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Angular-based pre-processing for image denoising
Javier Vazquez-Corral and Marcelo Bertalmı́o

Abstract—There is not a large research on how to use color
information for improving results in image denoising. Currently,
most of the methods modify the color space from sRGB to
an opponent-like one as better results are obtained, but out of
this conversion, color is mostly ignored in the image denoising
pipelines. In this work, we propose a color decomposition to
pre-process an image before applying a typical denoising. Our
decomposition consists in obtaining a set of images in the
spherical coordinate system, each of them with the origin of the
spherical transformation in a different color value. These color
values, that we call color centers, are defined so as to be far away
from the dominant colors of the image. Once in the spherical
coordinate system, we perform a mild denoising operation with
some state-of-the-art method in the angular components. Then,
we convert these images back to sRGB, and we merge them
depending on the distance between the color of each pixel and
the color centers. Finally, we denoise the pre-processed image
with the same state-of-the-art method used in our pre-processing.
Experiments show that our method outperforms the results of
directly applying the denoising method on the input image for
different state-of-the-art denoising methods.

Index Terms—Image Denoising, Non-local methods, Angular
representation.

I. INTRODUCTION

NOise is present in images due to the inherent physical and
technological limitations of the cameras. The presence of

noise degrades the quality of the captured images. Therefore,
image denoising is a must-have step in the digital imaging
processing pipeline.

Research into image denoising spans on more than three
decades. We can split the different image denoising methods
in two different categories: local and non-local. The former de-
noises a given pixel by taking into account only its neighbors.
Examples of local methods are those based on the reduction
of the Total Variation (TV) of the image such as the Rudin-
Osher-Fatemi (ROF) model [1]. These methods are prone to
removing details from edges and textures, and may introduce
staircasing artifacts.

Non-local methods are considered as state-of-the-art ap-
proaches. In particular, patch-based methods use the self-
similarity found in natural images for denoising the input
image. Their main drawback is a high algorithmic complexity,
as they combine information from patches all over the image
domain. Examples of this type of methods are the Non-Local
Means (NLM) algorithm [2], the UINTA algorithm [3], and
the Block-Matching and 3D Filtering (BM3D) algorithm [4].
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BM3D combines a patch-based approach with the use of fre-
quency filtering. A number of extensions to non-local methods
have been proposed. For example Zontak et al. [5] consider
different scales in the search for patch correspondences. Zoran
et al. [6] propose the EPLL method that considers the log
likelihood of the patches to select the best ones to be used
in the restoration. Talebi et al. [7] present a method that
locally controls the denoising strength via a spatially adaptive
iterative filter, and Tarebi and Milanfar [8] propose a method
that computes a global filter to denoise the image. For a
comprehensive review of image denoising algorithms we refer
the reader to the work of Lebrun et al. [9].

Surprisingly, even when most of the images in the world are
in color, very little research has been devoted in how to benefit
from the color information for this problem. Almost all image
denoising methods are based on applying the same algorithm
in each channel of the color image, either on the original RGB
space, or most commonly in recent times in the opponent space
suggested by BM3D [4]. In this work we pre-process the input
image to improve the capabilities of the denoising methods,
with a focus on non-local ones. Our pre-processing is inspired
by the fact that image colors can be clustered together, and that
natural images are typically dominated by only a few colors
[10]. In particular, our pre-processing applies a mild denoising
(i.e. a denoising that considers a small standard deviation
parameter) in a color decomposition of the image specifically
designed for this purpose. This mild denoising is performed
by the same method that will later be used to denoise the pre-
processed image. The idea of the decomposition is to obtain a
set of image representations in the spherical coordinate system,
each of them having the origin in points that are far away from
the dominant colors present in the image. In this way, all the
pixels with color values close to the dominant color will have
very similar angular components, thus allowing us to apply a
mild denoising in this step in order to improve the final result
of the whole denoising pipeline.

