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Fusion-based Variational Image Dehazing

Adrian Galdran, Javier Vazquez-Corral, David Pardo, and Marcelo Bertalmio,

Abstract—We propose a novel image dehazing technique
based on the minimization of two energy functionals and a
fusion scheme to combine the output of both optimizations.
The proposed Fusion-based Variational Image Dehazing method
(FVID) is a spatially varying image enhancement process that
proceeds by first minimizing a previously proposed variational
formulation that maximizes contrast and saturation on the hazy
input. The iterates produced by this minimization are kept, and
a second energy that tends to shrink faster the intensity values
of well-contrasted regions is minimized, allowing to generate a
set of Difference-of-Saturations (DiffSat) maps by observing the
shrinking rate. The iterates produced in the first minimization
are then fused with these DiffSat maps to produce a haze-
free version of the degraded input. The FVID method does not
rely on a physical model from which to estimate a depth map,
nor it needs a training stage on a database of human-labelled
examples. Experimental results on a wide set of hazy images
demonstrate that FVID better preserves the image structure on
close-by regions that are less affected by fog, and it successfully
compares with other current methods in the task of removing
haze degradation from far-away regions.

Index Terms—Image Dehazing, Variational Image Processing,
Image Fusion, Color Correction, Contrast Enhancement.
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I. INTRODUCTION

MAGES acquired in outdoor scenarios often suffer from a

particular kind of degradation produced by the atmosphere
that lies between the observer and objects in the scene. This
phenomenon, usually referred to as haze or fog, distorts contrast
and color in the image, decreasing the visibility of the contents
of the scene and reducing its visual quality.

The task of removing haze degradation from an image is
known as image dehazing, and has given rise to an important
area of research recently. A first family of methods rely
on inverting a physical model of the degradation, such as
Koschmieder’s atmospheric scattering model [1]:

I(z) = t(x)J(z) + (1 — t(x))A. (1)

Here, x represents a pixel location, I(z) is the observed
intensity, J(z) is the scene radiance of a haze-free image,
t(x) is the transmission of light in the atmosphere, inversely
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related to the scene’s depth, and A is the airlight, a global
vector quantity describing the ambient light.

Whenever no extra information apart from the input image
is considered, the problem is known as single-image dehazing.
The first approach to tackle the problem is to formulate some
restriction on the visual characteristics that a reasonable solution
can have, see [2]-[4]. In particular, the most popular work is
the Dark Channel Prior [5], which states that haze-free images
locally have a low value of luminance in some of the three
color channels. Extensions of this cue have been further used
in[6]-[12]. A second type of approaches to image dehazing is
that of machine-learning techniques. Relevant works are [10],
[13]-[15]. A third group of methods are based on spatially
varying image processing techniques. They study the local
structure of the image to infer the presence of haze, and try
to compensate for this effect, see for instance [16] or[17].
Fusion of white balanced and contrast enhanced versions of
the input hazy image has also been proposed [18], as well as
approaches based on models of the Human Visual System, such
as Retinex,[19]-[21]. The main drawback of these methods is
that, due to the partial lack of physical information within their
formulation, they may present under or overenhanced results,
see Fig. (1). In general, a well-designed image dehazing method
should strive to enhance visibility in areas of the scene lying far
away from the observer, but regions not affected by fog should
keep their original luminance and chromatic characteristics.

The main contribution in this paper is the development of a
variational dehazing method that improves previous works by
retaining high contrast and colourfulness enhancing capabilities
on far away regions, while preserving image content on nearby
regions. This is made possible through a double minimization:
we optimize a first energy to generate a series of Difference-
of-Saturations maps that encode the degree of degradation of
each pixel in the scene. Then, a second energy is combined
with the previously derived maps to recover haze-free images.

II. VARIATIONAL IMAGE DEHAZING

To restore haze-degraded outdoor images, in [22], the authors
proposed to minimize the following image energy:

Bevin(F) = 5 3 (B () - ) + 5 3 (F (@) - (@)
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where I/ is a color channel with values in [0, 1], Iy is the
original image, z, y are pixel coordinates, «, 3,7y, n are positive
parameters, and w(z,y) is a distance function with values
decreasing as the distance between x and y increases, p/ ~
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(a)

Fig. 1. (a) A hazy scene, and the result of applying (b) EVID dehazing technique (c) The proposed FVID method. (d)-(1) The progressive DiffSat maps
generated by our approach. Note the loss of details in the face of the dog produced by EVID. This overenhancement artifact is properly corrected by FVID.

2 mean(I’) — A7 is a mechanism to estimate the predicted
mean of the haze-free image, and j € Zs. Here, {R, G, B} is
identified with the space of integers modulo 3, Z3, meaning
for instance that 12 = I, and I®> = IB. This energy is termed
Enhanced Variational Image Dehazing (EVID).

