new 
displays, improving user experience. We present a gamut extension algorithm that is based on visual 
perception models and explicitly takes into account low chromatic colors such as skin tones. It 
produces results that look natural, are free of artifacts of any kind, and outperform the state of the art. 
The method is fast, allowing for operation interaction if needed. 

Keywords. Wide color gamut, gamut mapping, color management, gamut extension algorithms.  
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Introduction 

The normal human eye contains three types of cone cells that respond to incident light in order to 
produce the sensation of color. Numerically, it is possible to match a wide range of colors by 
mixing three properly chosen color primaries1, resulting in a three-dimensional space where each 
point represents a color. However, when describing colors, it is a common practice to decouple 
luminance from the chromatic content referred as chromaticity. Figure 1 shows the standard CIE 
xy chromaticity diagram, where the tongue-shaped region corresponds to the chromaticities of all 
the colors that our eyes are capable of perceiving. The possible range of colors that a given 
display device can render is referred as ‘color gamut’. Practically all commercially available 
displays have a triangle-shaped gamut in the CIE xy chromaticity diagram due to the use of three 
color primaries2. Therefore, they are unable to reproduce many colors that we can see. 

Some studies3,4 tried investigating how much color gamut do displays really need. M. R. Pointer4 

analyzed a set of frequently occurring real surface colors and derived what is commonly known 
as “Pointer’s gamut”, shown in figure 1. In order to ensure a consistent movie presentation with 
old or standard display devices, at the post-production stage, colorists reproduce colors of movies 
according to standard gamuts (DCI-P35 for cinema and BT.7096 for broadcast) by using three-
dimensional look up tables and by performing intensive manual correction in a shot-by-shot, 
object-by-object basis. Although both the DCI-P3 and BT.709 gamuts cover a reasonable amount 
of Pointer’s gamut, many interesting real world colors fall outside these standard gamuts. In 2012, 
the International Telecommunication Union-Radiocommunication (ITU-R) recommended a new 
standard gamut BT.20207 for the next generation ultra-high definition TV that encompasses 
existing video standards5,6 and covers 99.9% of Pointer's gamut. All of the aforementioned gamuts 
are shown in figure 1. Unlike standard displays, new laser projectors8,9 due to their monochromatic 
primaries with high color purity10, are capable to cover the very wide BT.2020 gamut, reproducing 
nearly every color found in nature and providing the audience with a visual experience close to 
real life. But if the inputs are movies with either DCI-P3 gamut or BT.709 gamut, as virtually all 
professional movies currently are, the full color potential of these new displays can not be realized. 
Hence, there is a need to develop automatic gamut extension (GE) techniques. 

To perform GE, one could possibly think of stretching out (linearly or non-linearly)11 the input 
signal to a wider gamut in order to have a boost in the saturation of colors. This way of addressing 
the GE problem is simple but prone to several issues. Chief among these problems is that the GE 
procedure may alter the artistic intent of the content's creator. Also, memory colors such as the 
blue of the sky and the green of the grass may look unrealistic after the application of GE, requiring 
a special treatment12,13. Another challenge is to preserve skin tones12,14, always a key issue in 
movie postproduction, but many gamut extension algorithms (GEAs)15,16,17 fail to do so, as 
reported by Morovic18. Therefore, the fundamental goal of GE should be to reproduce input 
material in accordance with the color characteristics of a display device such that the appearance 
of the reproduction matches closely to the original material, perceptually. 
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Figure 1. Gamuts on CIE xy chromaticity diagram. 

