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Vision Models for Wide Color Gamut
Imaging in Cinema

Syed Waqas Zamir, Javier Vazquez-Corral, and Marcelo Bertalmı́o

Abstract—Gamut mapping is the problem of transforming the colors of image or video content so as to fully exploit the color palette of
the display device where the content will be shown, while preserving the artistic intent of the original content’s creator. In particular in the
cinema industry, the rapid advancement in display technologies has created a pressing need to develop automatic and fast gamut
mapping algorithms. In this paper we propose a novel framework that is based on vision science models, performs both gamut reduction
and gamut extension, is of low computational complexity, produces results that are free from artifacts and outperforms state-of-the-art
methods according to psychophysical tests. Our experiments also highlight the limitations of existing objective metrics for the gamut
mapping problem.

Index Terms—Gamut mapping algorithms, wide gamut imaging, color reproduction, vision models for color and contrast, gamut mapping
for cinema.
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1 INTRODUCTION

THE range of colors that a device is able to reproduce
is called its color gamut. A very common and conve-

nient way of describing colors is to ignore their luminance
component and just represent the chromatic content on
a 2D plane known as the CIE xy chromaticity diagram,
shown in Fig. 1. In this figure the tongue-shaped region
corresponds to the chromaticities of all the colors a standard
observer can perceive. Most existing displays are based on
the trichromacy property of human vision, creating colors by
mixing three well-chosen red, green and blue primaries in
different proportions. The chromaticities of these primaries
determine a triangle in the CIE xy chromaticity diagram, and
this triangle is the color gamut of the display in question.
Therefore, for any given three-primary display there will be
many colors that we could perceive but the display is not
able to generate, i.e. all the colors with chromaticities outside
the triangle associated to the display. Also, devices with
different sets of primaries will have different gamuts. For
this reason, in order to facilitate inter-operability a number
of standard distribution gamuts have been defined, and for
cinema the most relevant ones are shown in Fig. 1: DCI-P3
[1] is the standard gamut used in cinema postproduction and
recommended for digital cinema projection, BT.709 [2] is used
for cable and broadcast TV, DVD, Blu-Ray and streaming,
and BT.2020 [3] is a very wide color gamut for the next
generation UHDTV, currently only achievable by some state-
of-the-art laser projectors. Fig. 1 also shows Pointer’s gamut
[4], which covers all the frequently occurring real surface
colors; we can see how only BT.2020 is able to completely
include Pointer’s gamut.

The adaptation to a standard gamut implies altering the
range of colors (and contrast) of the original content. This
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Fig. 1: Gamuts on CIE xy chromaticity diagram.

process is either carried out within the camera in live TV
broadcasts (or low-budget movie productions), or performed
off-line by expert technicians in the cinema industry. In
practice, for the purpose of modifying the movie gamut,
colorists at the post-production stage build 3D look-up-tables
(LUTs) for each movie or specific scenes in it. These LUTs
contain millions of entries and colorists only specify a few
colors manually, while the rest are interpolated regardless
of their spatial or temporal distribution [5]. Subsequently,
the resulting movie may have false colors that were not
originally present. To tackle this problem, colorists usually
perform intensive manual correction in a shot-by-shot, object-
by-object basis. This process is difficult, time consuming and
expensive, and therefore it makes an automated procedure
called gamut mapping (GM) very desirable: GM transforms
an image so that its colors better fit the target gamut.

In general, there are two types of GM procedures. First
is gamut reduction (GR), in which colors are mapped from
a larger source gamut to a smaller destination gamut. A
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common situation where GR is necessary is when a movie
intended for cinema viewing is displayed on a TV [6], [7].
Second is gamut extension (GE), that involves mapping
colors from a smaller source gamut to a larger destination
gamut. For example, wide-gamut state-of the-art displays
often receive movies that are encoded with limited-gamuts
as a precaution against regular (or poor) display devices;
therefore, we cannot exploit the full color rendering potential
of these new devices unless we use a GE procedure [5]. The
process of GE is gaining importance with the introduction of
new display technologies and laser projectors [8], [9]. These
new displays use pure (very saturated) color primaries which
enable them to cover much wider gamuts, so now a tablet
screen may have a DCI-P3 gamut for instance, while all the
content it shows comes in the smaller BT.709 standard.

At this point, we present a clarification on how gamut
reduction and gamut extension differ practically. Gamut
reduction is required, not optional, when the colors of the
input image fall outside the display’s gamut; without GR,
the display will reproduce the image with artifacts and loss
of spatial detail. On the contrary, gamut extension is not
essential, rather it is considered as an enhancement operation
[10]. For example, BT.709 footage presented as it is on a wide-
gamut BT.2020 display device won’t show any visual artifact,
it’s just that we will be missing the color rendering potential
of the wide-gamut screen.

As a main contribution, in this paper we present a
framework for gamut mapping that is based on models
from vision science and that allows us to perform both
gamut reduction and gamut extension. It is computationally
efficient and yields results that outperform state-of the-art
methods, as validated using psychophysical tests. Another
contribution of our research is to highlight the limitations
of existing image quality metrics when applied to the GM
problem, as none of them, including two state-of-the-art
deep learning metrics for image perception, trained over
large and very large scale databases (20,000+ images in one
case, 160,000+ in the other) is able to predict the preferences
of the observers.

We believe our results are of importance to the computer
vision community for two main reasons. Firstly, because they
provide another example that drawing insights from vision
science and developing algorithms based on vision models
can yield state-of-the-art performance for computer vision
applications. And secondly, because our results demonstrate
how deep learning approaches are not yet suitable to emulate
perception with an adequate degree of accuracy, even when
using very large databases with a huge number of human
annotations. This begs the question of whether this failure
is due to limitations in the network architecture, or rather
a more intrinsic issue is at hand, as for instance it has been
argued that the convolution-based spatial summation of
artificial neural networks cannot constitute a proper model
of how biological networks process information [11].