III. FUSION-BASED VARIATIONAL IMAGE DEHAZING

Despite the good dehazing capabilities of the method de-
scribed by (2), it sometimes produces overenhanced results, see
fig. 1. Still, each of the iterates generated by EVID implicitly
carries useful information on the degree of enhancement each
region needs. This observation leads us to design a methodology
that extracts such information, in the form of progressive
Difference-of-Saturations (DiffSat) maps. After building these
maps, we use them to formulate an image fusion process to
blend the EVID iterates into a single image, keeping only the
most useful visual information at each depth layer of the hazy
input.

A. Progressive DiffSat Maps Generation

To capture the implicit depth information that EVID gener-
ates, we extend the energy of (2) as follows:

EFVID (Ij) = EEVID (Ij) +T Z Ij (:c) (3)

This straightforward extension keeps the dehazing capabilities
of EVID, but it adds a penalty term for large image intensity
values. In practice, this amounts to prioritizing a dark image.
To minimize the Epyip energy, we compute the Euler-
Lagrange equations by means of the following theorem:

Theorem 1. For the Epvyip energy, the Euler-Lagrange
equations are:

VErvip(V) =a(V — p;) + BV = Tj) = yR(V, V)
—n(RE,F*) + RE,F*?) +7=0 (4
for j € {R,G, B}. Here, R(1',17) is defined as follows:
>, w(@y)sl(z) — T (y))
>, w(@,y) ’

being s a sigmoid function, and with j defined modulo 3,
varying in the {R, G, B} components of the input image.

R(I',V)(x) = (5)

Proof. The variational derivatives of the modified gray-world
term, the attachment to data term, and shrinking term are
straightforward to compute. The contrast and the saturation

enhancement terms need a more tedious computation, the
details of which can be found in [22]. O

Once the gradient of the energy is computed, we can advance
towards a minimum of it by using gradient descent:

., =11 - At(a+ 8)) + At(ap’ + Bly)
+ At R(I, 1) + R, ) + R(1, 1B42)] - 7).

(6

The additional term inserted in (3) penalizes large intensity
values in the image. Thus, the above gradient descent will
shrink intensity values of the hazy input image. Note that we
minimize the energy in the space of images with non-negative
values. This imposes a non-linear constraint that can be handled
with different approaches, e.g. introducing the KKT conditions
[23]. A simpler approach employed in this work consists of,
whenever an iteration takes a negative value, back-projecting
the image again into the [0, 1] space.

Note that the minimization of Epyip differs from the
minimization of Egyip in that we introduce a shift in the
Gray-World value. To see this, we may reformulate (4) as:

VErvin(F) = a (Ij = (= g)) + BV - T))

— YR, V) —n(R(V, P+ + R(I,P+?)) = 0. @)

Thus, to enforce a dark image as the minimum of Ervyip, we
need to impose that pu; < 7/a, for every color channel j.
This amounts to require 2 - mean(I’) — A7 < 7/a. Once this
condition is fulfilled, and given the local nature of the contrast
and saturation terms, whenever intensities within a region take
zero values during the gradient descent, those terms do not
contribute to the image energy. In that way, the minimum of
the Epyip energy will be attained at a black image.
Nevertheless, we are not interested in the minimum of (3), but
in the rate at which intensity values of individual pixels I(z,y)
reach zero value. Closer regions have more saturated pixels, and
their value rapidly decrease driven by the inter-channel contrast
maximization. Far-away regions contain mostly achromatic,
non-saturated pixels, that will take more time to vanish. This
observation leads us to observe the difference in saturation
of each iteration with respect to the previous one. Thus, we
generate a series of Difference-of-Saturations (DiffSat) maps

to accurately reflect the depth distribution in the scene:
D, = Sat(Ik) — Sat(Ik_l), (8)

where Ij, are the iterations generated by (6), and Sat(I) is the
saturation of Iy as defined in eq. (1.73) on [24], being Iy =1
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the hazy input. An illustration of the generated DiffSat maps
is shown in figs. (1.d) - (1.1).

B. Fusion Procedure

We have obtained a set of k& depth maps Dy, that indicate
the amount and location of the haze to be removed at each
iteration. We have also obtained a series of | progressively
haze-free iterates Z;. Our goal now is to fuse these two sets of
information so that depth maps corresponding to later iterates,
i.e. those regions with higher fog, should correlate with further
processed haze-free iterations.

First, we either interpolate or extrapolate the set of depth
maps {Dy} to obtain a new set of exactly ! depth maps. These
new maps are convolved with a Gaussian kernel in the three
dimensions (X,y, and temporal) in order to present smoothed
transitions, and they are later normalized so that the sum in
the temporal dimension for any pixel z is equal to 1. We will
denote these new maps as {D;}.