Perceptually-based Gamut Extension 

In the HSV color space, the GE goal can be formulated as increasing saturation while keeping 
the hue and value channels constant. Bertalmío et al.19 propose a perceptual function that 
increases contrast while being monotonically increasing, meaning that it is able to increase the 
contrast but does not decrease the image values. Their algorithm19 complies with some global 
and local properties of the human visual system. In order to map colors from a small source gamut 
to a larger destination gamut, in this paper we present a GEA adapting the work of Bertalmío et 
al.19 and introducing some key modifications to it by taking into account that some colors require 
a special treatment. The following iterative scheme adapted from the method19 progressively 
increases the saturation of the input image in order to extend its gamut: 

 

𝑆𝑘+1(𝑥) =  
𝑆𝑘(𝑥) + ∆𝑡 (𝑆0(𝑥)(𝛽 + 𝜏(𝑆0(𝑥))𝑉0(𝑥)2) +

𝛾
2 𝑅𝑆𝑘(𝑥))

1 + ∆𝑡(𝛽 + 𝜏(𝑆0(𝑥))𝑉0(𝑥)2)
 

(1) 

where 𝑆(𝑥) represents the saturation level at pixel location 𝑥 in the input image. 𝛽 is a positive 
weight that controls the departure of the output image's saturation from the original image's 

saturation 𝑆0. 𝑉0 is the value component (HSV color space) of the original image, ∆𝑡 is the time 
step and 𝑘 ∈  ℕ denotes the iteration number. In gamut extension, certain colors require a special 
treatment in order to look natural and pleasant such as skin tones, less saturated natural objects, 
neutral colors and some particular memory colors. To incorporate such a functionality into the 
proposed GEA, the function 𝜏(∙), shown in figure 2, takes as an argument the saturation of the 
original image and associates weights with the pixels of the image. These weights indicate the 
amount of special treatment we provide to colors of the input image. For example, the low 
saturated colors of the input image that require little to no extension are given higher weights 𝜏(∙), 
whereas low weights are attached to extend normally the high saturated (artificial objects) colors. 
With this we can extend the gamut of the input image in a controlled manner treating objects of 
low saturation and high saturation differently. And to compute these weights, we make use of the  
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Figure 2. Logistic function. 

 

following function derived from the generalised logistic function20: 

 
𝜏(𝑆0(𝑥)) =  𝜏𝑚𝑎𝑥 (1 −

1

1 + 0.2𝑒−3𝑆0(𝑥)2)  
(2) 

where 𝜏𝑚𝑎𝑥 is a positive constant. The values used in Eq. (2) have been chosen based on tests 
we performed on several images with different color characteristics. 

In Eq. (1) the initial condition is 𝑆𝑘=0(𝑥) =  𝑆0(𝑥), and 𝛾 is a positive constant that allows us to 

make increments in the contrast function 𝑅𝑆𝑘(𝑥) in order to expand the color gamut: 

 
𝑅𝑆𝑘(𝑥) =  ∑ 𝑤(𝑥, 𝑦) [𝑓 (

𝑆𝑘(𝑥)

𝑆𝑘(𝑦)
) sign+ (𝑆𝑘(𝑦) − 𝑆𝑘(𝑥)) + sign− (𝑆𝑘(𝑦) − 𝑆𝑘(𝑥))]

𝑦∈ℑ

 
(3) 

since Eq. (3) involves ratios, we normalize the dynamic range of 𝑆 in (0,1] so as to avoid division 
by zero. This, for example, could be done on a 8-bit-per-channel image just by adding 1 to each 
pixel and diving by 256. The scaling function 𝑓19 is strictly increasing such that 𝑓(𝑟) ≥ 𝑟 for all 𝑟 ∈
(0,1], 𝑤(𝑥, 𝑦) is a normalized Gaussian kernel of standard deviation σ, and the functions sign+() 
and sign−() are, respectively, defined as: 

 

sign+(𝜉) = {

1, 𝑖𝑓 𝜉 > 0
1

2
, 𝑖𝑓 𝜉 = 0

1          𝑖𝑓 𝜉 < 0

 

 

(4) 

 

 sign−(𝜉) = 1 − sign+(𝜉) (5) 
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                          (a)                                                                  (b) 

Figure 3. Gamut extension approach. (a) Gamuts on chromaticity diagram. (b) Gamut extension 

results. Top left: input image (𝛾=0). Top right: gamut extended image with 𝛾=0.10. Bottom left: 
gamut extended image with 𝛾=0.25. Bottom right: gamut extended image with 𝛾=0.40. Original 

image is from the CIE21. 