2 RELATED WORK

A large number of gamut mapping algorithms (GMAs) have
been proposed in the literature, we refer the interested
reader to the comprehensive book of Morovic̆ [10]. GMAs
can be divided into two main categories: gamut reduction

algorithms (GRAs) and gamut extension algorithms (GEAs).
Both GRAs and GEAs can further be classified into two sub-
classes: global and local. Global (also known as non-local
or non-adaptive) methods map colors of an image to the
target gamut independently, while completely ignoring the
spatial distribution of colors in the image. Whereas local
(also known as spatial) methods modify pixel values by
taking into account their neighborhoods; as a result, two
identical values surrounded by different neighborhoods will
be mapped to two different values.
Global GRAs: One class of global GRAs consists of gamut
clipping methods [12], [13], [14]. Gamut clipping is a very
common approach to perform gamut reduction where colors
that lie inside the destination gamut are left untouched
while those colors that fall outside are projected onto the
destination gamut boundary. In order to produce reduced-
gamut images, gamut clipping techniques use particular
strategies and mapping directions. For example, clipping
chroma of the out-of-gamut (OOG) colors along lines of
constant hue and lightness [15]; clipping each OOG color by
seeking a minimum ∆E distance to the destination gamut
boundary along lines of constant hue, this method is referred
as hue preserving minimum ∆E (HPMINDE) [16]; clipping
colors of low luminance and high luminance differently,
thereby providing a special treatment to bright colors in order
to avoid excessive chroma loss [17]. Clipping GRAs, due to
their inherent behavior, project whole OOG color segments
into single points on the target gamut, and therefore they
may reproduce images with a visible loss of detail and
color gradients. To avoid this sort of issue, another class
of global GRAs are called gamut compression algorithms.
These methods modify all colors of an input image, both
inside and outside the target gamut. Such functionality
enables compression GRAs to map OOG color segments
to in-gamut color segments (instead of single points), though
the results they produce may lack in saturation, specially
when the difference between the source and target gamuts
is large. Many compression GRAs have been proposed in
the literature [18], [19], [20], [21], [22]. Some GRAs take an
hybrid approach in which a combination of clipping and
compression is used to perform gamut mapping; see for
example [23]. A few GRAs [24], [25] make use of soft-clipping
that squeezes colors near the target gamut boundary in order
to accommodate the OOG colors.
Local GRAs: The frequency-based local GRAs [26], [27], [28]
first reduce the gamut of the source image using a global
method, and then in the second stage the high frequency
image detail (obtained by using a spatial filter) is added to
the reduced-gamut image. In these GRAs, another stage of
gamut clipping is integrated to process the resulting image
in case the spatial filtering operation places a few pixels
outside the destination gamut. Local GRAs that are inspired
from the Retinex framework perform spatial comparisons
to retain source image gradients in the reproduced images
[29], [30], [31], [32]. Some spatial GRAs [33], [34], [35], [36],
[37] pose gamut mapping as an optimization scheme where,
given a source image and its gamut mapped version, the
aim is to keep perturbing the gamut mapped image until
its difference w.r.t. the source image is minimized according
to an error metric. Finally, an image energy functional [38]
is introduced to decrease the contrast of the input image in



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

order to perform gamut reduction.
Global GEAs: While the majority of the published GMAs
deal with the problem of gamut reduction, the case is very
different for gamut extension: only a few works have been
proposed in this direction. One simple solution to perform
gamut extension is to take any compression GRA and use
it in the reverse direction [39], [40], [41]. However, this way
of approaching GE may yield images that are unnatural and
unpleasant in appearance. The pioneering global GEAs [42],
[43] map limited-gamut printed images to the wide gamut of
HDTV in two stages: firstly the lightness is mapped using a
non-linear tone reproduction curve, and secondly the chroma
is extended along lines of constant hue and lightness. A few
methods [44], [45] perform gamut extension using functions
learned from user studies. Unlike the aforementioned GEAs,
some global methods [46], [47], [48] first classify the colors of
the input image according to a criterion, and then perform
gamut extension differently for each class. For example,
labelling each color of a given image as skin or non-skin
[46]; dealing with objects of low chroma and high chroma
differently [47]; identifying certain memory colors such as
green grass and blue sky, and rendering them independently
[48]. Other approaches [49], [50] propose three types of
extensions: chroma extension, extension along lines from the
origin, and adaptive mapping that is a compromise between
the first two strategies. Some global GEAs [51], [52], [53] aim
at preserving skin tones in the reproduced images.
Local GEAs: The local GEAs extend colors by taking into
account their spatial distribution in the input image. This
property certainly makes local GEAs adaptive and flexible
but at the same time far more complex and computationally
expensive than global GEAs. The multilevel GEA [54] in its
first stage extends the source gamut using a non-linear hue-
varying function, and in the second stage applies an image-
dependent chroma smoothing operation to avoid an over-
enhancement of contrast and to preserve detail in the final
image. Recent works [38], [55], [56] perform spatial gamut
extension using partial differential equations. In particular,
the contrast of the input image is enhanced by minimizing an
energy functional [38]; a monotonically increasing function
[55] is applied on the saturation channel of the input image
in HSV color space that allows to increase contrast without
decreasing the image saturation values; and the GEA [56]
operates only on the chromatic components of CIELAB color
space, while taking into account the analysis of distortions
in hue, chroma and saturation.

In this paper we propose a novel framework that over-
comes several issues of current GM approaches, performing
both GR and GE at a low computational cost and where the
results are free from spatio-temporal artifacts. In the next
section we will start by briefly mentioning some facts and
models from the vision science literature that form the basis
of our GM framework, that is going to be introduced in
Section 4.

3 SOME VISION FACTS AND MODELS FOR GAMUT
MAPPING

Light reaching the retina is transformed into electrical signals
by photoreceptors, rods and cones. At photopic light levels,
rods are saturated and the visual information comes from

cones, of which there are three types, according to the
wavelengths they are most sensitive to: L (long), M (medium),
and S (short). The response of all photoreceptors is non-
linear and, for a single cell without feedback, can be well
approximated by the Naka-Rushton equation [57], which is a
particular instance of a divisive normalization operation [58],
i.e. a process that computes the ratio between the response
of an individual neuron and some weighted average of
the activity of its neighbors, and this in turns allows the
photoreceptor response to adapt to the average light level
therefore optimizing its operative range.