II. ANGULAR-BASED PRE-PROCESSING

We explain our angular-based pre-processing in this section.
The pipeline of our approach is presented in Figure 1. In a
nutshell, we can divide our method in the following steps: i)
obtaining a set of color values (we call them color centers
and we denote them as ci) at a large distance of the dominant
colors, ii) for each ci, converting the original color image
to the spherical domain (being ci the origin of the spherical
transformation) and denoising the two angular components of
the representation in a mildly manner, iii) coming back to
sRGB and merging all the different images depending on the
distance between the color value of each pixel in the original
image and the different color centers. The pre-processed image
Ipreproc is finally used to feed a typical denoising method.
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Fig. 1. Pipeline of our method. Given an input image I we obtain the color centers; for each of them, we convert the input image to the spherical domain
(centering the origin of the spherical transformation on the color center) and we denoise the two angular components of this representation. We come back
to sRGB and we merge all the different images. Finally, the pre-processed image is used to feed a typical denoising method.

A. Obtaining the set of color centers

The first step in our approach deals with the obtention of the
dominant colors of the image (we call them di). To this end, we
follow the procedure outlined in [11] to obtain what they call
color pivots. In short, the work of [11] uses the RAD method
from Vazquez et al. [12]. Given an image I , RAD provides us
with different sets of color values. Each of these sets is called
a ridge of the color histogram and it is composed by local
maxima values of a creaseness operator that are connected
following the lines of shallowest gradient descent (representing
in a single ridge small variations of an object color due to
specular and shadow effects). Then, for a particular ridge R =
{r1, · · · , rn}, the dominant color di is the one that fulfills

di = argmax
c∈Ri

H(c), (1)

where Ri denotes the i-th ridge, and H(·) stands for the color
histogram (i.e. the dominant color is the color value of the
ridge with maximum histogram value). Once the dominant
colors have been obtained, we look for the color centers ci.
As outlined before, ci should be far away from the dominant
color. To this end, given a particular dominant color di we
first call p the line that passes through di and the center of the
color space (in case of sRGB the vector [127.5 127.5 127.5 ]).
Then, we define the color center ci as the point of the RGB
cube that belongs to p and is at the maximum distance of di.
Mathematically,

p = di + η([127.5 127.5 127.5]− di), (2)

ci = argmax
x∈p,x∈RGBcube

d(x, di), (3)

where RGBcube denotes the RGB color cube, and d denotes
the Euclidean distance.

B. Obtaining the new set of images and denoising them

Given the original image I and any of the color centers ci,
the spherical coordinates centered in ci for a pixel x in the
image I are obtained as

rci(x) =
√
(Ir(x)− cri )2 + (Ig(x)− cgi )2 + (Ib(x)− cbi )2

θci(x) = tan−1

(√
(Ir(x)− cri )2 + (Ig(x)− cgi )2

(Ib(x)− cbi )

)

ϕci(x) = tan−1
(
Ig(x)− cgi
Ir(x)− cri

)
, (4)

where r,g, and b denote the different color channels. Then,
we perform a mild denoising (i.e. a denoising with a small
standard deviation parameter) in the two angular components

θdci = denoising(θci , σθci )

ϕdci = denoising(ϕci , σϕci
), (5)

where d stands for denoised, σθci , ϕθci are the noise standard
deviation parameters, and the denoising method can be any
present in the literature.

C. Back to sRGB and merging
In this point, for each ci we come back to the original sRGB

space by using the denoised quantities (θdci and ϕdci ). Thus, we
obtain a set of different sRGB images Ici

Irci(x) = rci(x) sin(θ
d
ci(x)) cos(ϕ

d
ci(x)) + cri

Igci(x) = rci(x) sin(θ
d
ci(x)) sin(ϕ

d
ci(x)) + cgi

Ibci(x) = rci(x) cos(θ
d
ci(x)) + cbi . (6)