We compute the fused image as the combination of these
normalized depth maps and the haze-free iterates as follows

l
FVID(2) = Y Dj(x) - Z;(z)" ©)
j=1

where I' = [I'y,--- ,T'] is a set of increasing values between
0.45 and 1.2 that counter-effects the fact that the original image
is in linear form (i.e. it is not gamma corrected).

IV. EXPERIMENTAL EVALUATION

We implement (2) and (3) with the following reference
values: a« = 0.5, 3 =0.5, v =0.2, n = 0.02 and 7 = 1. Note
that the first four parameters keep the same values as in the
original EVID formulation [22]. The parameter 7 is chosen
in such a way that condition p; < 7/« is fulfilled. For the
above values of o and 7, 7/ae = 2 > 2mean(1j) — A7, since
0 <T7,AJ <1 for all j. Both distance functions were defined
as Gaussians with a kernel of standard deviation 50 pixels. The
time step was set to At = 0.15 for (2) and At = 0.05 for (3),
to allow for a more fine-grained DiffSat map set. We consider
that a steady-state of the gradient descent is achieved when the
difference between the images of two consecutive iterations
is below 0.02. The set of I" values for (9) is equally spaced
between the 0.45 value considered for the first iterate and the
1.2 value employed for the last one.

Regarding efficiency, variational models are often both
powerful and computationally demanding. In this case, FVID
doubles the computational complexity of EVID, since we
need to minimize model (2) first, and model (3) afterwards
to generate the iterates and the maps, in order to perform the
fusion. Fortunately, the same technique, based on FFT, that
was proposed in [25] ,can be applied in both cases, rendering
a computation time of about 90 seconds for a 1 MP image.

Fig. 2 describes a foggy scene that is often employed to
evaluate the performance of dehazing approaches. We can
conclude that, while every tested method improves visibility
of the wheat piles at the bottom of the scene, the method in
[4] and EVID suffer from a heavy overenhancing that leads

to the appearance of distorted artificial colors. In this case,
the remaining techniques, i.e., the approaches proposed in
[3], [6] and FVID, seem to recover a satisfactory dehazed
result. We confirm this by conducting a simple experiment.
First, we obtain a depth map by applying the popular Dark
Channel method, which provides a reliable transmission map
for images degraded by homogeneous fog. After re-scaling the
transmission to the [0, 1] interval, we threshold it in successive
percentages of depth, obtaining a series of cumulative depth
maps and corresponding partial images, see figs. (3.b) to (3.e).
For each thresholded depth map, we measure the deviation of
the original image with respect to the dehazed result provided
by each of the methods, in terms of image structure. To that
end, we apply the well-known SSIM index [26].

Results of this experiment applied to the wheat field image
in fig. 2 are presented in fig. 3. We see that every dehazing
method produces a decreasing sequence of SSIM scores, as
expected. As we progressively add further regions of the image
to the error analysis, the similarity of the original image and
the dehazed output decreases. However, we can observe that
the method of [4] and EVID produce rapidly decreasing scores.
This means that, in the effort of dehazing far-away areas, both
methods aggressively modify nearby regions. This is visually
confirmed by the clearly overenhanced results of figs. (3.b)
and (3.e). On the other hand, the methods of [3], [6] and
FVID produce more balanced successive SSIM scores, i.e.,
they better preserve nearby areas. While far-away areas of the
scene seem to be satisfactorily dehazed by all the methods, the
FVID approach produces a dehazed image that slowly separates
from the input hazy scene, succeeding in dehazing the scene
progressively while better keeping the structural similarity with
respect to the less hazy parts of the image.

One of the nice features of EVID is its capability to
dehaze images even when they contain an uneven source
of illumination. We demonstrate that FVID preserves this
capability in fig. 4, a natural image where the sun illuminates
objects from the left of the scene, providing a non-uniform
illumination. As usual in dehazing methods that assume a
regular spatial distribution of haze, the techniques proposed in
[3], [5], [15] overcompensate the illumination in the left part
of the image, introducing yellowish artificial tones. In contrast,
we can observe how both EVID and FVID retrieve visibility
to a similar degree (see the central tree), while not introducing
the color artifacts induced by the sun behind the haze. It is also
noticeable how EVID produces excessive contrast on nearby
regions, as observed in the areas of grass close to the camera.
These specific artifacts are satisfactorily avoided by FVID.

Another important problem that current dehazing approaches
seldom address [27] is the appearance of chromatic artifacts
when processing sky regions. Due to their low saturation, sky
pixels tend to confound depth estimation algorithms, which
classify them as being contaminated by haze, and attempt to
extract too much contrast. This problem is exacerbated by the
reduction of information that compression algorithms often
apply to those regions [28]. In our case, we can take advantage
of the flexibility of the variational approach to process sky
areas on the image without introducing overenhancing artifacts.
To this end, we consider an adaptive weighting strategy for
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Fig. 2. A hazy scene and the output of different dehazing methods. (a) Original
scene. (b) Bayesian defogging [4] (c) No-black-pixel [3] (d) BCCRD [6] (e)
EVID [22] (f) FVID.