Photoreceptors do not operate individually though, they
receive negative (inhibitory) feedback from horizontal cells,
which receive excitatory input from cones and generate
inhibitory input to cones. Cone output goes to bipolar cells,
that also receive lateral inhibition from horizontal cells and
from another type of retinal neurons called amacrine cells.
Bipolars feed into retinal ganglion cells (RGCs), which also
receive input from amacrine cells, and the axons of the
ganglion cells form the optic nerve, sending visual signals
to the lateral geniculate nucleus (LGN) in the thalamus,
where the signals are re-organized into different layers each
projecting to a specific layer in the cortex. There are numerous
axons providing feedback from the cortex to the LGN, but
their influence on color vision is not known [59].

The lateral inhibition or center-surround processing, in
which a cell’s output corresponds to the difference between
the activity of the cell’s closest neighbors and the activity of
the cells in the near (and possibly far) surround, allows
to encode and enhance contrast therefore being key for
efficient representation, and is present at every stage of
visual processing from the retina to the cortex. The size
of the receptive field (the visual region to which a neuron
is sensitive to) tends to increase as we progress down the
visual pathway. Lateral inhibition is often modeled as a linear
operation, a convolution with a kernel shaped as a difference
of Gaussians (DoG). In recent studies, the surround receptive
field of RGCs is modeled as a sum of Gaussians [60]. RGCs
produce an achromatic signal by combining information
coming from the three cone types (L+M+S), and produce
chromatic opponent signals by performing center-surround
processing on signals coming from cones of different types:
(L+M)-S roughly corresponds to “Yellow - Blue” opponency,
and L-M to “Red - Green”. Achromatic and color-opponent
signals are kept separate in the LGN and onto the cortex.

There are two types of bipolars, one that is excited by light
increments but does not respond to decrements, and the other
that responds only to light decrements; they are organized
in parallel channels that separately transmit lightness and
darkness, and that are maintained separate from the retina
to the cortex throughout the whole visual pathway.

In the vision science literature the response of a cell is
often (but not exclusively) modeled as a linear operation
(weighted summation of the neighbors’ activity, e.g. for
lateral inhibition) followed by a non-linear operation (e.g.
rectification, so as to consider only increments or decrements,
but not both). For the linear part, DoG filters and oriented
DoG (ODoG) filters are useful in predicting many percep-
tual phenomena [61], while common models for the non-
linear part include rectification, divisive normalization and
power-laws. For instance, non-linear photoreceptor response
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Fig. 2: Contrast enhancement produces gamut extension. Top row: (a) input image, (b) enhancing the contrast of all channels
in RGB [38], (c) enhancing the contrast of chroma in CIELAB [56], (d) enhancing the contrast of saturation in HSV [55].
Bottom row: corresponding gamuts in CIE diagram. Note that the source gamut (black) and target gamut (red) are fixed as
they correspond to the gamut of the display devices.

followed by linear filtering produces bandpass contrast
enhancement that correlates with the contrast sensitivity
function (CSF) of the human visual system [62].

The purity of a color is represented by its saturation S
that expresses the amount of white that the color has: an
achromatic color has S = 0, and blood red color has the
same hue as pink, but higher saturation. The value of S
can be computed from a combination of the achromatic and
the chromatic signals. There is evidence in region V1 of the
visual cortex, but not in the retina nor LGN, for cells tuned
to S and for neural activity correlated with S [63], with a
possible neural mechanism to this effect proposed in [64].

Finally, and very importantly for the GM problem, we
shall mention the so-called Helmholtz-Kohlrausch effect, that
implies that brightness perception depends on luminance
and chrominance: color patches of the same luminance but
different hue appear to have different brightness, as well as
color patches of the same luminance and hue but different
saturation (the higher the saturation, the higher the perceived
brightness). As a consequence, if we were to modify the
saturation of a color while preserving all other attributes, its
brightness would appear to change. The interaction between
achromatic and chromatic signals that produces brightness
perception has been shown to happen at V1 [65], not before;
there are some models for this, e.g. [66], [67], with a review
in [68].

4 PROPOSED GAMUT MAPPING FRAMEWORK

In this section we first describe the basic functionality of our
gamut extension and gamut reduction methods, and later
provide implementation details in Section 4.3.

4.1 Gamut extension

In previous works we have shown how a contrast enhance-
ment method, implemented as a partial differential equation
that minimizes a certain energy, produces gamut extension
when applied independently to the R, G and B channels of
an input image [38], but also when applied just on the color
opponent channels [56] or just on the saturation channel [55].
See Fig. 2 for an illustration.

Based on this gamut extension ability that contrast
enhancement has, and considering some of the vision models
enumerated in the previous section, we now propose the
following basic gamut extension method: perform contrast
enhancement on the saturation channel by center-surround
filtering (using a model of lateral inhibition), followed by
rectification so as to ensure that the saturation does not
decrease (based on a model of nonlinear processing by single
neurons and the existence of ON and OFF pathways), and
finally modify the brightness to account for the Helmholtz-
Kohlrausch (H-K) effect (using a modified model of bright-
ness based on neural activity data).
Basic GE method:

1) The inputs are an image sequence, whose gamut we
want to extend, and the specifications of the source
and target gamuts.

2) Convert each input frame into HSV color space (see
appendix). We will keep H constant.

3) Using the specifications of source and target gamuts,
define a linear filter Ke similar to a DoG. This filter
is then convolved with S, obtaining S1 which is
contrast-enhanced. Figure 3a (left) shows an example
Ke filter.
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(a) (b)

Fig. 3: Examples of kernel used in our framework: (a) for
gamut extension. (b) for gamut reduction.

4) Add a constant value image C to S1, obtaining
S2. This step attempts to preserve the mean of the
original image.

5) Rectify (S2 − S) and produce S3 = S +
rectified(S2 − S), where rectified(S2 − S) =
max(S2 − S, 0). This ensures that S3(x) ≥ S(x) for
each and every pixel x, i.e. that the process increases
the saturation for all pixels with respect to their value
in the original image.

6) Modify V to compensate for the Helmholtz-
Kohlrausch effect, correcting V so that perceived
brightness does not change for those colors whose
saturation has been modified. This is done using a
simplified version of the model by Pridmore [67] that
yields V1 = V

(
S
S3

)ρ
.

7) The final result is the image with channels
(H,S3, V1).

See Fig. 5 comparing the original image (left) with the
intermediate result replacing S with S3 (middle) and the
final result with both S3 and V1 (right).