Action of the Proposed GEA on an Image 

In order to perform gamut extension, we first convert the RGB input image to the HSV color space, 
and then apply Eq. (1) to the saturation component only. The evolution Eq. (1) reaches steady 
state for each set of values for parameters 𝛽, ∆𝑡, and 𝛾, and to show how it modifies the color 
gamut, an example with several different gamuts on a chromaticity diagram is shown in figure 3a 
where it can be seen that when 𝛽 = 1, ∆𝑡 = 0.10, and 𝛾 = 0 the steady state of the evolution 
equation produces the original image, and as we increase the value of 𝛾 the steady state of Eq. 
(1) yields an image with a larger gamut. Figure 3a also shows that one can map the colors of an 
input image to the larger destination gamut just by using a large enough value for 𝛾 (𝛾 = 0.40 in 

this case). In order to compute this optimal value for 𝛾 that allows us to perform GE, we make use 
of the information provided by the color differences between the source and the destination 
gamuts (triangle-shaped due to the use of three color primaries):  

 𝛾 =  √|𝑆𝐺𝑎𝑟𝑒𝑎 − 𝐷𝐺𝑎𝑟𝑒𝑎|
3

 (6) 

where 𝑆𝐺𝑎𝑟𝑒𝑎 and 𝐷𝐺𝑎𝑟𝑒𝑎 denote the area of the source gamut and the destination gamut, 
respectively. 

For each 𝛾 value, the corresponding reproduced images are shown in figure 3b in which we can 
notice that the colors of sky, grass and skin have a limited (controlled) increase in saturation, 
whereas some objects are extended normally such as the bottles, the fruits, the cloths in the 
basket and the pink shirt. Since we are using a fixed value of 𝛾 for all the input images with 
different spatial and chromatic characteristics, our GEA may place a few colors outside the 
destination gamut that we can map back inside using a gamut reduction algorithm, e.g. the 
method of Zamir et al.22. 
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Experiments and Results 

In this section we assess the visual quality of the reproductions produced by the proposed GEA 
and other methods using the publicly available datasets23,24. To compute the results for our 
method, we work in HSV color space and in Eq. (3) the parameter values that we use are 𝛽 = 1, 
∆𝑡 = 0.10. Since we are limited by the sRGB standard (that has the same primaries as of BT.709) 
for the paper, all results presented in this paper are mapped from ‘Toy’ gamut to sRGB gamut 
(the primaries of gamuts used in our experiments are mentioned in Table 1). To see the 
reproductions obtained using our GEA when mapping colors from ‘Toy’ to DCI-P3 gamut and from 
BT.709 to DCI-P3, visit the web page: http://ip4ec.upf.edu/gamutmapping. 

While the capability of emerging wide-gamut displays in reproducing more vibrant colors helps 
generating a richer visual experience, it is highly important to render flesh tones in a very careful 
manner so as to avoid departing away from the content creator’s intent. In figure 4 we compare 
how different GEAs reproduce skin colors, which is always a key issue in movie postproduction. 
It can be seen in row 2 and row 4 that our GEA applies a limited extension to skin tones but the 
artificial objects undergo a normal color extension so that the final reproduction appears natural 
and pleasant, whereas in the same figure it is noticeable that other methods such as same-drive 
signal (SDS)11 and chroma extension11 have issues with skin tones and over-saturation. For better 
comparison, we show in figure 5 the zoomed-in view of regions cropped from figure 4. The 
lightness chroma adaptive (LCA) algorithm11, due to its inherent behavior of modifying lightness 
and chroma, produces images with artifacts and the over-enhancement of contrast makes a few 
colors go towards black (loss of saturation and detail). For example in figure 5, see the napkin in 
row 2 for artifacts, and the picture of the elephant in the last row depicting some loss of detail. 
The chroma extension method11 shows poor performance when there is a high chromatic object 
in the scene; one such example is shown in row 4 of figure 5 where it can be seen that the colors 
of the character are highly saturated. 