—e—FVID
—e—EVID [22]
—+—Meng et al. [6]
—o—Nishino et al. [4]
—e—Tarel et al. [3]

Similarity with Original - SSIM

100%

o %
Depth Percentage
(a)

Fig. 3. SSIM of the progressive partial images produced masking the dehazed
outputs of fig. (2) by binarized depth maps. Figs. (b)-(e) show progressive
masked images at a depth of: (b) 4% (c) 16% (d) 36% (e) 64%.

the attachment to data term in the DiffSat map generation
scheme. In particular, when we apply FVID to a hazy image
with sky region on it, we modify £ in (3) simply to be an array
of increasing weights, 3 = (8;) = (3o - 1.1%). This produces
a set of DiffSat maps that do not consider sky regions as
being far away, and leads to a more conservative behaviour
of the fusion stage therein. An example of this approach is
shown in fig. 5, where we compare it versus the result of the
standard FVID, as well as EVID and the Dark Channel [5] and
FADE [15] methods, to better appreciate the artifact removal
effect of the adaptive attachment-to-data term. We can see how
the chromatic distortion generated by standard FVID on sky
regions is mitigated by this modified version, while contrast
gain is retained in other areas of the image, such as far-away
buildings. We have zoomed in the sky region to better notice
the presence of these distortions, that is substantially alleviated
with the proposed adaptive attachment-to-data strategy.

To quantitatively evaluate FVID we perform a similar
evaluation procedure as in [22]. Our evaluation dataset it is
composed of 48 foggy images: 12 scenes from [29] under 4
different realistic fog layers. We have compared FVID versus
other state-of-the-art methods, namely EVID [22], and the
methods proposed in [5], [3], and [30]. Again, our method was
computed with the same fixed parameters for all scenes.

In this paper, we slightly modify the 5 image metrics used
in [22]. Here, the first measure computes the peak-signal-
to-noise ratio (PSNR) between each channel of the images
to later combine the results of the three channels using the

I, norm, that is PSNR,p;;; = \/Z PSNR(ICT, [mm)2,

c=r,g,b

Fig. 4. A hazy scene suffering from an uneven illumination and the output
of different dehazing methods. (a) Original hazy scene. (b) FADE [15] (c)
No-black pixel [3] (d) Dark channel [5] (e) EVID [22] (f) FVID.

Fig. 5. A hazy image with a reduced sky region, and the result of dehazing it
with: (b) Dark channel [5] (c) FADE [15] (d) EVID (e) FVID (f) FVID with
adaptive attachment to data term.

where I¢7 stands for the ground-truth image, I™ stands for

the method used, the subindexes represent each color channel.
The second measure is the PSNR between the luminance
of the images. The third measure is called I2 — color and
computed as ly — color = Ei:l\/ZC””’X;I‘?T(”_WO)P7
where the images are considered in the range (0,255). The last
two measures are based on the correlation. They are mathe-

matically defined as Corrspiy = \/ Zc:'r, ob Corr(IET, )2,

and Corryy,, = Corr(IlC;Z;L,Il’;‘m), where Corr gives us the
correlation coefficient between the two images. Results are
shown in Table I. For all the evaluated measures, except for the
12 — color, a higher value means a better method. The FVID
method proposed in this paper outperforms all the others.

TABLE I

QUANTITATIVE RESULTS AS THE MEAN FOR 48 IMAGES
Error measure [30] [3] [5] EVID [22] FVID
12-color 47.96 | 52.03 | 48.93 47.18 44.42
PSNRypum 16.03 | 16.52 | 15.53 17.00 17.31
PSNR,p15t 6.90 6.99 6.79 7.13 7.19
Corrspiit 1.24 1.21 1.18 1.25 1.26
Corriym 0.70 0.69 0.66 0.71 0.72

V. DISCUSSION AND CONCLUSIONS

We have described FVID, a novel haze removal method. It
extends significantly upon a previously proposed variational
dehazing scheme (EVID) through a double optimization that
integrates information of the iterates produced by EVID and
a hierarchical set of partial depth estimates, obtained from
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a simple extension of the EVID image energy. The fusion
of visual information coming from both sources leads to
an effective dehazing technique that is validated through
experimental evaluation. FVID achieves results comparable
to other state-of-the-art techniques in the task of enhancing
contrast of colors of far-away regions, while better retaining
image structure in nearby regions. As a side contribution,
we have also proposed a variant of FVID to handle typical
overenhancement artifacts that often appear when dehazing
images containing sky regions. Moreover, and due to the
flexibility of variational minimization methods, it is possible
to generate different families of FVID methods exhibiting
different features, which shall be explored in future works.
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