As an enhancement to the method we can add a logistic
function τ after step (4) that linearly combines S2 with the
original S, giving more importance to S in the case of low-
saturated values so as to preserve skin tones and other
memory colors: S2

′ = (1 − τ(S))S2 + τ(S)S. The shape
of function τ(S) is shown in Fig. 4 and the formula is:

τ(S(x)) = 1− 1(
1 + 0.55e−1.74S(x)

)2 (1)

The values used in Eq. (1) have been chosen in the following
manner. We first collect a dataset of several images containing
skin tones, less saturated natural objects and memory colors.
Next we perform gamut extension on these images. Finally,
we empirically search for the parameter values in Eq. (1) such
that the final reproduced images look natural and pleasant.
Note that none of the images from this dataset were included
in the final evaluation of GEAs.

4.2 Gamut reduction
Essentially, gamut extension can be seen as the inverse of
the gamut reduction problem [10]. Since GE can be achieved
by contrast enhancement, GR can be obtained by decreasing
contrast, as we proved in [38]. In [69] Kim et al. showed
that convolution with Ke minimizes a functional that has

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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1

Fig. 4: Logistic
function used
to give weights
to each pixel of
the input im-
age.

a term for contrast enhancement; if we change the sign of
this term, then the minimization of the functional performs
contrast decrease and the solution is achieved by convolution
with a new kernel Kr. Figure 3b (right) shows an example
Kr filter. Following the idea presented in Section 4.1, where
convolution of S with some kernel Ke yields GE, then GR
could be performed by convolution with a kernel Kr that is
the inverse (in Fourier space) of a kernel that would perform
GE.
Basic GR method:

1) The inputs are an image sequence, whose gamut we
want to reduce, and the specifications of the source
and target gamuts.

2) Convert each input frame into HSV color space. We
will keep H constant.

3) Use a linear filter Kr , similar to a sum of Gaussians,
to convolve with S, obtaining S1 which is contrast-
decreased.

4) Add a constant value image C to S1, obtaining
S2. This step attempts to preserve the mean of the
original image.

5) Rectify (S−S2) and produce S3 = S−rectified(S−
S2), where rectified(S−S2) = max(S−S2, 0). This
ensures that S3(x) ≤ S(x) for each and every pixel
x, i.e. that the process decreases the saturation for
all pixels with respect to their value in the original
image.

6) Modify V to compensate for the Helmholtz-
Kohlrausch effect: V1 = V

(
S
S3

)ρ
.

7) The final result is the image with channels
(H,S3, V1).

See Fig. 6 comparing the original image (left) with the
intermediate result replacing S with S3 (middle) and the
final result with both S3 and V1 (right).

While one pass of this basic method already performs
GR, we have found that it gives better results to iterate steps
(2) to (4) with a sequence of filters Kr of progressively larger
spatial extent, keeping fixed after each iteration all pixels
whose colors have become in-gamut. Figure 7 shows the
evolution of the filters, the image gamut and the image.

4.3 Implementation details
4.3.1 Computation of the convolution kernel
The kernel Ke for GE is computed as

Ke = F−1
(

1

1− γ( 19
20 −F(ω))

)
, (2)
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(a) (b) (c)

Fig. 5: Comparison of gamut extension results: (a) input image, (b) extended-gamut image ignoring the H-K effect, (c)
extended-gamut image considering the H-K effect.

(a) (b) (c)

Fig. 6: Comparison of
gamut reduction results:
(a) input image, (b)
reduced-gamut image
ignoring the H-K effect,
(c) reduced-gamut im-
age considering the H-K
effect.

where F denotes the Fourier transform, ω is a normalized 2D
Gaussian kernel and γ is a positive constant. As mentioned
above, the shape of Ke is similar to a difference of Gaussians,
see an example in Fig. 3 (left).

The kernel Kr for GR is computed as

Kr = F−1
(

1

1− γ( 21
20 −F(ω))

)
. (3)

where γ is in this case a negative constant. The shape of Kr

is similar to a sum of Gaussians, see an example in Fig. 3
(right). The motivation for the form of Ke and Kr kernels is
given in the appendix.

4.3.2 Computation of optimal γ value
The basic GR method that we have proposed in Section 4.2
is already capable of mapping the colors of a wide-gamut
image to a small destination gamut. However, we observed
that the same method yields better results if used iteratively
in the following manner. At iteration level one we apply steps
(2)-(4) of the basic GR method with γ = 0. This will provide
us back with the original image for which we check if there
are some pixels that lie inside the destination gamut. If there
are, we mark these pixels as a part of the final reduced-gamut
image and these values will not be modified in subsequent
iterations. We move to the next iteration and apply again
steps (2)-(4) of the basic GR method but now with a slightly
decreased γ value (for example, setting γ = −0.05) for the
kernel in Eq. (3), and then check whether any of the pixels

that were outside the gamut at the previous iteration are
now moved inside the destination gamut: we select those
pixels for the final image and leave them untouched for the
following iterations. We keep repeating this process until all
the out-of-gamut colors are mapped inside the destination
gamut. This iterative procedure implies that in the case of
gamut reduction there will be a unique γ value that will
provide us with an optimal reduced-gamut image. This γ
value is the one that is just sufficient enough to bring all the
out-of-gamut colors to inside the target gamut.

In the case of gamut extension, the gamut of the optimal
result (in terms of appearance) usually does not extend to
the target gamut boundaries, it lies somewhere in between
the source and the target gamuts. This implies that for an
input image there can be many γ values that we can use
to produce corresponding extended-gamut images (some
over-enhanced, some under-enhanced) and then we need
to choose the one which is optimal. However, selecting the
optimal image would require visual inspection. To address
this issue, we present an automatic procedure to find a good-
performing value for γ that allows our GEA to adapt itself for
any combination of source and destination gamut according
to the content of the input image.

Given a pair of source and destination gamuts (3-
primaries triangles), we compute the area of the source gamut
(SGarea) and the destination gamut (DGarea), and find the
difference between them as:
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Fig. 7: Effect of increasing kernel size on image gamut. Row 1: example of kernels with progressively larger spatial extent.
Row 2: reduced-gamut images corresponding to each kernel. Last column: evolution of image gamut that progressively
decreases with an increase in the spatial extent of the kernel.

dg = |SGarea −DGarea| (4)

Considering the color differences between the source and
target gamuts (dg), we define γbase

γbase = 3

√
dg, (5)

where the cube root function used in Eq. (5) has been chosen
based on tests we performed for several combinations of
source and destination gamuts, and it provides us with an
initial γbase value.