We merge the different Ici in a single pre-processed image as
follows. Let us note that rci(x) marks the distance between
the color center ci and the color value at the specific pixel x.
Our hypothesis is that pixels with values at larger distances
are better denoised. The rationale behind this idea is that at
larger distances, the values in the angles θci and ϕci for the
colors close to that of pixel x are closer, and therefore easier to
denoise. Then, for each pixel x we define the weights wci(x)
as

wci(x) =

(
rci(x)∑
ci
rci(x)

)α
, (7)

and we obtain the pre-processed image as follows

Ipreproc(x) =
∑
ci

wci(x)∑
ci
wci(x)

Ici(x). (8)

The last step of our method consists on denoising the pre-
processed image with the same method used in Eq. 5

Ifinal = denoising(Ipreproc, σcol) (9)

where σcol is the noise standard deviation parameter for the
color image, and the denoising method should be the same
one used in Eq.5.
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Fig. 2. Datasets used in our experiments.

III. EXPERIMENTS

We run our method on 3 different datasets: Kodak [13],
which is the standard denoising dataset, a dataset that we
call Gamut Mapping (GM) as it contains images usually used
for addressing the gamut mapping problem [14], and the 11
images from the ARRI dataset [15] captured using a Bayer
Pattern. These different datasets are shown in Figure 2. For
all the datasets, given the clean ground-truth image, we add
to it white noise with a Gaussian distribution of different
standard deviations σ to create our input images. In this
paper we consider σ = 10, 20, 30, 40, 50 and 60. For all the
different methods and noise levels we follow the same strategy.
We search for the optimal parameters in the standard Kodak
dataset, and we later process the other datasets with these same
parameters, therefore following a train/test paradigm. We make
use of the color peak signal to noise ratio (CPSNR) as the
measure to optimize because it is a color metric widely used in
image denoising. For all the tested image denoising methods,
we compare two results: i) the result obtained by applying
a particular method directly to the input color image, ii) the
result obtained by first pre-processing the image as proposed
in section II followed by applying exactly the same procedure
of i) with the same parameters to our pre-processed image. We
now discuss the results for each specific method considered in
the paper. Regarding the parameters of our method, the values
for σθci and σϕci

have been obtained by optimizing the results
for the BM3D method in the Kodak dataset, and we set the
value α = 10.6 in Eq.(7), and the maximum number of color
centers in the image to 8 for all the cases.

A. BM3D

BM3D [4] is considered one of the state-of-the-art methods
in image denoising. In this paper, we use the Matlab code
provided by the authors, and run it in the opponent color
space for the sRGB images. In the top part of Table I we
show the parameters used by BM3D, for both the color images
and for our angular components (third and fourth row), as
well as the results obtained by the original method, and our
method. (fifth and sixth row). We can see that our approach
outperforms the original BM3D method. We can see that the
improvement is larger for higher noise levels, and that it is
smaller in the case of the Kodak dataset. Let us also note that
for the noise level σ = 60 our improvement reaches up to 0.67,
0.98, and 1.18 dBs for the Kodak, GM, and ARRI datasets,
respectively. Finally, in Figure 3 we can see the effect of
applying our pre-processing. From left to right we present the
original noisy image, the ground truth, the result of the original
BM3D method, our result, and the difference images for both
the BM3D method and our result. The difference image is
computed as follows: i) we calculate the absolute difference

between the denoised and the original images and ii) we add
the values obtained for the three color channels. Therefore,
a darker difference image indicates a better denoising. The
difference images have been scaled per scene so that the value
of 1 is given to the maximum error, and the gamma non-
linearity of sRGB has been added for visualization purposes.
We can see that the BM3D denoised image presents a more
blurred and washed-up appearance in comparison to the results
given by applying our preprocessing. This is specially evident
in the color of the swimming pool water and in the seats in
the tribune for the top image, and in the color of the sky for
the bottom image.