In general, viewers tend to prefer more saturated colors25 when they are not aware of the original 
colors of either natural or man-made objects, but they are less welcoming to the change in colors 
of those objects for which they have memory such as shades of sky and grass, etc. Therefore, 
care should be taken while extending these colors. In figure 4, row 1, we present an example 
showing that our method performs controlled extension and reproduce the color of the grass 
accurately, whereas the hybrid color mapping (HCM)11, and SDS methods over-saturate the grass 
region, making it look artificial. 

To test the temporal consistency of our method, we apply the proposed GEA on a variety of image 
sequences23,24 with different levels of motion. Representative frames are shown in figure 6 and 
the complete resultant image sequences with extended gamut are added to the web page for 
which the link is given above. We confirm that the gamut extended videos obtained using our 
GEA are free from noticeable spatial and temporal artifacts, hue shifts, flickering and unexpected 
changes in chroma and brightness of objects. We also want to mention that the quality of the input 
video is of high importance; if it contains any spatial artifacts due to compression or noise they 
may become prominent in the reproduced video. 

 

 

http://ip4ec.upf.edu/gamutmapping
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Table 1. Primaries of gamuts. 

Gamuts Red Primaries Green Primaries Blue Primaries 

 x y x y x y 

BT.2020 0.708 0.292 0.170 0.797 0.131 0.046 

DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060 

BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060 

Toy 0.570 0.320 0.300 0.530 0.190 0.130 

 

 

Figure 4. Results: mapping from Toy to sRGB gamut. Column 1: Input image. Column 2: 
HCM11. Column 3: SDS11. Column 4: Chroma extension11. Column 5: LCA11. Column 6: Our 

GEA. Original images are from the datasets23,24. 
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Figure 5. Zoomed-in view of the regions cropped from figure 4. Column 1: Input image. Column 
2: HCM11. Column 3: SDS11. Column 4: Chroma extension11. Column 5: LCA11. Column 6: Our 

GEA. 

 

Figure 6. Representative frames of image sequences with sRGB gamut. Original images are 
from the datasets23,24. 
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Sub-sampling Apply GEA 

 

     

 

 

Figure 7. A schematic to reduce the computational cost of the proposed framework. 

 

 

(a)                                             (b)                                               (c) 

Figure 8. Example of reducing computational time. (a) Input image. (b) Result of proposed 
method applied on full resolution image. (c) Result of proposed method applied on sub-sampled 

image. Original image is courtesy of Kodak. 

 

Making the GEA Faster 

The proposed GEA in a non-optimized MATLAB implementation running on a machine with 8 
cores 3.4-GHz CPU takes (on average) 11 seconds to process an image of resolution 656 × 1080 
pixels. However, the computational cost can be reduced drastically by applying a series of 
operations (only on the saturation component of an image represented in the HSV color space) 
that are shown in figure 7 and explained as follows: 

 Sub-sampling: the first step is to take the full resolution image and sub-sample it by a 
scaling factor. The scaling factor of 0.40 provides a good trade-of between the speed and 
the quality of the reproduction. 

 Apply GEA: next apply the proposed GEA on the downsampled image in order to obtain 
a reduced-size gamut extended image. 

Full Resolution 
Input Image 

Histogram 
Matching 

Gamut Extended 
Image 
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 Histogram Matching: finally we perform histogram matching of the full resolution input 
image and the subsampled image with extended gamut to obtain the final full resolution 
gamut extended image. 

As shown in figure 8, using the above mentioned steps we can produce results having the same 
visual appearance but at a fraction (25%) of the time. 

Conclusion 

In this paper we have presented a GEA that is based on visual perception models and adapts 
itself according to the content of the input image. On one side, the proposed algorithm modifies 
less those colors that require a special treatment such as skin tones, less saturated natural 
objects, neutral colors and some particular memory colors in a controlled manner. On the other 
side, it extends normally colors of high chromatic (natural and artificial) objects. Our GEA 
produces gamut extended images and videos that look natural and pleasant in appearance and 
free from artifacts of any kind. We have also presented a procedure that allows to drastically 
reduce the computational cost of the proposed GEA while preserving the visual quality of the 
results. 
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