For each image, we created gamut extended images using
several different values of γ. Then by subjectively comparing
these reproduced images with the wide-gamut reference
images, we manually found the most faithful (optimal)
reproduction and therefore its corresponding γ value. While
analyzing histograms of the saturation component of various
optimal images, we observed a trend that our GEA requires
a small γ value if the input image has a large percentage of
low-saturated pixels. Whereas a large γ value is needed for
the input image that has a large percentage of high-saturated
pixels. Thus, we modify the γbase value to obtain the optimal
γ value as:

γ = γbase + (TS − PLS)γbase (6)

where TS is a threshold to define the saturation level below
which all the pixels will be considered as low-saturated
colors, and PLS denotes the percentage of low-saturated
pixels in the input image. In this paper, considering that the

saturation channel of the input images are in the range [0,1],
we use Ts = 0.3. The images that we use for the computation
of Ts are not included in the final evaluation of GEAs.

4.3.3 Temporal aspect

Both for GR and GE our method is applied independently to
each frame of the video input. We have not needed to impose
any sort of temporal consistency to our algorithm and this is
due to the effectively large size of the kernels we use, which
remove or strongly reduce the influence of sudden changes
and make the results stable and the framework very robust.

4.3.4 The HDR case

The input is assumed to be of standard dynamic range
(SDR), as it is done in the GM literature. This assumption
would correspond (going back to the vision fundamentals
mentioned in Section 3) to having as input image for our GM
framework the signal generated by the photoreceptors. The
reason for this is the well known fact that the Naka-Rushton
equation that models photoreceptor responses optimizes the
performance efficiency of cones and rods by adapting the
possibly high dynamic range (HDR) input intensities to the
SDR representation capabilities of photoreceptors [70]. In fact
several successful tone mapping approaches (that convert
HDR images into SDR) in the computer graphics and image
processing communities use non-linear curves based on the
Naka-Rushton model (e.g. [71], [72]).

Therefore, if the input video to be gamut-mapped is in
HDR, our framework requires that it is tone-mapped first
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Fig. 8: Wide-gamut test images used in the evaluation of
GEAs. First three original images are from [76], images 4-7
are from [77], images 8-18 were captured by the authors and
the rest of the images are from mainstream movies.

and then processed with our GM algorithm. This is consistent
with the workflow for GM of HDR content proposed in [73].

The output of our GM method will also be in SDR form.
If it were required for it to be in HDR, then an inverse tone
mapping method should be applied to the output, preferrably
respecting the artistic intent present in the material as in the
case of [74].

5 PSYCHOPHYSICAL EVALUATION

The goal of gamut mapping for cinema is to develop GMAs
that reproduce content respecting as much as possible the
artist’s vision, because it is an important feature that a GMA
should have in order to be adopted by the movie industry.
This could be achieved by including the reference images in
the psychophysical tests that act as a stand-in for the content
creator’s intent. Therefore we conduct psychophysical exper-
iments in order to compare the performance of the proposed
GMAs with other methods in cinematic conditions using
a digital cinema projector (Barco-DP-1200 [75]) and a large
projection screen.

5.1 Viewing Conditions and Evaluation Protocol
To emulate real cinema-like conditions, we used a large hall
with the ambient illuminance of 1 lux and the illumination
measured at the screen was around 750 lux. During the
experiments there was not any strong colored object present
in the observers’ field of view. We used a glare-free screen
that was 3 meters wide and 2 meters high. Each observer
was instructed to sit approximately 5 meters away from the
screen.

In this study, we used a forced-choice pairwise compari-
son technique to gather raw experiment data (independently)
for both gamut reduction and gamut extension problems.
Each observer was shown three images simultaneously on
the projection screen: the reference image (in the middle) and
a pair of reproductions (one image on the left side and the
other on the right side of the reference image). We asked each
observer to make selections according to these instructions:
a) if there are any sort of artifacts in one of the reproductions,
choose the other, and b) if both of the reproductions have
artifacts or are free from artifacts, choose the one which is
perceptually closer to the reference image. In pair comparison

Fig. 9: Wide-gamut test images used in the evaluation of
GRAs. First five original images are from [77], the last four
were captured by the authors and the rest of the images are
from mainstream movies.

evaluation [21], in order to calculate differences among n
chosen GMAs, observers need to compare n(n−1)/2 number
of pairs for each test image. For a given pair of reproductions,
a score of 1 is given to the reproduction which is selected by
an observer, and a score to 0 to the other reproduction. For
each test image, the responses of an observer were stored in
a n× n raw matrix where the value in column i and row j
denote the score given to GMA i as compared with GMA j.

To compute accuracy scores from the raw psychophysical
data, we use the same approach as in the work of Morovič
[21] (see Chapter 5 of his thesis), that is based on Thurstone’s
law of comparative judgment [78].

Finally, a corpus of 15 observers participated in each of the
experiments we performed in our lab, as this is the number
of observers for pair comparison tests that is suggested by
several technical recommendation documents (e.g. [79], [80]).
All the observers (12 male and 3 female with ages in the
range of 23 to 36 years) had normal color vision as tested
with the Ishihara’s test of color deficiency.

5.2 Image media
The DCI-P3 wide-gamut test images that we used in eval-
uating GEAs and GRAs are, respectively, shown in Fig. 8
and Fig. 9. (Note that these are sRGB images because we are
limited to the sRGB standard to show results on paper.) Some
of these test images were taken from the publicly available
datasets [77], [76], while others were from [56] and from
mainstream feature films.