B. Non-local Means

The Non-Local Means (NLM) algorithm [2] made a break-
through in the image denoising literature. NLM introduced
the idea of combining redundant information from patches
that span all the image domain. It is still one of the most
used methods. Also, it has been shown to perform comparable
to BM3D in psychophysical tests [16]. In this paper, we run
the NLM algorithm in the opponent color space since it is
the color space where better results are obtained. Different
parameters for the luminance and chrominance channels are
used in the search for the best results. In the bottom partt
of Table I we present the parameters used, the results of
the original NLM method, and the results of applying NLM
to pre-process our angular components. As in the case of
BM3D, our improvement is larger for higher noise levels. Our
improvement reaches up to 0.47, 0.71, and 1.07 dBs at the
higher noise level for the Kodak, GM, and ARRI datasets,
respectively.

C. Other methods

Finally, we test to see if our approach can also be used for
other methods. In particular we try the EPLL [6] method and
the Field-of-Experts (FOE) [17] method. The later one was
selected to check if our approach can also be used for methods
that are not non-local. Results for these two methods are shown
in Table II. In this case, we reduce the size of the input image
for computational reasons by performing an uniform sampling
in order to respect the original colors of the image. Images in
the Kodak and the GM dataset are reduced by a factor of
2 in each dimension, while images in the ARRI datasets are
reduced by a factor of 4 in each dimension. As in the case
of NLM, the parameters for the EPLL method are obtained
separately for the luminance and chrominance components in
the opponent color space. We can see that our pre-processing
approach in the EPLL method improves the original one for
almost all the cases, reaching to a maximum improvement
of 0.38, 0.54, and 0.65 dBs for the Kodak, GM and ARRI
datasets, respectively. In the case of the FOE algorithm, we
run the method in the YCbCr color space using the code
released by the authors. We can see that our method once again
improves the results for the three different datasets, reaching
up to a 0.35, 0.27, and 0.49 dBs improvement, respectively.
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(a) (b) (c) (d) (e) (f)
Fig. 3. An example of our result for the BM3D case. (a) Original image, (b) noisy image, (c) result of BM3D, (d) result of our approach, (e) difference
image for BM3D, (f) difference image for our result.

TABLE I
CPSNR RESULTS FOR THE BM3D [4] CASE (TOP), AND THE NLM [2] CASE (BOTTOM). AVERAGE FOR EACH DATASET.

Kodak dataset (training data) GM dataset ARRI dataset
Noise 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
σ(Color) 10 19 29 41 45 53 10 19 29 41 45 53 10 19 29 41 45 53
σ(θ, ϕ) 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7
BM3D 36.45 32.63 30.39 28.57 27.36 26.12 37.19 33.06 30.41 28.23 26.65 25.12 38.19 34.47 31.71 29.50 27.56 25.86
Ours-BM3D 36.46 32.70 30.49 28.73 27.77 26.79 37.20 33.16 30.60 28.56 27.29 26.10 38.18 34.61 32.01 30.04 28.44 27.04
Improv. 0.01 0.07 0.10 0.16 0.41 0.67 0.01 0.10 0.19 0.33 0.64 0.98 -0.01 0.14 0.30 0.54 0.88 1.18
σ(Lum, Chr) 5,6 10,12 15,20 19,29 23,40 27,49 5,6 10,12 15,20 19,29 23,40 27,49 5,6 10,12 15,20 19,29 23,40 27,49
σ(θ, ϕ) 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7
NLM 35.21 31.40 29.19 27.60 26.21 24.97 35.87 31.81 29.15 27.15 25.48 24.04 36.46 32.79 30.23 28.21 26.47 24.92
Ours -NLM 35.22 31.44 29.28 27.80 26.52 25.44 35.88 31.88 29.31 27.45 25.95 24.75 36.47 32.90 30.51 28.75 27.26 25.99
Improv. 0.01 0.04 0.09 0.20 0.31 0.47 0.01 0.07 0.16 0.30 0.47 0.71 0.01 0.11 0.28 0.54 0.79 1.07

TABLE II
CPSNR RESULTS FOR THE EPLL [6] AND FOE [17] CASES. AVERAGE FOR EACH DATASET. KODAK AND GM IMAGES HAVE BEEN REDUCED BY A

FACTOR OF 2 IN EACH DIMENSION. ARRI IMAGES HAVE BEEN REDUCED BY A FACTOR OF 4 IN EACH DIMENSION.