5.3 Experiment 1: Evaluation of GEAs
In the case of the psychophysical evaluation of GEAs, the
first step is to create limited-gamut input images. This is
achieved by applying a clipping operation on the DCI-P3
reference images in order to map the out-of-gamut colors
to the boundary of the BT.709 gamut (or any other desired
gamut). In order to perform clipping we used the xyY color
space, and clip chromaticities of the out-of-gamut colors of
a given image to the boundary of the destination gamut
towards a focal point that is the white point ‘D65’. The
experimental gamuts that we use in this paper are depicted
in Fig. 10, and their primaries are listed in Table 1. The
procedure for computing the γ value that we use for the
kernel in Eq. (2) is presented in Section 4.3.2, and the standard
deviation for ω is set to one-third of the number of rows or
columns of the input image (whichever is larger). In the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

0 0.2 0.4 0.6 0.8

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
Visible Spectrum
DCI-P3 Gamut
BT.709 Gamut
Toy Gamut
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formula of brightness modification in step 5 of the basic GE
(see Section 4.1), we set ρ = 0.35.

5.3.1 Experimental Setups for GE

We have defined the following two different experimental
setups for the evaluation of GEAs.

1) Setup 1: Mapping from small gamut to DCI-P3 gamut. As
quantum dot displays [81] and laser projectors [82]
with their extended gamut capabilities are becoming
popular, in the near future the common case will be
to have large color differences between the standard
gamut and the gamut of the display. Therefore,
this setup is created to investigate how different
GEAs will perform when the difference between
source and target gamuts is large. To this end, we
map the source images from the small ‘Toy’ gamut
(slightly smaller than the BT.709 gamut) to the large
DCI-P3 gamut. On the chromaticity diagram, the
difference in gamuts for this setup is nearly equal
to the difference between BT.709 and BT.2020. This
represents the future scenario where we need to
show on a wide-gamut display some content that
was mastered for TV.

2) Setup 2: Mapping from BT.709 to DCI-P3 gamut. In this
setup we mimic the practical situation where the
source material has BT.709 gamut and we map the
source colors to the colors of the DCI-P3 gamut.

5.3.2 Competing GEAs

For each set-up, we compare the proposed method with the
top-ranked GEAs in a recent work [56]). These GEAs are
briefly explained as follows.

• Same Drive Signal (SDS) method linearly maps
the RGB primaries of the source gamut to the RGB
primaries of the destination device gamut, therefore
making the full use of the gamut of the target display.

• Hybrid Color Mapping (HCM) is a combination of
the SDS algorithm and the true-color algorithm. The
true-color algorithm represents the input image in the
target gamut without applying any extension.
The HCM algorithm [50] analyzes the saturation of
the input image and then linearly combines the output
of the true-color method and the SDS method:

TABLE 1: Primaries of gamuts.

Gamuts Red Primaries Green Primaries Blue Primaries

x y x y x y
BT.2020 0.708 0.292 0.170 0.797 0.131 0.046
BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060
DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
Toy 0.570 0.320 0.300 0.530 0.190 0.130

(a) Setup 1. (b) Setup 2.

Fig. 11: Accuracy scores of competing GEAs: 15 observers
took part in each experiment and 30 images were used.
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,

(7)
where κ is a mixing factor that works as a function of
saturation:

κ(S) =


0, if S ≤ SL
S−SL

SH−SL
, if SL < S < SH

1, if S ≥ SH
(8)

SL and SH are constants to define the ranges of
saturation for the mixing function κ, and their values
that we used in our experiments are SL = 0.8 and
SH = 1 as defined in [56].
The method of HCM aims at preserving natural colors
by leaving unchanged the low-saturated colors such
as flesh tones, while mapping the high-saturated
colors using the SDS method.

• GEA of Zamir et al. [56] is a spatially-variant GEA,
implemented as a PDE-based optimization procedure,
that performs gamut extension in CIELAB color space
by taking into account the analysis of distortions in
hue, chroma and saturation.

5.3.3 Results of GEAs Under Experimental Setup 1 and
Setup 2
Once the reproductions were obtained by applying GEAs
on the input images of both setups, we conducted a psy-
chophysical evaluation separately for each setup using the
15 observers mentioned in Section 5.1.

Fig. 11a presents the accuracy scores computed by ana-
lyzing the psychophysical data of the setup 1 where it can
be seen that, when the difference between the source gamut
and the destination gamut is large, the proposed GEA yields
images that are perceptually more faithful to the reference
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images than the other competing algorithms. The observers
declared SDS [50] as the least accurate method, whereas the
algorithm of [56] ranked second.

In Fig. 11b we present results for the setup 2 where it can
be seen that, when the color difference between the source-
destination gamut pair is small, our algorithm ranks first,
followed by the HCM algorithm [50] and the method of [56].

5.4 Experiment 2: Evaluation of GRAs

This section is devoted to examining the image reproduction
quality of competing GRAs. To obtain the reduced-gamut
images, we apply the proposed GRA on the saturation
channel of the input images by using the proposed GRA
in an iterative manner (over the γ parameter) as described
in Section 4.3.2. The other parameter for the kernel in Eq.
(3) is the standard deviation for ω, which is equal to one-
twentieth of the number of rows or columns of the input
image (whichever is larger). In the formula of brightness
modification in step 5 of the basic GR (see Section 4.2), we
set ρ = 0.20.

5.4.1 Experimental Setups for GR
All the competing GRAs receive as input the wide-gamut
DCI-P3 images and generate reproductions for the following
two different experimental setups.

1) Setup 1: Mapping from DCI-P3 gamut to a small
gamut. We created this particular setup with a large
difference between source and target gamuts, nearly
as large as it is between BT.2020 and BT.709 gamuts.
An experimental setup with such large difference in
gamuts allows us to not only evaluate the perfor-
mance of competing GRAs reliably but also provides
us an indication of how these GRAs might perform
when BT.2020 content becomes commonly available
and needs to be mapped to BT.709 displays or DCI-
P3 cinema projectors. To compute the results using
the competing GRAs, we map the colors of the 15
DCI-P3 test images shown in Fig. 9 to the challenging
smaller ‘Toy’ gamut.

2) Setup 2: Mapping from DCI-P3 to BT.709 gamut. Col-
orists perform this gamut reduction procedure by
using 3D LUTs (as we mentioned in more detail in
the introduction.) Therefore, we engaged a profes-
sional colorist from a post-production company to
use their own in-house 3D LUTs and apply them on
our DCI-P3 test images in order to create reduced-
gamut BT.709 images. We also perform GR using the
following competing GRAs.

5.4.2 Competing GRAs
• LCLIP [15] clips the chroma of the out-of-gamut

colors to the destination gamut boundary along lines
of constant hue and lightness.

• Hue Preserving Minimum ∆E (HPMINDE) [16]
involves clipping of the out-of-gamut color to the
closest color, in terms of ∆E error, on the boundary
of the destination gamut along lines of constant hue.

• Alsam and Farup [29] proposed an iterative GRA that
at iteration level zero behaves as a gamut clipping

(a) Setup 1 (b) Setup 2.

Fig. 12: Accuracy scores of competing GRAs: 15 observers
took part in each experiment and 15 images were used.

Fig. 13: Accuracy scores
of competing GRAs for
the skilled technicians
case. The experiment was
performed by 6 experts,
and 15 images were used.

algorithm, and as the number of iterations increases
the solution approaches spatial gamut mapping.

• Schweiger et al. [25] make use of a compression
function that squeezes colors near the destination
gamut boundary in order to accommodate the out-of-
gamut colors. This is a method proposed and used by
the British Broadcasting Corporation (BBC).

5.4.3 Results of GRAs Under Experimental Setup 1 and
Setup 2
The 15 observers that took part in the GR experiment for
setup 1 were the same observers that participated in the eval-
uation of the GE algorithms. The analysis of psychophysical
data gathered for GRAs is presented in Fig. 12a. It can be seen
in this figure that the proposed GRA produces images that
are perceptually more faithful to the original images than
any other competing method. It is evident from Fig. 12a that
observers did not prefer the HPMINDE algorithm in most of
the tests images, and therefore rated it as the least accurate
method. The algorithms of Schweiger et al. [25], Alsam and
Farup [25] and LCLIP [15] are, respectively, ranked second,
third and fourth by the observers.

For the experimental setup 2 we also ran the psychophys-
ical tests with 15 observers, of which 9 had experience in
image processing and the other 6 were skilled technicians
(colorists and editors) from a post-production company.

In order to reduce the number of pair comparisons, in this
particular setup we opted to use the reproduced images of
the top three ranked methods from setup 1 and the reduced-
gamut images created by using the custom LUT of the same
post-production company. Figure 12b shows the result for all
the observers. Observers preferred the in-house LUT results
over the other methods, with our GRA being ranked second.

More specifically, we can focus our attention on the result
for this experiment when considering only the 6 skilled
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Fig. 14: Comparison between the results of different image metrics and the results from psychophysical evaluation. Metrics
were considered as observers in a pair comparison experiment. Each experiment is color coded individually. Color codes are
green for the best result and red for the worst one.

technicians. This result is shown in Fig. 13. In this case, we
can see that the trend is very similar to the one obtained
by the 15 observers (the ranking of the algorithms is not
modified), but also that the skilled technicians are more
inclined to select the in-house LUT of their post-production
company, probably because they might be more inclined to
select the solution they are used to working with. Also, the
use of a LUT is well suited for the case of DCI-P3 to BT.709
reduction, where the blue primary is essentially the same for
both gamuts, and the differences in the other two primaries
are rather small: however, for larger gamut differences, the
LUT approach might be hard to generalize.

5.5 Video Results

In order to test the temporal coherence we apply
the proposed gamut reduction and gamut extension
methods to all frames of videos independently. We
confirm that the results produced by our algorithms
are free from artifacts. The videos are available at
http://ip4ec.upf.edu/GamutMappingSubmission.

6 DOES ANY ERROR METRIC APPROXIMATE OUR
PSYCHOPHYSICAL RESULTS?
In this section we evaluate if there exists any image metric
able to predict the result of our psychophysical test, following
the same strategy we used for the GE case in [56]. To this
end we consider a total of 10 metrics: a perceptually-based
color image difference (CID) metric [83] particularly tailored
for the gamut mapping problem, its more recent extension
iCID [36], CIE∆E00 [84], the metrics presented in [85] such as
Laplacian mean square error (LMSE), structural content (SC),
normalized absolute error (NAE), peak signal-to-noise ratio
(PSNR), and absolute difference (AD), and finally two very
recent, state-of-the-art deep learning metrics for perceived
appearance, PieAPP [86] and LPIPS [87], learned from human
judgements on large image databases. All these metrics are
full-reference, and therefore, they have access to the reference
images, as do the observers in our experiments.

In order to perform a fair comparison to our experiment,
we consider the metrics as if they were observers in our pair
comparison test. This means that, for each metric, we will
run all the possible comparisons, and in each comparison we
will give a 1 to the image with better metric value and a 0 to

the image with worse metric value. Later, we will apply the
Thurstone Case V analysis [78] to each of the image metrics
to end up with the preference values for each of the methods.
These preference values will therefore be comparable to the
ones shown for the psychophysical analysis in our previous
section. For readers interested in the exact numerical values
of the metrics (e.g. the mean value for each method, etc.), we
provide them in the supplementary material.

Figure 14 shows the result of the aforementioned analysis.
Each of the experimental setups is individually colored with
a color code where the hue goes from pure red for the lowest
value to pure green for the highest one. Therefore, for any
metric to be able to predict the psychophysical results, its
color code should match that of the results of the observers,
shown in the last row. We can see that there is only one
specific case where we could argue that this is happening, the
NAE metric in the first setup of gamut extension. However,
the same metric is not able to predict the observers’ response
in any of the other three cases.

It is interesting to mention that the CID and iCID metrics,
which were specifically developed for gamut mapping, do
not match the observer data; one possible reason is that these
metrics were designed for input images in the BT.709 gamut,
while in this paper the input images are in DCI-P3, which
may explain the limitations of CID and iCID in the context
of our problem.

Another significant result is that two state-of-the-art deep
learning metrics, PieAPP [86] and LPIPS [87], designed to
predict perceptual image error like human observers and
based on large scale datasets (20K images in one case,
160K images in the other) labeled with pair-comparison
preferences and, in the case of [87], using close to 500K
human judgements, are not able to predict the observers’
preference in any of the experimental set-ups that we
have tested. This result is important, as it suggests that
current deep learning approaches are not accurate enough
for validating (and therefore developing) GM methods for
cinema applications, although it’s not a surprising result in
the sense that several very recent works have also shown how
large or very large scale image databases (250,000+ images)
can be used to train deep neural networks to predict user
preference but whose performance decays remarkably when
used on images that belong to some other dataset different
from the one used for training [87], [88].