Kodak dataset (training data) (1/4) GM dataset (1/4) ARRI dataset (1/16)
Noise 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
σ(Color) 5 10 17 25 40 148 5 10 17 25 40 148 5 10 17 25 40 148
σ(θ, ϕ) 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7
FOE 33.64 29.56 27.41 25.96 24.75 23.62 34.30 30.02 27.42 25.53 24.00 22.69 34.05 30.03 27.60 25.83 24.34 23.03
Ours-FOE 33.68 29.59 27.45 26.03 24.90 23.97 34.33 30.09 27.50 25.62 24.12 22.96 34.08 30.09 27.72 26.05 24.67 23.52
Improv. 0.04 0.03 0.04 0.07 0.15 0.35 0.03 0.07 0.08 0.09 0.12 0.27 0.03 0.06 0.12 0.22 0.33 0.49
σ(Lum, Chr) 7,7 13,15 19,22 26,30 32,37 36,43 7,7 13,15 19,22 26,30 32,37 36,43 7,7 13,15 19,22 26,30 32,37 36,43
σ(θ, ϕ) 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7 1,0 2,1 3,2 5,3 7,5 9,7
EPLL 34.40 30.39 28.18 26.49 25.21 24,23 35,15 30,85 28,26 26,20 24,64 23.40 34.78 30.84 28.34 26.32 24.72 23.46
Ours-EPLL 34.40 30.38 28.20 26.56 25.41 24.61 35.16 30.87 28.33 26.35 24.97 23.94 34.77 30.86 28.43 26.54 25.15 24.11
Improv. 0.00 -0.01 0.02 0.07 0.20 0.38 0.01 0.02 0.07 0.15 0.33 0.54 -0.01 0.02 0.09 0.22 0.43 0.65

TABLE III
CPSNR RESULTS FOR THE TNRD CASE [19]. AVERAGE FOR EACH

DATASET.

Kodak dataset GM dataset ARRI dataset
Noise 50 50 50
σ(Color) 50 50 50
σ(θ, ϕ) 5,5 5,5 5,5
TNRD-RGB 26.09 25.79 26.74
Ours 26.26 26.14 27.28
Improv 0.17 0.35 0.54

1) Adaptability of our approach to CNN-like methods:
Recently, methods based on convolutional neural-networks
(CNN) have become state-of-the-art in image denoising [18],
[19]. To check the adaptability of our approach to these
methods, we have used the data provided by Chen and Pock
[19]. In their work, they consider standard deviation noise
levels of σ = 5, 15, 25, and 50 for gray-level images. We
have run their method (called TNRD) for σ = 50 in each of
the channels of the RGB color space, as it is the most similar
space to the grey-level images they trained for. We have also
run our preprocessing with σ = 5 in both angular components,

followed by the running of the method for σ = 50 in each
of the RGB channels. Results are presented in Table III. We
can see that our preprocessing also improves the result of the
original method. Let us note that in this particular case, the
TNRD method does not provide better results than BM3D
because we are not using an opponent-like color space (due
to the training data considered).

IV. CONCLUSIONS

We proposed a color decomposition framework to pre-
process an image before the typical denoising pipeline is used.
Our decomposition consists in obtaining a set of images in
the spherical coordinate system, each of them considering the
origin of the spherical transformation in a different color value.
Once in the spherical coordinate system, we perform a mild
denoising operation with some state-of-the-art method in the
angular components and we come back to the sRGB space.
Then, we apply the same state-of-the-art denoising method
in this pre-processed image. Results show that our method
consistently improves over the direct denoising of the input
image by the same state-of-the-art method.
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