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

In summary, there does not seem to be an adequate metric
that is able to predict the preference of observers for GM
results. This has two important consequences. First, that in
order to evaluate gamut mapping methods, we still need to
rely only on psychophysical studies. However, conducting
subjective studies is operationally difficult, hard to replicate
from experiment to experiment, economically costly and
may require special equipment (cinema projector, large
screen, etc.). Second, that we cannot develop GM methods
or optimize GM results simply by maximizing an image
appearance metric or minimizing an error metric (as it is
done in other contexts, e.g. [89]), which of course would
be extremely practical. Therefore, the results presented in
this section point out the importance of working towards
defining better metrics for the gamut mapping problem
that are able to predict the observers’ preference, which
we strongly believe would be of great importance for the
color imaging community.

7 CONCLUSION

We have introduced a GM framework based on some basic
vision science facts and models. The algorithms for GE and
GR are simple, of low computational complexity, produce
results without artifacts and outperform state-of-the-art
methods according to psychophysical experiments.

We also tested a number of established and state-of-the-
art objective metrics on the results produced by the GM
methods we have compared, and we have observed that
these metrics correlate poorly with the choices made by
the observers. Therefore there is a need for developing an
image quality metric for GM: this would be a very significant
contribution, as it would greatly simplify the validation of
new methods and would also allow to optimize GM results
by optimizing said metric.

APPENDIX A
In this Appendix we will give the motivation for the shape
of the kernels that we use for gamut reduction and extension,
presented in Section 4.3.1.

In order to map colors from one gamut to another, Zamir
et al. [38] made use of an image energy functional related with
visual perception and adapted from the work of Bertalmı́o et
al. [90]

E(I) =
α

2

∑
x

(I(x)− µ)
2

+
β

2

∑
x

(I(x)− I0(x))
2

− γ

2

∑
x

∑
y

w(x, y)|I(x)− I(y)|, (9)

where α, β and γ are constant weights, I is a color channel
(R,G or B) in the range [0, 1], I0 is the original image
channel, µ is the average value of an image channel, w(x, y)
is a normalized Gaussian kernel, and x and y are pixel
locations. The minimization of the image energy (9) yields
either an extended-gamut image or a reduced-gamut image
depending on the sign of the parameter γ: a positive value of
γ leads to contrast enhancement and gamut extension, and
a negative value of γ performs contrast reduction and also
gamut reduction. However, minimizing Eq. (2) requires to

perform an iterative procedure like gradient descent to obtain
the final image, thus being a time-consuming approach.

Recently, Kim et al. [69] proposed to replace the absolute
value function in the third term of Eq. (9) with a squared
function

E(I) =
α

2

∑
x

(I(x)− µ)
2

+
β

2

∑
x

(I(x)− I0(x))
2

− γ

2

∑
x

∑
y

w(x, y)(I(x)− I(y))2. (10)

With this modification the Euler-Lagrange equation can
be solved directly:

δE(I) = α(I(x)− µ) + β(I(x)− I0(x))

− γ
∑
x

w(x, y)(I(x)− I(y)) = 0. (11)

We can see that the last term is equal to the convolution of
the image I and the kernel w(x, y). Rearranging, and with
an abuse of notation to avoid writing the pixel location x we
reach to

(α+ β − γ)I + γw ∗ I = αµ+ βI0 (12)

Applying the Fourier transform we obtain

(α+ β − γ)F(I) + γF(w)F(I) = F(αµ+ βI0) (13)

Rearranging and applying the inverse Fourier transform
we obtain the solution

I = F−1
( F(αµ+ βI0)

(α+ β − γ) + γF(w)

)
(14)

which can be rewritten in terms of convolving a kernel with
the input image I0 as

I = βI0 ∗K + C (15)

where C is a flat, single-value image with all pixels equal to
the product of α, the mean of the input image channel, and
the mean of the kernel K . The kernel K is computed as

K = F−1
(

1

(α+ β − γ) + γF(w)

)
, (16)

The sign of γ defines the type of GM and the shape of the
kernel (see Fig. 3): in the case of gamut extension γ is a
positive constant and in the case of gamut reduction it is
negative.

From the above, convolving with K the three channels of
an RGB image would yield a gamut-mapped result. Perhaps
counter-intuitively, we also obtain a gamut-mapped result
if we convolve K with the saturation channel S of an
image in HSV colorspace, and then rectify the output. For
instance, for GE, the constant γ is positive, which means
that convolution with K will increase contrast and therefore
locally maximal values of S will go up, while some S values
will go down, but then rectification ensures that the S values
that decreased are brought back to their original value;
the net result is that after convolution and rectification, S
has increased, and therefore the gamut has been extended.
The same reasoning can of course be applied to the gamut
reduction case.
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In our application, for performing GM we fix in Eq. (16)
the parameter values β = 1 and α = |γ|

20 , which leads to the
kernels presented in equations 2 and 3.

APPENDIX B

In this Appendix we present the standard procedure of
converting between RGB and HSV color spaces [91].
RGB to HSV:
Given R, G, and B components in the range [0,1], we can
calculate H , S, and V components as:

V = max(R,G,B)

m = min(R,G,B)

H ′ =


undefined, if V −m = 0
G−B
V−m mod 6, if V = R
B−R
V−m + 2, if V = G
R−G
V−m + 4, if V = B

H = 60◦ ×H ′

S =

{
0, if V = 0
V−m
V , otherwise

HSV to RGB:
Given H ∈ [0◦, 360◦], S ∈ [0, 1], and V ∈ [0, 1] components,
we can calculate R, G, and B as:

C = V × S

H ′ =
H

60◦

X = C × (1− |(H ′mod 2)− 1|)

(R1, G1, B1) =



(0, 0, 0), if His undefined
(C,X, 0), if 0 ≤ H ′ ≤ 1
(X,C, 0), if 1 ≤ H ′ ≤ 2
(0, C,X), if 2 ≤ H ′ ≤ 3
(0, X,C), if 3 ≤ H ′ ≤ 4
(X, 0, C), if 4 ≤ H ′ ≤ 5
(C, 0, X), if 5 ≤ H ′ ≤ 6

(R,G,B) = (R1 + V − C,G1 + V − C,B1 + V − C)
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